/*===-- Target Data -------------------------------------------------------===*/
/** Creates target data from a target layout string.
- See the constructor llvm::TargetData::TargetData. */
+ See the constructor llvm::DataLayout::DataLayout. */
LLVMTargetDataRef LLVMCreateTargetData(const char *StringRep);
/** Adds target data information to a pass manager. This does not take ownership
/** Converts target data to a target layout string. The string must be disposed
with LLVMDisposeMessage.
- See the constructor llvm::TargetData::TargetData. */
+ See the constructor llvm::DataLayout::DataLayout. */
char *LLVMCopyStringRepOfTargetData(LLVMTargetDataRef);
/** Returns the byte order of a target, either LLVMBigEndian or
LLVMLittleEndian.
- See the method llvm::TargetData::isLittleEndian. */
+ See the method llvm::DataLayout::isLittleEndian. */
enum LLVMByteOrdering LLVMByteOrder(LLVMTargetDataRef);
/** Returns the pointer size in bytes for a target.
- See the method llvm::TargetData::getPointerSize. */
+ See the method llvm::DataLayout::getPointerSize. */
unsigned LLVMPointerSize(LLVMTargetDataRef);
/** Returns the integer type that is the same size as a pointer on a target.
- See the method llvm::TargetData::getIntPtrType. */
+ See the method llvm::DataLayout::getIntPtrType. */
LLVMTypeRef LLVMIntPtrType(LLVMTargetDataRef);
/** Computes the size of a type in bytes for a target.
- See the method llvm::TargetData::getTypeSizeInBits. */
+ See the method llvm::DataLayout::getTypeSizeInBits. */
unsigned long long LLVMSizeOfTypeInBits(LLVMTargetDataRef, LLVMTypeRef);
/** Computes the storage size of a type in bytes for a target.
- See the method llvm::TargetData::getTypeStoreSize. */
+ See the method llvm::DataLayout::getTypeStoreSize. */
unsigned long long LLVMStoreSizeOfType(LLVMTargetDataRef, LLVMTypeRef);
/** Computes the ABI size of a type in bytes for a target.
- See the method llvm::TargetData::getTypeAllocSize. */
+ See the method llvm::DataLayout::getTypeAllocSize. */
unsigned long long LLVMABISizeOfType(LLVMTargetDataRef, LLVMTypeRef);
/** Computes the ABI alignment of a type in bytes for a target.
- See the method llvm::TargetData::getTypeABISize. */
+ See the method llvm::DataLayout::getTypeABISize. */
unsigned LLVMABIAlignmentOfType(LLVMTargetDataRef, LLVMTypeRef);
/** Computes the call frame alignment of a type in bytes for a target.
- See the method llvm::TargetData::getTypeABISize. */
+ See the method llvm::DataLayout::getTypeABISize. */
unsigned LLVMCallFrameAlignmentOfType(LLVMTargetDataRef, LLVMTypeRef);
/** Computes the preferred alignment of a type in bytes for a target.
- See the method llvm::TargetData::getTypeABISize. */
+ See the method llvm::DataLayout::getTypeABISize. */
unsigned LLVMPreferredAlignmentOfType(LLVMTargetDataRef, LLVMTypeRef);
/** Computes the preferred alignment of a global variable in bytes for a target.
- See the method llvm::TargetData::getPreferredAlignment. */
+ See the method llvm::DataLayout::getPreferredAlignment. */
unsigned LLVMPreferredAlignmentOfGlobal(LLVMTargetDataRef,
LLVMValueRef GlobalVar);
unsigned Element);
/** Deallocates a TargetData.
- See the destructor llvm::TargetData::~TargetData. */
+ See the destructor llvm::DataLayout::~DataLayout. */
void LLVMDisposeTargetData(LLVMTargetDataRef);
/**
}
namespace llvm {
- class TargetData;
+ class DataLayout;
class TargetLibraryInfo;
- inline TargetData *unwrap(LLVMTargetDataRef P) {
- return reinterpret_cast<TargetData*>(P);
+ inline DataLayout *unwrap(LLVMTargetDataRef P) {
+ return reinterpret_cast<DataLayout*>(P);
}
- inline LLVMTargetDataRef wrap(const TargetData *P) {
- return reinterpret_cast<LLVMTargetDataRef>(const_cast<TargetData*>(P));
+ inline LLVMTargetDataRef wrap(const DataLayout *P) {
+ return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P));
}
inline TargetLibraryInfo *unwrap(LLVMTargetLibraryInfoRef P) {
LLVMDisposeMessage. */
char *LLVMGetTargetMachineFeatureString(LLVMTargetMachineRef T);
-/** Returns the llvm::TargetData used for this llvm:TargetMachine. */
+/** Returns the llvm::DataLayout used for this llvm:TargetMachine. */
LLVMTargetDataRef LLVMGetTargetMachineData(LLVMTargetMachineRef T);
/** Emits an asm or object file for the given module to the filename. This
class LoadInst;
class StoreInst;
class VAArgInst;
-class TargetData;
+class DataLayout;
class TargetLibraryInfo;
class Pass;
class AnalysisUsage;
class AliasAnalysis {
protected:
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
private:
/// know the sizes of the potential memory references.
static uint64_t const UnknownSize = ~UINT64_C(0);
- /// getTargetData - Return a pointer to the current TargetData object, or
- /// null if no TargetData object is available.
+ /// getDataLayout - Return a pointer to the current DataLayout object, or
+ /// null if no DataLayout object is available.
///
- const TargetData *getTargetData() const { return TD; }
+ const DataLayout *getDataLayout() const { return TD; }
/// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
/// object, or null if no TargetLibraryInfo object is available.
///
const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
- /// getTypeStoreSize - Return the TargetData store size for the given type,
+ /// getTypeStoreSize - Return the DataLayout store size for the given type,
/// if known, or a conservative value otherwise.
///
uint64_t getTypeStoreSize(Type *Ty);
class BasicBlock;
class Function;
class Instruction;
- class TargetData;
+ class DataLayout;
class Value;
/// \brief Check whether an instruction is likely to be "free" when lowered.
- bool isInstructionFree(const Instruction *I, const TargetData *TD = 0);
+ bool isInstructionFree(const Instruction *I, const DataLayout *TD = 0);
/// \brief Check whether a call will lower to something small.
///
NumRets(0) {}
/// \brief Add information about a block to the current state.
- void analyzeBasicBlock(const BasicBlock *BB, const TargetData *TD = 0);
+ void analyzeBasicBlock(const BasicBlock *BB, const DataLayout *TD = 0);
/// \brief Add information about a function to the current state.
- void analyzeFunction(Function *F, const TargetData *TD = 0);
+ void analyzeFunction(Function *F, const DataLayout *TD = 0);
};
}
//
// Also, to supplement the basic VMCore ConstantExpr simplifications,
// this file declares some additional folding routines that can make use of
-// TargetData information. These functions cannot go in VMCore due to library
+// DataLayout information. These functions cannot go in VMCore due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
class Constant;
class ConstantExpr;
class Instruction;
- class TargetData;
+ class DataLayout;
class TargetLibraryInfo;
class Function;
class Type;
/// Note that this fails if not all of the operands are constant. Otherwise,
/// this function can only fail when attempting to fold instructions like loads
/// and stores, which have no constant expression form.
-Constant *ConstantFoldInstruction(Instruction *I, const TargetData *TD = 0,
+Constant *ConstantFoldInstruction(Instruction *I, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
-/// using the specified TargetData. If successful, the constant result is
+/// using the specified DataLayout. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *ConstantFoldConstantExpression(const ConstantExpr *CE,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
///
Constant *ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
ArrayRef<Constant *> Ops,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
///
Constant *ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *LHS, Constant *RHS,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
/// ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue
/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
/// produce if it is constant and determinable. If this is not determinable,
/// return null.
-Constant *ConstantFoldLoadFromConstPtr(Constant *C, const TargetData *TD = 0);
+Constant *ConstantFoldLoadFromConstPtr(Constant *C, const DataLayout *TD = 0);
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
class ScalarEvolution;
class SCEV;
class IVUsers;
-class TargetData;
+class DataLayout;
/// IVStrideUse - Keep track of one use of a strided induction variable.
/// The Expr member keeps track of the expression, User is the actual user
LoopInfo *LI;
DominatorTree *DT;
ScalarEvolution *SE;
- TargetData *TD;
+ DataLayout *TD;
SmallPtrSet<Instruction*,16> Processed;
/// IVUses - A list of all tracked IV uses of induction variable expressions
namespace llvm {
class CallSite;
- class TargetData;
+ class DataLayout;
namespace InlineConstants {
// Various magic constants used to adjust heuristics.
/// InlineCostAnalyzer - Cost analyzer used by inliner.
class InlineCostAnalyzer {
- // TargetData if available, or null.
- const TargetData *TD;
+ // DataLayout if available, or null.
+ const DataLayout *TD;
public:
InlineCostAnalyzer(): TD(0) {}
- void setTargetData(const TargetData *TData) { TD = TData; }
+ void setDataLayout(const DataLayout *TData) { TD = TData; }
/// \brief Get an InlineCost object representing the cost of inlining this
/// callsite.
class ArrayRef;
class DominatorTree;
class Instruction;
- class TargetData;
+ class DataLayout;
class TargetLibraryInfo;
class Type;
class Value;
/// SimplifyAddInst - Given operands for an Add, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyAddInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifySubInst - Given operands for a Sub, see if we can
/// fold the result. If not, this returns null.
Value *SimplifySubInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyMulInst - Given operands for a Mul, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyMulInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifyMulInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifySDivInst - Given operands for an SDiv, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifySDivInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifySDivInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyUDivInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifyUDivInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyFDivInst - Given operands for an FDiv, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyFDivInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifyFDivInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifySRemInst - Given operands for an SRem, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifySRemInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifySRemInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyURemInst - Given operands for a URem, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyURemInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifyURemInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyFRemInst - Given operands for an FRem, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyFRemInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifyFRemInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyShlInst - Given operands for a Shl, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyLShrInst - Given operands for a LShr, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyAShrInst - Given operands for a AShr, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyAndInst - Given operands for an And, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyAndInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifyAndInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyOrInst - Given operands for an Or, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyOrInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifyOrInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyXorInst - Given operands for a Xor, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyXorInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
+ Value *SimplifyXorInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
/// the result. If not, this returns null.
Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
/// fold the result. If not, this returns null.
- Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD = 0,
+ Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// can fold the result. If not, this returns null.
Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyTruncInst - Given operands for an TruncInst, see if we can fold
/// the result. If not, this returns null.
- Value *SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD = 0,
+ Value *SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction. If not, this returns null.
- Value *SimplifyInstruction(Instruction *I, const TargetData *TD = 0,
+ Value *SimplifyInstruction(Instruction *I, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
///
/// The function returns true if any simplifications were performed.
bool replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// of the users impacted. It returns true if any simplifications were
/// performed.
bool recursivelySimplifyInstruction(Instruction *I,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
} // end namespace llvm
namespace llvm {
class Constant;
- class TargetData;
+ class DataLayout;
class TargetLibraryInfo;
class Value;
/// LazyValueInfo - This pass computes, caches, and vends lazy value constraint
/// information.
class LazyValueInfo : public FunctionPass {
- class TargetData *TD;
+ class DataLayout *TD;
class TargetLibraryInfo *TLI;
void *PImpl;
LazyValueInfo(const LazyValueInfo&) LLVM_DELETED_FUNCTION;
namespace llvm {
class AliasAnalysis;
-class TargetData;
+class DataLayout;
class MDNode;
/// isSafeToLoadUnconditionally - Return true if we know that executing a load
/// specified pointer, we do a quick local scan of the basic block containing
/// ScanFrom, to determine if the address is already accessed.
bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
- unsigned Align, const TargetData *TD = 0);
+ unsigned Align, const DataLayout *TD = 0);
/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at
/// the instruction before ScanFrom) checking to see if we have the value at
namespace llvm {
class CallInst;
class PointerType;
-class TargetData;
+class DataLayout;
class TargetLibraryInfo;
class Type;
class Value;
/// isArrayMalloc - Returns the corresponding CallInst if the instruction
/// is a call to malloc whose array size can be determined and the array size
/// is not constant 1. Otherwise, return NULL.
-const CallInst *isArrayMalloc(const Value *I, const TargetData *TD,
+const CallInst *isArrayMalloc(const Value *I, const DataLayout *TD,
const TargetLibraryInfo *TLI);
/// getMallocType - Returns the PointerType resulting from the malloc call.
/// then return that multiple. For non-array mallocs, the multiple is
/// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
/// determined.
-Value *getMallocArraySize(CallInst *CI, const TargetData *TD,
+Value *getMallocArraySize(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI,
bool LookThroughSExt = false);
/// object size in Size if successful, and false otherwise.
/// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
/// byval arguments, and global variables.
-bool getObjectSize(const Value *Ptr, uint64_t &Size, const TargetData *TD,
+bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *TD,
const TargetLibraryInfo *TLI, bool RoundToAlign = false);
class ObjectSizeOffsetVisitor
: public InstVisitor<ObjectSizeOffsetVisitor, SizeOffsetType> {
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
bool RoundToAlign;
unsigned IntTyBits;
}
public:
- ObjectSizeOffsetVisitor(const TargetData *TD, const TargetLibraryInfo *TLI,
+ ObjectSizeOffsetVisitor(const DataLayout *TD, const TargetLibraryInfo *TLI,
LLVMContext &Context, bool RoundToAlign = false);
SizeOffsetType compute(Value *V);
typedef DenseMap<const Value*, WeakEvalType> CacheMapTy;
typedef SmallPtrSet<const Value*, 8> PtrSetTy;
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
LLVMContext &Context;
BuilderTy Builder;
SizeOffsetEvalType compute_(Value *V);
public:
- ObjectSizeOffsetEvaluator(const TargetData *TD, const TargetLibraryInfo *TLI,
+ ObjectSizeOffsetEvaluator(const DataLayout *TD, const TargetLibraryInfo *TLI,
LLVMContext &Context);
SizeOffsetEvalType compute(Value *V);
class Instruction;
class CallSite;
class AliasAnalysis;
- class TargetData;
+ class DataLayout;
class MemoryDependenceAnalysis;
class PredIteratorCache;
class DominatorTree;
/// Current AA implementation, just a cache.
AliasAnalysis *AA;
- TargetData *TD;
+ DataLayout *TD;
DominatorTree *DT;
OwningPtr<PredIteratorCache> PredCache;
public:
int64_t MemLocOffs,
unsigned MemLocSize,
const LoadInst *LI,
- const TargetData &TD);
+ const DataLayout &TD);
private:
MemDepResult getCallSiteDependencyFrom(CallSite C, bool isReadOnlyCall,
namespace llvm {
class DominatorTree;
- class TargetData;
+ class DataLayout;
class TargetLibraryInfo;
/// PHITransAddr - An address value which tracks and handles phi translation.
Value *Addr;
/// TD - The target data we are playing with if known, otherwise null.
- const TargetData *TD;
+ const DataLayout *TD;
/// TLI - The target library info if known, otherwise null.
const TargetLibraryInfo *TLI;
/// InstInputs - The inputs for our symbolic address.
SmallVector<Instruction*, 4> InstInputs;
public:
- PHITransAddr(Value *addr, const TargetData *td) : Addr(addr), TD(td), TLI(0) {
+ PHITransAddr(Value *addr, const DataLayout *td) : Addr(addr), TD(td), TLI(0) {
// If the address is an instruction, the whole thing is considered an input.
if (Instruction *I = dyn_cast<Instruction>(Addr))
InstInputs.push_back(I);
class DominatorTree;
class Type;
class ScalarEvolution;
- class TargetData;
+ class DataLayout;
class TargetLibraryInfo;
class LLVMContext;
class Loop;
/// TD - The target data information for the target we are targeting.
///
- TargetData *TD;
+ DataLayout *TD;
/// TLI - The target library information for the target we are targeting.
///
class Value;
class Instruction;
class APInt;
- class TargetData;
+ class DataLayout;
class StringRef;
class MDNode;
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const TargetData *TD = 0, unsigned Depth = 0);
+ const DataLayout *TD = 0, unsigned Depth = 0);
void computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero);
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
/// one. Convenience wrapper around ComputeMaskedBits.
void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const TargetData *TD = 0, unsigned Depth = 0);
+ const DataLayout *TD = 0, unsigned Depth = 0);
/// isPowerOfTwo - Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// type and vectors of integers. If 'OrZero' is set then returns true if the
/// given value is either a power of two or zero.
- bool isPowerOfTwo(Value *V, const TargetData *TD = 0, bool OrZero = false,
+ bool isPowerOfTwo(Value *V, const DataLayout *TD = 0, bool OrZero = false,
unsigned Depth = 0);
/// isKnownNonZero - Return true if the given value is known to be non-zero
/// when defined. For vectors return true if every element is known to be
/// non-zero when defined. Supports values with integer or pointer type and
/// vectors of integers.
- bool isKnownNonZero(Value *V, const TargetData *TD = 0, unsigned Depth = 0);
+ bool isKnownNonZero(Value *V, const DataLayout *TD = 0, unsigned Depth = 0);
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
bool MaskedValueIsZero(Value *V, const APInt &Mask,
- const TargetData *TD = 0, unsigned Depth = 0);
+ const DataLayout *TD = 0, unsigned Depth = 0);
/// ComputeNumSignBits - Return the number of times the sign bit of the
///
/// 'Op' must have a scalar integer type.
///
- unsigned ComputeNumSignBits(Value *Op, const TargetData *TD = 0,
+ unsigned ComputeNumSignBits(Value *Op, const DataLayout *TD = 0,
unsigned Depth = 0);
/// ComputeMultiple - This function computes the integer multiple of Base that
/// it can be expressed as a base pointer plus a constant offset. Return the
/// base and offset to the caller.
Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const TargetData &TD);
+ const DataLayout &TD);
static inline const Value *
GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
- const TargetData &TD) {
+ const DataLayout &TD) {
return GetPointerBaseWithConstantOffset(const_cast<Value*>(Ptr), Offset,TD);
}
/// being addressed. Note that the returned value has pointer type if the
/// specified value does. If the MaxLookup value is non-zero, it limits the
/// number of instructions to be stripped off.
- Value *GetUnderlyingObject(Value *V, const TargetData *TD = 0,
+ Value *GetUnderlyingObject(Value *V, const DataLayout *TD = 0,
unsigned MaxLookup = 6);
static inline const Value *
- GetUnderlyingObject(const Value *V, const TargetData *TD = 0,
+ GetUnderlyingObject(const Value *V, const DataLayout *TD = 0,
unsigned MaxLookup = 6) {
return GetUnderlyingObject(const_cast<Value *>(V), TD, MaxLookup);
}
/// multiple objects.
void GetUnderlyingObjects(Value *V,
SmallVectorImpl<Value *> &Objects,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
unsigned MaxLookup = 6);
/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
/// However, this method can return true for instructions that read memory;
/// for such instructions, moving them may change the resulting value.
bool isSafeToSpeculativelyExecute(const Value *V,
- const TargetData *TD = 0);
+ const DataLayout *TD = 0);
} // end namespace llvm
class DwarfException;
class Mangler;
class TargetLoweringObjectFile;
- class TargetData;
+ class DataLayout;
class TargetMachine;
/// AsmPrinter - This class is intended to be used as a driving class for all
/// getObjFileLowering - Return information about object file lowering.
const TargetLoweringObjectFile &getObjFileLowering() const;
- /// getTargetData - Return information about data layout.
- const TargetData &getTargetData() const;
+ /// getDataLayout - Return information about data layout.
+ const DataLayout &getDataLayout() const;
/// getCurrentSection() - Return the current section we are emitting to.
const MCSection *getCurrentSection() const;
class MachineInstr;
class MachineFrameInfo;
class MachineRegisterInfo;
-class TargetData;
+class DataLayout;
class TargetInstrInfo;
class TargetLibraryInfo;
class TargetLowering;
MachineConstantPool &MCP;
DebugLoc DL;
const TargetMachine &TM;
- const TargetData &TD;
+ const DataLayout &TD;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
const TargetRegisterInfo &TRI;
namespace llvm {
class CallInst;
class Module;
- class TargetData;
+ class DataLayout;
class IntrinsicLowering {
- const TargetData& TD;
+ const DataLayout& TD;
bool Warned;
public:
- explicit IntrinsicLowering(const TargetData &td) :
+ explicit IntrinsicLowering(const DataLayout &td) :
TD(td), Warned(false) {}
/// AddPrototypes - This method, if called, causes all of the prototypes
class Constant;
class FoldingSetNodeID;
-class TargetData;
+class DataLayout;
class TargetMachine;
class Type;
class MachineConstantPool;
/// address of the function constant pool values.
/// @brief The machine constant pool.
class MachineConstantPool {
- const TargetData *TD; ///< The machine's TargetData.
+ const DataLayout *TD; ///< The machine's DataLayout.
unsigned PoolAlignment; ///< The alignment for the pool.
std::vector<MachineConstantPoolEntry> Constants; ///< The pool of constants.
/// MachineConstantPoolValues that use an existing MachineConstantPoolEntry.
DenseSet<MachineConstantPoolValue*> MachineCPVsSharingEntries;
public:
/// @brief The only constructor.
- explicit MachineConstantPool(const TargetData *td)
+ explicit MachineConstantPool(const DataLayout *td)
: TD(td), PoolAlignment(1) {}
~MachineConstantPool();
namespace llvm {
class raw_ostream;
-class TargetData;
+class DataLayout;
class TargetRegisterClass;
class Type;
class MachineFunction;
namespace llvm {
class MachineBasicBlock;
-class TargetData;
+class DataLayout;
class raw_ostream;
/// MachineJumpTableEntry - One jump table in the jump table info.
JTEntryKind getEntryKind() const { return EntryKind; }
/// getEntrySize - Return the size of each entry in the jump table.
- unsigned getEntrySize(const TargetData &TD) const;
+ unsigned getEntrySize(const DataLayout &TD) const;
/// getEntryAlignment - Return the alignment of each entry in the jump table.
- unsigned getEntryAlignment(const TargetData &TD) const;
+ unsigned getEntryAlignment(const DataLayout &TD) const;
/// createJumpTableIndex - Create a new jump table.
///
#define LLVM_DERIVED_TYPES_H
#include "llvm/Type.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/Compiler.h"
namespace llvm {
/// Independent of what kind of struct you have, the body of a struct type are
/// laid out in memory consequtively with the elements directly one after the
/// other (if the struct is packed) or (if not packed) with padding between the
-/// elements as defined by TargetData (which is required to match what the code
+/// elements as defined by DataLayout (which is required to match what the code
/// generator for a target expects).
///
class StructType : public CompositeType {
class MachineCodeInfo;
class Module;
class MutexGuard;
-class TargetData;
+class DataLayout;
class Triple;
class Type;
ExecutionEngineState EEState;
/// The target data for the platform for which execution is being performed.
- const TargetData *TD;
+ const DataLayout *TD;
/// Whether lazy JIT compilation is enabled.
bool CompilingLazily;
/// optimize for the case where there is only one module.
SmallVector<Module*, 1> Modules;
- void setTargetData(const TargetData *td) { TD = td; }
+ void setDataLayout(const DataLayout *td) { TD = td; }
/// getMemoryforGV - Allocate memory for a global variable.
virtual char *getMemoryForGV(const GlobalVariable *GV);
//===--------------------------------------------------------------------===//
- const TargetData *getTargetData() const { return TD; }
+ const DataLayout *getDataLayout() const { return TD; }
/// removeModule - Remove a Module from the list of modules. Returns true if
/// M is found.
/// IntPtrTy argument is used to make accurate determinations for casts
/// involving Integer and Pointer types. They are no-op casts if the integer
/// is the same size as the pointer. However, pointer size varies with
- /// platform. Generally, the result of TargetData::getIntPtrType() should be
+ /// platform. Generally, the result of DataLayout::getIntPtrType() should be
/// passed in. If that's not available, use Type::Int64Ty, which will make
/// the isNoopCast call conservative.
/// @brief Determine if the described cast is a no-op cast.
namespace llvm {
-class TargetData;
+class DataLayout;
/// TargetFolder - Create constants with target dependent folding.
class TargetFolder {
- const TargetData *TD;
+ const DataLayout *TD;
/// Fold - Fold the constant using target specific information.
Constant *Fold(Constant *C) const {
}
public:
- explicit TargetFolder(const TargetData *TheTD) : TD(TheTD) {}
+ explicit TargetFolder(const DataLayout *TheTD) : TD(TheTD) {}
//===--------------------------------------------------------------------===//
// Binary Operators
template <typename T> class SmallVectorImpl;
class MCContext;
class MCSymbol;
-class TargetData;
+class DataLayout;
class Mangler {
public:
private:
MCContext &Context;
- const TargetData &TD;
+ const DataLayout &TD;
/// AnonGlobalIDs - We need to give global values the same name every time
/// they are mangled. This keeps track of the number we give to anonymous
unsigned NextAnonGlobalID;
public:
- Mangler(MCContext &context, const TargetData &td)
+ Mangler(MCContext &context, const DataLayout &td)
: Context(context), TD(td), NextAnonGlobalID(1) {}
/// getSymbol - Return the MCSymbol for the specified global value. This
+++ /dev/null
-//===-- llvm/Target/TargetData.h - Data size & alignment info ---*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the wrapper for DataLayout to provide compatibility
-// with the old TargetData class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TARGET_TARGETDATA_H
-#define LLVM_TARGET_TARGETDATA_H
-
-#include "llvm/DataLayout.h"
-#include "llvm/Pass.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/DataTypes.h"
-
-namespace llvm {
-
-/// TargetData - This class is just a wrapper to help with the transition to the
-/// new DataLayout class.
-class TargetData : public DataLayout {
-public:
- /// Default ctor.
- ///
- /// @note This has to exist, because this is a pass, but it should never be
- /// used.
- TargetData() : DataLayout() {}
-
- /// Constructs a TargetData from a specification string.
- /// See DataLayout::init().
- explicit TargetData(StringRef TargetDescription)
- : DataLayout(TargetDescription) {}
-
- /// Initialize target data from properties stored in the module.
- explicit TargetData(const Module *M) : DataLayout(M) {}
-
- TargetData(const TargetData &TD) : DataLayout(TD) {}
-
- template <typename UIntTy>
- static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
- return DataLayout::RoundUpAlignment(Val, Alignment);
- }
-};
-
-} // End llvm namespace
-
-#endif
class MCContext;
class MCExpr;
template<typename T> class SmallVectorImpl;
- class TargetData;
+ class DataLayout;
class TargetRegisterClass;
class TargetLibraryInfo;
class TargetLoweringObjectFile;
virtual ~TargetLowering();
const TargetMachine &getTargetMachine() const { return TM; }
- const TargetData *getTargetData() const { return TD; }
+ const DataLayout *getDataLayout() const { return TD; }
const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
bool isBigEndian() const { return !IsLittleEndian; }
private:
const TargetMachine &TM;
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLoweringObjectFile &TLOF;
/// PointerTy - The type to use for pointers, usually i32 or i64.
class MCContext;
class PassManagerBase;
class Target;
-class TargetData;
+class DataLayout;
class TargetELFWriterInfo;
class TargetFrameLowering;
class TargetInstrInfo;
virtual const TargetFrameLowering *getFrameLowering() const { return 0; }
virtual const TargetLowering *getTargetLowering() const { return 0; }
virtual const TargetSelectionDAGInfo *getSelectionDAGInfo() const{ return 0; }
- virtual const TargetData *getTargetData() const { return 0; }
+ virtual const DataLayout *getDataLayout() const { return 0; }
/// getMCAsmInfo - Return target specific asm information.
///
namespace llvm {
-class TargetData;
+class DataLayout;
class TargetMachine;
//===----------------------------------------------------------------------===//
TargetSelectionDAGInfo(const TargetSelectionDAGInfo &) LLVM_DELETED_FUNCTION;
void operator=(const TargetSelectionDAGInfo &) LLVM_DELETED_FUNCTION;
- const TargetData *TD;
+ const DataLayout *TD;
protected:
- const TargetData *getTargetData() const { return TD; }
+ const DataLayout *getDataLayout() const { return TD; }
public:
explicit TargetSelectionDAGInfo(const TargetMachine &TM);
namespace llvm {
class CallSite;
- class TargetData;
+ class DataLayout;
class InlineCost;
template<class PtrType, unsigned SmallSize>
class SmallPtrSet;
namespace llvm {
class Value;
- class TargetData;
+ class DataLayout;
class TargetLibraryInfo;
/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
/// EmitStrLen - Emit a call to the strlen function to the builder, for the
/// specified pointer. Ptr is required to be some pointer type, and the
/// return value has 'intptr_t' type.
- Value *EmitStrLen(Value *Ptr, IRBuilder<> &B, const TargetData *TD,
+ Value *EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI);
/// EmitStrNLen - Emit a call to the strnlen function to the builder, for the
/// specified pointer. Ptr is required to be some pointer type, MaxLen must
/// be of size_t type, and the return value has 'intptr_t' type.
Value *EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI);
+ const DataLayout *TD, const TargetLibraryInfo *TLI);
/// EmitStrChr - Emit a call to the strchr function to the builder, for the
/// specified pointer and character. Ptr is required to be some pointer type,
/// and the return value has 'i8*' type.
- Value *EmitStrChr(Value *Ptr, char C, IRBuilder<> &B, const TargetData *TD,
+ Value *EmitStrChr(Value *Ptr, char C, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI);
/// EmitStrNCmp - Emit a call to the strncmp function to the builder.
Value *EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI);
+ const DataLayout *TD, const TargetLibraryInfo *TLI);
/// EmitStrCpy - Emit a call to the strcpy function to the builder, for the
/// specified pointer arguments.
Value *EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
StringRef Name = "strcpy");
/// EmitStrNCpy - Emit a call to the strncpy function to the builder, for the
/// specified pointer arguments and length.
Value *EmitStrNCpy(Value *Dst, Value *Src, Value *Len, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
StringRef Name = "strncpy");
/// EmitMemCpyChk - Emit a call to the __memcpy_chk function to the builder.
/// This expects that the Len and ObjSize have type 'intptr_t' and Dst/Src
/// are pointers.
Value *EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
- IRBuilder<> &B, const TargetData *TD,
+ IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI);
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI);
+ const DataLayout *TD, const TargetLibraryInfo *TLI);
/// EmitMemCmp - Emit a call to the memcmp function.
Value *EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI);
+ const DataLayout *TD, const TargetLibraryInfo *TLI);
/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name'
/// (e.g. 'floor'). This function is known to take a single of type matching
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
- Value *EmitPutChar(Value *Char, IRBuilder<> &B, const TargetData *TD,
+ Value *EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI);
/// EmitPutS - Emit a call to the puts function. This assumes that Str is
/// some pointer.
- Value *EmitPutS(Value *Str, IRBuilder<> &B, const TargetData *TD,
+ Value *EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI);
/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
/// an i32, and File is a pointer to FILE.
Value *EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI);
+ const DataLayout *TD, const TargetLibraryInfo *TLI);
/// EmitFPutS - Emit a call to the puts function. Str is required to be a
/// pointer and File is a pointer to FILE.
- Value *EmitFPutS(Value *Str, Value *File, IRBuilder<> &B, const TargetData *TD,
+ Value *EmitFPutS(Value *Str, Value *File, IRBuilder<> &B, const DataLayout *TD,
const TargetLibraryInfo *TLI);
/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
Value *EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B,
- const TargetData *TD, const TargetLibraryInfo *TLI);
+ const DataLayout *TD, const TargetLibraryInfo *TLI);
/// SimplifyFortifiedLibCalls - Helper class for folding checked library
/// calls (e.g. __strcpy_chk) into their unchecked counterparts.
bool isString) const = 0;
public:
virtual ~SimplifyFortifiedLibCalls();
- bool fold(CallInst *CI, const TargetData *TD, const TargetLibraryInfo *TLI);
+ bool fold(CallInst *CI, const DataLayout *TD, const TargetLibraryInfo *TLI);
};
}
class CallSite;
class Trace;
class CallGraph;
-class TargetData;
+class DataLayout;
class Loop;
class LoopInfo;
class AllocaInst;
SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix = "",
ClonedCodeInfo *CodeInfo = 0,
- const TargetData *TD = 0,
+ const DataLayout *TD = 0,
Instruction *TheCall = 0);
/// InlineFunction call, and records the auxiliary results produced by it.
class InlineFunctionInfo {
public:
- explicit InlineFunctionInfo(CallGraph *cg = 0, const TargetData *td = 0)
+ explicit InlineFunctionInfo(CallGraph *cg = 0, const DataLayout *td = 0)
: CG(cg), TD(td) {}
/// CG - If non-null, InlineFunction will update the callgraph to reflect the
/// changes it makes.
CallGraph *CG;
- const TargetData *TD;
+ const DataLayout *TD;
/// StaticAllocas - InlineFunction fills this in with all static allocas that
/// get copied into the caller.
#include "llvm/IRBuilder.h"
#include "llvm/Operator.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
namespace llvm {
class PHINode;
class AllocaInst;
class ConstantExpr;
-class TargetData;
+class DataLayout;
class TargetLibraryInfo;
class DIBuilder;
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
-bool SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD = 0,
+bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
//===----------------------------------------------------------------------===//
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the 'and' to 0.
void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
- TargetData *TD = 0);
+ DataLayout *TD = 0);
/// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its
/// of the CFG. It returns true if a modification was made, possibly deleting
/// the basic block that was pointed to.
///
-bool SimplifyCFG(BasicBlock *BB, const TargetData *TD = 0);
+bool SimplifyCFG(BasicBlock *BB, const DataLayout *TD = 0);
/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
/// and if a predecessor branches to us and one of our successors, fold the
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const TargetData *TD = 0);
+ const DataLayout *TD = 0);
/// getKnownAlignment - Try to infer an alignment for the specified pointer.
-static inline unsigned getKnownAlignment(Value *V, const TargetData *TD = 0) {
+static inline unsigned getKnownAlignment(Value *V, const DataLayout *TD = 0) {
return getOrEnforceKnownAlignment(V, 0, TD);
}
/// When NoAssumptions is true, no assumptions about index computation not
/// overflowing is made.
template<typename IRBuilderTy>
-Value *EmitGEPOffset(IRBuilderTy *Builder, const TargetData &TD, User *GEP,
+Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &TD, User *GEP,
bool NoAssumptions = false) {
gep_type_iterator GTI = gep_type_begin(GEP);
Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
/// isSized - Return true if it makes sense to take the size of this type. To
/// get the actual size for a particular target, it is reasonable to use the
- /// TargetData subsystem to do this.
+ /// DataLayout subsystem to do this.
///
bool isSized() const {
// If it's a primitive, it is always sized.
///
/// Note that this may not reflect the size of memory allocated for an
/// instance of the type or the number of bytes that are written when an
- /// instance of the type is stored to memory. The TargetData class provides
+ /// instance of the type is stored to memory. The DataLayout class provides
/// additional query functions to provide this information.
///
unsigned getPrimitiveSizeInBits() const;
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
/// AliasAnalysis interface before any other methods are called.
///
void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
- TD = P->getAnalysisIfAvailable<TargetData>();
+ TD = P->getAnalysisIfAvailable<DataLayout>();
TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
AA = &P->getAnalysis<AliasAnalysis>();
}
AU.addRequired<AliasAnalysis>(); // All AA's chain
}
-/// getTypeStoreSize - Return the TargetData store size for the given type,
+/// getTypeStoreSize - Return the DataLayout store size for the given type,
/// if known, or a conservative value otherwise.
///
uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
/// getObjectSize - Return the size of the object specified by V, or
/// UnknownSize if unknown.
-static uint64_t getObjectSize(const Value *V, const TargetData &TD,
+static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
const TargetLibraryInfo &TLI,
bool RoundToAlign = false) {
uint64_t Size;
/// isObjectSmallerThan - Return true if we can prove that the object specified
/// by V is smaller than Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
- const TargetData &TD,
+ const DataLayout &TD,
const TargetLibraryInfo &TLI) {
// This function needs to use the aligned object size because we allow
// reads a bit past the end given sufficient alignment.
/// isObjectSize - Return true if we can prove that the object specified
/// by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size,
- const TargetData &TD, const TargetLibraryInfo &TLI) {
+ const DataLayout &TD, const TargetLibraryInfo &TLI) {
uint64_t ObjectSize = getObjectSize(V, TD, TLI);
return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
}
/// represented in the result.
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
ExtensionKind &Extension,
- const TargetData &TD, unsigned Depth) {
+ const DataLayout &TD, unsigned Depth) {
assert(V->getType()->isIntegerTy() && "Not an integer value");
// Limit our recursion depth.
/// specified amount, but which may have other unrepresented high bits. As such,
/// the gep cannot necessarily be reconstructed from its decomposed form.
///
-/// When TargetData is around, this function is capable of analyzing everything
+/// When DataLayout is around, this function is capable of analyzing everything
/// that GetUnderlyingObject can look through. When not, it just looks
/// through pointer casts.
///
static const Value *
DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
SmallVectorImpl<VariableGEPIndex> &VarIndices,
- const TargetData *TD) {
+ const DataLayout *TD) {
// Limit recursion depth to limit compile time in crazy cases.
unsigned MaxLookup = 6;
->getElementType()->isSized())
return V;
- // If we are lacking TargetData information, we can't compute the offets of
+ // If we are lacking DataLayout information, we can't compute the offets of
// elements computed by GEPs. However, we can handle bitcast equivalent
// GEPs.
if (TD == 0) {
const Value *GEP1BasePtr =
DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
// DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no TargetData.
+ // same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
assert(TD == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
// DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no TargetData.
+ // same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
assert(TD == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
// DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no TargetData.
+ // same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1) {
assert(TD == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
#include "llvm/Function.h"
#include "llvm/Support/CallSite.h"
#include "llvm/IntrinsicInst.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
using namespace llvm;
return false;
}
-bool llvm::isInstructionFree(const Instruction *I, const TargetData *TD) {
+bool llvm::isInstructionFree(const Instruction *I, const DataLayout *TD) {
if (isa<PHINode>(I))
return true;
/// analyzeBasicBlock - Fill in the current structure with information gleaned
/// from the specified block.
void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
- const TargetData *TD) {
+ const DataLayout *TD) {
++NumBlocks;
unsigned NumInstsBeforeThisBB = NumInsts;
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
}
-void CodeMetrics::analyzeFunction(Function *F, const TargetData *TD) {
+void CodeMetrics::analyzeFunction(Function *F, const DataLayout *TD) {
// If this function contains a call that "returns twice" (e.g., setjmp or
// _setjmp) and it isn't marked with "returns twice" itself, never inline it.
// This is a hack because we depend on the user marking their local variables
//
// Also, to supplement the basic VMCore ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
-// TargetData information. These functions cannot go in VMCore due to library
+// DataLayout information. These functions cannot go in VMCore due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
#include "llvm/Intrinsics.h"
#include "llvm/Operator.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
//===----------------------------------------------------------------------===//
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
-/// TargetData. This always returns a non-null constant, but it may be a
+/// DataLayout. This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, Type *DestTy,
- const TargetData &TD) {
+ const DataLayout &TD) {
// Catch the obvious splat cases.
if (C->isNullValue() && !DestTy->isX86_MMXTy())
return Constant::getNullValue(DestTy);
/// from a global, return the global and the constant. Because of
/// constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
- int64_t &Offset, const TargetData &TD) {
+ int64_t &Offset, const DataLayout &TD) {
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
Offset = 0;
/// the CurPtr buffer. TD is the target data.
static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
unsigned char *CurPtr, unsigned BytesLeft,
- const TargetData &TD) {
+ const DataLayout &TD) {
assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
"Out of range access");
}
static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
- const TargetData &TD) {
+ const DataLayout &TD) {
Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
/// produce if it is constant and determinable. If this is not determinable,
/// return null.
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
- const TargetData *TD) {
+ const DataLayout *TD) {
// First, try the easy cases:
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
return 0;
}
-static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
+static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
if (LI->isVolatile()) return 0;
if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
/// these together. If target data info is available, it is provided as TD,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
- Constant *Op1, const TargetData *TD){
+ Constant *Op1, const DataLayout *TD){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
/// explicitly cast them so that they aren't implicitly casted by the
/// getelementptr.
static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
- Type *ResultTy, const TargetData *TD,
+ Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TD) return 0;
Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
- Type *ResultTy, const TargetData *TD,
+ Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
Constant *Ptr = Ops[0];
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
/// this function can only fail when attempting to fold instructions like loads
/// and stores, which have no constant expression form.
Constant *llvm::ConstantFoldInstruction(Instruction *I,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI) {
// Handle PHI nodes quickly here...
if (PHINode *PN = dyn_cast<PHINode>(I)) {
}
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
-/// using the specified TargetData. If successful, the constant result is
+/// using the specified DataLayout. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI) {
SmallVector<Constant*, 8> Ops;
for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
///
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
ArrayRef<Constant *> Ops,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
///
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Ops0, Constant *Ops1,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp (ptrtoint x), 0 -> icmp x, null
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
LI = &getAnalysis<LoopInfo>();
DT = &getAnalysis<DominatorTree>();
SE = &getAnalysis<ScalarEvolution>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
// Find all uses of induction variables in this loop, and categorize
// them by stride. Start by finding all of the PHI nodes in the header for
#include "llvm/IntrinsicInst.h"
#include "llvm/Operator.h"
#include "llvm/GlobalAlias.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
typedef InstVisitor<CallAnalyzer, bool> Base;
friend class InstVisitor<CallAnalyzer, bool>;
- // TargetData if available, or null.
- const TargetData *const TD;
+ // DataLayout if available, or null.
+ const DataLayout *const TD;
// The called function.
Function &F;
bool visitCallSite(CallSite CS);
public:
- CallAnalyzer(const TargetData *TD, Function &Callee, int Threshold)
+ CallAnalyzer(const DataLayout *TD, Function &Callee, int Threshold)
: TD(TD), F(Callee), Threshold(Threshold), Cost(0),
AlwaysInline(F.getFnAttributes().hasAlwaysInlineAttr()),
IsCallerRecursive(false), IsRecursiveCall(false),
// one load and one store per word copied.
// FIXME: The maxStoresPerMemcpy setting from the target should be used
// here instead of a magic number of 8, but it's not available via
- // TargetData.
+ // DataLayout.
NumStores = std::min(NumStores, 8U);
Cost -= 2 * NumStores * InlineConstants::InstrCost;
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/ValueHandle.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
using namespace llvm;
using namespace llvm::PatternMatch;
STATISTIC(NumReassoc, "Number of reassociations");
struct Query {
- const TargetData *TD;
+ const DataLayout *TD;
const TargetLibraryInfo *TLI;
const DominatorTree *DT;
- Query(const TargetData *td, const TargetLibraryInfo *tli,
+ Query(const DataLayout *td, const TargetLibraryInfo *tli,
const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
};
}
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const TargetData *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
RecursionLimit);
/// if the GEP has all-constant indices. Returns false if any non-constant
/// index is encountered leaving the 'Offset' in an undefined state. The
/// 'Offset' APInt must be the bitwidth of the target's pointer size.
-static bool accumulateGEPOffset(const TargetData &TD, GEPOperator *GEP,
+static bool accumulateGEPOffset(const DataLayout &TD, GEPOperator *GEP,
APInt &Offset) {
unsigned IntPtrWidth = TD.getPointerSizeInBits();
assert(IntPtrWidth == Offset.getBitWidth());
/// accumulates the total constant offset applied in the returned constant. It
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
/// no constant offsets applied.
-static Constant *stripAndComputeConstantOffsets(const TargetData &TD,
+static Constant *stripAndComputeConstantOffsets(const DataLayout &TD,
Value *&V) {
if (!V->getType()->isPointerTy())
return 0;
/// \brief Compute the constant difference between two pointer values.
/// If the difference is not a constant, returns zero.
-static Constant *computePointerDifference(const TargetData &TD,
+static Constant *computePointerDifference(const DataLayout &TD,
Value *LHS, Value *RHS) {
Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
if (!LHSOffset)
}
Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const TargetData *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
RecursionLimit);
return 0;
}
-Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
}
Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const TargetData *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
RecursionLimit);
}
Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
}
Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
return 0;
}
-Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
+Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
return 0;
}
-static Constant *computePointerICmp(const TargetData &TD,
+static Constant *computePointerICmp(const DataLayout &TD,
CmpInst::Predicate Pred,
Value *LHS, Value *RHS) {
// We can only fold certain predicates on pointer comparisons.
}
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
}
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
}
Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
}
-Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
+Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
return 0;
}
-Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD,
+Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
}
Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const TargetData *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
}
}
Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const TargetData *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
RecursionLimit);
/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction. If not, this returns null.
-Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
+Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
Value *Result;
/// This routine returns 'true' only when *it* simplifies something. The passed
/// in simplified value does not count toward this.
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
bool Simplified = false;
}
bool llvm::recursivelySimplifyInstruction(Instruction *I,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
}
bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ConstantRange.h"
// Unless we can prove that the two Constants are different, we must
// move to overdefined.
- // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding.
+ // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
if (ConstantInt *Res = dyn_cast<ConstantInt>(
ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
getConstant(),
// Unless we can prove that the two Constants are different, we must
// move to overdefined.
- // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding.
+ // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
if (ConstantInt *Res = dyn_cast<ConstantInt>(
ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
getNotConstant(),
if (PImpl)
getCache(PImpl).clear();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
// Fully lazy.
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
Module *Mod;
AliasAnalysis *AA;
DominatorTree *DT;
- TargetData *TD;
+ DataLayout *TD;
TargetLibraryInfo *TLI;
std::string Messages;
Mod = F.getParent();
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTree>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
visit(F);
dbgs() << MessagesStr.str();
"Undefined result: Shift count out of range", &I);
}
-static bool isZero(Value *V, TargetData *TD) {
+static bool isZero(Value *V, DataLayout *TD) {
// Assume undef could be zero.
if (isa<UndefValue>(V)) return true;
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
#include "llvm/IntrinsicInst.h"
/// bitcasts to get back to the underlying object being addressed, keeping
/// track of the offset in bytes from the GEPs relative to the result.
/// This is closely related to GetUnderlyingObject but is located
-/// here to avoid making VMCore depend on TargetData.
-static Value *getUnderlyingObjectWithOffset(Value *V, const TargetData *TD,
+/// here to avoid making VMCore depend on DataLayout.
+static Value *getUnderlyingObjectWithOffset(Value *V, const DataLayout *TD,
uint64_t &ByteOffset,
unsigned MaxLookup = 6) {
if (!V->getType()->isPointerTy())
/// specified pointer, we do a quick local scan of the basic block containing
/// ScanFrom, to determine if the address is already accessed.
bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
- unsigned Align, const TargetData *TD) {
+ unsigned Align, const DataLayout *TD) {
uint64_t ByteOffset = 0;
Value *Base = V;
if (TD)
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
using namespace llvm;
STATISTIC(NumAnswered, "Number of dependence queries answered");
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : 0;
}
-static Value *computeArraySize(const CallInst *CI, const TargetData *TD,
+static Value *computeArraySize(const CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI,
bool LookThroughSExt = false) {
if (!CI)
/// is a call to malloc whose array size can be determined and the array size
/// is not constant 1. Otherwise, return NULL.
const CallInst *llvm::isArrayMalloc(const Value *I,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI) {
const CallInst *CI = extractMallocCall(I, TLI);
Value *ArraySize = computeArraySize(CI, TD, TLI);
/// then return that multiple. For non-array mallocs, the multiple is
/// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
/// determined.
-Value *llvm::getMallocArraySize(CallInst *CI, const TargetData *TD,
+Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI,
bool LookThroughSExt) {
assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
/// object size in Size if successful, and false otherwise.
/// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
/// byval arguments, and global variables.
-bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const TargetData *TD,
+bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *TD,
const TargetLibraryInfo *TLI, bool RoundToAlign) {
if (!TD)
return false;
return Size;
}
-ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const TargetData *TD,
+ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *TD,
const TargetLibraryInfo *TLI,
LLVMContext &Context,
bool RoundToAlign)
}
-ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const TargetData *TD,
+ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const DataLayout *TD,
const TargetLibraryInfo *TLI,
LLVMContext &Context)
: TD(TD), TLI(TLI), Context(Context), Builder(Context, TargetFolder(TD)) {
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/PredIteratorCache.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
using namespace llvm;
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
bool MemoryDependenceAnalysis::runOnFunction(Function &) {
AA = &getAnalysis<AliasAnalysis>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
DT = getAnalysisIfAvailable<DominatorTree>();
if (PredCache == 0)
PredCache.reset(new PredIteratorCache());
const Value *&MemLocBase,
int64_t &MemLocOffs,
const LoadInst *LI,
- const TargetData *TD) {
+ const DataLayout *TD) {
// If we have no target data, we can't do this.
if (TD == 0) return false;
unsigned MemoryDependenceAnalysis::
getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
unsigned MemLocSize, const LoadInst *LI,
- const TargetData &TD) {
+ const DataLayout &TD) {
// We can only extend simple integer loads.
if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Pass.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
using namespace llvm;
namespace {
virtual void initializePass() {
// Note: NoAA does not call InitializeAliasAnalysis because it's
// special and does not support chaining.
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
}
virtual AliasResult alias(const Location &LocA, const Location &LocB) {
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConstantRange.h"
}
const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
- // If we have TargetData, we can bypass creating a target-independent
+ // If we have DataLayout, we can bypass creating a target-independent
// constant expression and then folding it back into a ConstantInt.
// This is just a compile-time optimization.
if (TD)
const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
unsigned FieldNo) {
- // If we have TargetData, we can bypass creating a target-independent
+ // If we have DataLayout, we can bypass creating a target-independent
// constant expression and then folding it back into a ConstantInt.
// This is just a compile-time optimization.
if (TD)
uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
assert(isSCEVable(Ty) && "Type is not SCEVable!");
- // If we have a TargetData, use it!
+ // If we have a DataLayout, use it!
if (TD)
return TD->getTypeSizeInBits(Ty);
if (Ty->isIntegerTy())
return Ty->getPrimitiveSizeInBits();
- // The only other support type is pointer. Without TargetData, conservatively
+ // The only other support type is pointer. Without DataLayout, conservatively
// assume pointers are 64-bit.
assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
return 64;
assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
if (TD) return TD->getIntPtrType(getContext());
- // Without TargetData, conservatively assume pointers are 64-bit.
+ // Without DataLayout, conservatively assume pointers are 64-bit.
return Type::getInt64Ty(getContext());
}
/// reason, return null.
static Constant *EvaluateExpression(Value *V, const Loop *L,
DenseMap<Instruction *, Constant *> &Vals,
- const TargetData *TD,
+ const DataLayout *TD,
const TargetLibraryInfo *TLI) {
// Convenient constant check, but redundant for recursive calls.
if (Constant *C = dyn_cast<Constant>(V)) return C;
bool ScalarEvolution::runOnFunction(Function &F) {
this->F = &F;
LI = &getAnalysis<LoopInfo>();
- TD = getAnalysisIfAvailable<TargetData>();
+ TD = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
DT = &getAnalysis<DominatorTree>();
return false;
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/STLExtras.h"
const SCEV *&Remainder,
const SCEV *Factor,
ScalarEvolution &SE,
- const TargetData *TD) {
+ const DataLayout *TD) {
// Everything is divisible by one.
if (Factor->isOne())
return true;
// of the given factor.
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
if (TD) {
- // With TargetData, the size is known. Check if there is a constant
+ // With DataLayout, the size is known. Check if there is a constant
// operand which is a multiple of the given factor. If so, we can
// factor it.
const SCEVConstant *FC = cast<SCEVConstant>(Factor);
return true;
}
} else {
- // Without TargetData, check if Factor can be factored out of any of the
+ // Without DataLayout, check if Factor can be factored out of any of the
// Mul's operands. If so, we can just remove it.
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
const SCEV *SOp = M->getOperand(i);
// An empty struct has no fields.
if (STy->getNumElements() == 0) break;
if (SE.TD) {
- // With TargetData, field offsets are known. See if a constant offset
+ // With DataLayout, field offsets are known. See if a constant offset
// falls within any of the struct fields.
if (Ops.empty()) break;
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
}
}
} else {
- // Without TargetData, just check for an offsetof expression of the
+ // Without DataLayout, just check for an offsetof expression of the
// appropriate struct type.
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/Operator.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
/// unknown returns 0). For vector types, returns the element type's bitwidth.
-static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
+static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
assert(isa<PointerType>(Ty) && "Expected a pointer type!");
static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const TargetData *TD, unsigned Depth) {
+ const DataLayout *TD, unsigned Depth) {
if (!Add) {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
// We know that the top bits of C-X are clear if X contains less bits
static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const TargetData *TD, unsigned Depth) {
+ const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = KnownZero.getBitWidth();
ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const TargetData *TD, unsigned Depth) {
+ const DataLayout *TD, unsigned Depth) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = KnownZero.getBitWidth();
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
/// one. Convenience wrapper around ComputeMaskedBits.
void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const TargetData *TD, unsigned Depth) {
+ const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = getBitWidth(V->getType(), TD);
if (!BitWidth) {
KnownZero = false;
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
-bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
+bool llvm::isPowerOfTwo(Value *V, const DataLayout *TD, bool OrZero,
unsigned Depth) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
/// when defined. For vectors return true if every element is known to be
/// non-zero when defined. Supports values with integer or pointer type and
/// vectors of integers.
-bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
+bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return false;
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
- const TargetData *TD, unsigned Depth) {
+ const DataLayout *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
///
/// 'Op' must have a scalar integer type.
///
-unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
+unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
unsigned Depth) {
assert((TD || V->getType()->isIntOrIntVectorTy()) &&
- "ComputeNumSignBits requires a TargetData object to operate "
+ "ComputeNumSignBits requires a DataLayout object to operate "
"on non-integer values!");
Type *Ty = V->getType();
unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
/// it can be expressed as a base pointer plus a constant offset. Return the
/// base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const TargetData &TD) {
+ const DataLayout &TD) {
Operator *PtrOp = dyn_cast<Operator>(Ptr);
if (PtrOp == 0 || Ptr->getType()->isVectorTy())
return Ptr;
}
Value *
-llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
+llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
if (!V->getType()->isPointerTy())
return V;
for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
void
llvm::GetUnderlyingObjects(Value *V,
SmallVectorImpl<Value *> &Objects,
- const TargetData *TD,
+ const DataLayout *TD,
unsigned MaxLookup) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist;
}
bool llvm::isSafeToSpeculativelyExecute(const Value *V,
- const TargetData *TD) {
+ const DataLayout *TD) {
const Operator *Inst = dyn_cast<Operator>(V);
if (!Inst)
return false;
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/ErrorHandling.h"
uint64_t StartingOffset) {
// Given a struct type, recursively traverse the elements.
if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
+ const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
for (StructType::element_iterator EB = STy->element_begin(),
EI = EB,
EE = STy->element_end();
// Given an array type, recursively traverse the elements.
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Type *EltTy = ATy->getElementType();
- uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
+ uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
StartingOffset + i * EltSize);
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
/// getGVAlignmentLog2 - Return the alignment to use for the specified global
/// value in log2 form. This rounds up to the preferred alignment if possible
/// and legal.
-static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
+static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
unsigned InBits = 0) {
unsigned NumBits = 0;
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
}
-/// getTargetData - Return information about data layout.
-const TargetData &AsmPrinter::getTargetData() const {
- return *TM.getTargetData();
+/// getDataLayout - Return information about data layout.
+const DataLayout &AsmPrinter::getDataLayout() const {
+ return *TM.getDataLayout();
}
/// getCurrentSection() - Return the current section we are emitting to.
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
- Mang = new Mangler(OutContext, *TM.getTargetData());
+ Mang = new Mangler(OutContext, *TM.getDataLayout());
// Allow the target to emit any magic that it wants at the start of the file.
EmitStartOfAsmFile(M);
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
- const TargetData *TD = TM.getTargetData();
+ const DataLayout *TD = TM.getDataLayout();
uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
// If the alignment is specified, we *must* obey it. Overaligning a global
Kind = SectionKind::getReadOnlyWithRelLocal();
break;
case 0:
- switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
+ switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
case 4: Kind = SectionKind::getMergeableConst4(); break;
case 8: Kind = SectionKind::getMergeableConst8(); break;
case 16: Kind = SectionKind::getMergeableConst16();break;
OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
Type *Ty = CPE.getType();
- Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
+ Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
OutStreamer.EmitLabel(GetCPISymbol(CPI));
if (CPE.isMachineConstantPoolEntry())
JTInDiffSection = true;
}
- EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
+ EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
// Jump tables in code sections are marked with a data_region directive
// where that's supported.
assert(Value && "Unknown entry kind!");
- unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
+ unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
}
}
// Emit the function pointers in the target-specific order
- const TargetData *TD = TM.getTargetData();
+ const DataLayout *TD = TM.getDataLayout();
unsigned Align = Log2_32(TD->getPointerPrefAlignment());
std::stable_sort(Structors.begin(), Structors.end(), priority_order);
for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
// if required for correctness.
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
- if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
+ if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
switch (CE->getOpcode()) {
default:
// If the code isn't optimized, there may be outstanding folding
- // opportunities. Attempt to fold the expression using TargetData as a
+ // opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
if (Constant *C =
- ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
+ ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
if (C != CE)
return lowerConstant(C, AP);
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
- const TargetData &TD = *AP.TM.getTargetData();
+ const DataLayout &TD = *AP.TM.getDataLayout();
// Generate a symbolic expression for the byte address
const Constant *PtrVal = CE->getOperand(0);
SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
return lowerConstant(CE->getOperand(0), AP);
case Instruction::IntToPtr: {
- const TargetData &TD = *AP.TM.getTargetData();
+ const DataLayout &TD = *AP.TM.getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
}
case Instruction::PtrToInt: {
- const TargetData &TD = *AP.TM.getTargetData();
+ const DataLayout &TD = *AP.TM.getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getBitWidth() > 64) return -1;
- uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
+ uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
uint64_t Value = CI->getZExtValue();
// Make sure the constant is at least 8 bits long and has a power
// See if we can aggregate this into a .fill, if so, emit it as such.
int Value = isRepeatedByteSequence(CDS, AP.TM);
if (Value != -1) {
- uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
+ uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
// Don't emit a 1-byte object as a .fill.
if (Bytes > 1)
return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
}
}
- const TargetData &TD = *AP.TM.getTargetData();
+ const DataLayout &TD = *AP.TM.getDataLayout();
unsigned Size = TD.getTypeAllocSize(CDS->getType());
unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
CDS->getNumElements();
int Value = isRepeatedByteSequence(CA, AP.TM);
if (Value != -1) {
- uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
+ uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
}
else {
for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
- const TargetData &TD = *AP.TM.getTargetData();
+ const DataLayout &TD = *AP.TM.getDataLayout();
unsigned Size = TD.getTypeAllocSize(CV->getType());
unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
CV->getType()->getNumElements();
static void emitGlobalConstantStruct(const ConstantStruct *CS,
unsigned AddrSpace, AsmPrinter &AP) {
// Print the fields in successive locations. Pad to align if needed!
- const TargetData *TD = AP.TM.getTargetData();
+ const DataLayout *TD = AP.TM.getDataLayout();
unsigned Size = TD->getTypeAllocSize(CS->getType());
const StructLayout *Layout = TD->getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
<< DoubleVal.convertToDouble() << '\n';
}
- if (AP.TM.getTargetData()->isBigEndian()) {
+ if (AP.TM.getDataLayout()->isBigEndian()) {
AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
} else {
}
// Emit the tail padding for the long double.
- const TargetData &TD = *AP.TM.getTargetData();
+ const DataLayout &TD = *AP.TM.getDataLayout();
AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
TD.getTypeStoreSize(CFP->getType()), AddrSpace);
return;
// API needed to prevent premature destruction.
APInt API = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = API.getRawData();
- if (AP.TM.getTargetData()->isBigEndian()) {
+ if (AP.TM.getDataLayout()->isBigEndian()) {
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
} else {
static void emitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace, AsmPrinter &AP) {
- const TargetData *TD = AP.TM.getTargetData();
+ const DataLayout *TD = AP.TM.getDataLayout();
unsigned BitWidth = CI->getBitWidth();
assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
AsmPrinter &AP) {
- const TargetData *TD = AP.TM.getTargetData();
+ const DataLayout *TD = AP.TM.getDataLayout();
uint64_t Size = TD->getTypeAllocSize(CV->getType());
if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
return AP.OutStreamer.EmitZeros(Size, AddrSpace);
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
- uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
+ uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
if (Size)
emitGlobalConstantImpl(CV, AddrSpace, *this);
else if (MAI->hasSubsectionsViaSymbols()) {
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
switch (Encoding & 0x07) {
default: llvm_unreachable("Invalid encoded value.");
- case dwarf::DW_EH_PE_absptr: return TM.getTargetData()->getPointerSize();
+ case dwarf::DW_EH_PE_absptr: return TM.getDataLayout()->getPointerSize();
case dwarf::DW_EH_PE_udata2: return 2;
case dwarf::DW_EH_PE_udata4: return 4;
case dwarf::DW_EH_PE_udata8: return 8;
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
case dwarf::DW_FORM_udata: Asm->EmitULEB128(Integer); return;
case dwarf::DW_FORM_sdata: Asm->EmitSLEB128(Integer); return;
case dwarf::DW_FORM_addr:
- Size = Asm->getTargetData().getPointerSize(); break;
+ Size = Asm->getDataLayout().getPointerSize(); break;
default: llvm_unreachable("DIE Value form not supported yet");
}
Asm->OutStreamer.EmitIntValue(Integer, Size, 0/*addrspace*/);
case dwarf::DW_FORM_data8: return sizeof(int64_t);
case dwarf::DW_FORM_udata: return MCAsmInfo::getULEB128Size(Integer);
case dwarf::DW_FORM_sdata: return MCAsmInfo::getSLEB128Size(Integer);
- case dwarf::DW_FORM_addr: return AP->getTargetData().getPointerSize();
+ case dwarf::DW_FORM_addr: return AP->getDataLayout().getPointerSize();
default: llvm_unreachable("DIE Value form not supported yet");
}
}
unsigned DIELabel::SizeOf(AsmPrinter *AP, unsigned Form) const {
if (Form == dwarf::DW_FORM_data4) return 4;
if (Form == dwarf::DW_FORM_strp) return 4;
- return AP->getTargetData().getPointerSize();
+ return AP->getDataLayout().getPointerSize();
}
#ifndef NDEBUG
unsigned DIEDelta::SizeOf(AsmPrinter *AP, unsigned Form) const {
if (Form == dwarf::DW_FORM_data4) return 4;
if (Form == dwarf::DW_FORM_strp) return 4;
- return AP->getTargetData().getPointerSize();
+ return AP->getDataLayout().getPointerSize();
}
#ifndef NDEBUG
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
const char *FltPtr = (const char*)FltVal.getRawData();
int NumBytes = FltVal.getBitWidth() / 8; // 8 bits per byte.
- bool LittleEndian = Asm->getTargetData().isLittleEndian();
+ bool LittleEndian = Asm->getDataLayout().isLittleEndian();
int Incr = (LittleEndian ? 1 : -1);
int Start = (LittleEndian ? 0 : NumBytes - 1);
int Stop = (LittleEndian ? NumBytes : -1);
const uint64_t *Ptr64 = Val.getRawData();
int NumBytes = Val.getBitWidth() / 8; // 8 bits per byte.
- bool LittleEndian = Asm->getTargetData().isLittleEndian();
+ bool LittleEndian = Asm->getDataLayout().isLittleEndian();
// Output the constant to DWARF one byte at a time.
for (int i = 0; i < NumBytes; i++) {
addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
SmallVector<Value*, 3> Idx(CE->op_begin()+1, CE->op_end());
addUInt(Block, 0, dwarf::DW_FORM_udata,
- Asm->getTargetData().getIndexedOffset(Ptr->getType(), Idx));
+ Asm->getDataLayout().getIndexedOffset(Ptr->getType(), Idx));
addUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
addBlock(VariableDIE, dwarf::DW_AT_location, 0, Block);
}
Offset -= FieldOffset;
// Maybe we need to work from the other end.
- if (Asm->getTargetData().isLittleEndian())
+ if (Asm->getDataLayout().isLittleEndian())
Offset = FieldSize - (Offset + Size);
addUInt(MemberDie, dwarf::DW_AT_bit_offset, 0, Offset);
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
// DW_AT_ranges appropriately.
TheCU->addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_data4,
DebugRangeSymbols.size()
- * Asm->getTargetData().getPointerSize());
+ * Asm->getDataLayout().getPointerSize());
for (SmallVector<InsnRange, 4>::const_iterator RI = Ranges.begin(),
RE = Ranges.end(); RI != RE; ++RI) {
DebugRangeSymbols.push_back(getLabelBeforeInsn(RI->first));
// DW_AT_ranges appropriately.
TheCU->addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_data4,
DebugRangeSymbols.size()
- * Asm->getTargetData().getPointerSize());
+ * Asm->getDataLayout().getPointerSize());
for (SmallVector<InsnRange, 4>::const_iterator RI = Ranges.begin(),
RE = Ranges.end(); RI != RE; ++RI) {
DebugRangeSymbols.push_back(getLabelBeforeInsn(RI->first));
Asm->EmitSectionOffset(Asm->GetTempSymbol("abbrev_begin"),
DwarfAbbrevSectionSym);
Asm->OutStreamer.AddComment("Address Size (in bytes)");
- Asm->EmitInt8(Asm->getTargetData().getPointerSize());
+ Asm->EmitInt8(Asm->getDataLayout().getPointerSize());
emitDIE(Die);
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("info_end", TheCU->getID()));
Asm->EmitInt8(0);
Asm->OutStreamer.AddComment("Op size");
- Asm->EmitInt8(Asm->getTargetData().getPointerSize() + 1);
+ Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1);
Asm->OutStreamer.AddComment("DW_LNE_set_address");
Asm->EmitInt8(dwarf::DW_LNE_set_address);
Asm->OutStreamer.AddComment("Section end label");
Asm->OutStreamer.EmitSymbolValue(Asm->GetTempSymbol("section_end",SectionEnd),
- Asm->getTargetData().getPointerSize(),
+ Asm->getDataLayout().getPointerSize(),
0/*AddrSpace*/);
// Mark end of matrix.
// Start the dwarf loc section.
Asm->OutStreamer.SwitchSection(
Asm->getObjFileLowering().getDwarfLocSection());
- unsigned char Size = Asm->getTargetData().getPointerSize();
+ unsigned char Size = Asm->getDataLayout().getPointerSize();
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_loc", 0));
unsigned index = 1;
for (SmallVector<DotDebugLocEntry, 4>::iterator
// Start the dwarf ranges section.
Asm->OutStreamer.SwitchSection(
Asm->getObjFileLowering().getDwarfRangesSection());
- unsigned char Size = Asm->getTargetData().getPointerSize();
+ unsigned char Size = Asm->getDataLayout().getPointerSize();
for (SmallVector<const MCSymbol *, 8>::iterator
I = DebugRangeSymbols.begin(), E = DebugRangeSymbols.end();
I != E; ++I) {
Asm->OutStreamer.AddComment("Dwarf Version");
Asm->EmitInt16(dwarf::DWARF_VERSION);
Asm->OutStreamer.AddComment("Address Size (in bytes)");
- Asm->EmitInt8(Asm->getTargetData().getPointerSize());
+ Asm->EmitInt8(Asm->getDataLayout().getPointerSize());
for (SmallVector<const MDNode *, 4>::iterator I = InlinedSPNodes.begin(),
E = InlinedSPNodes.end(); I != E; ++I) {
if (Asm->isVerbose()) Asm->OutStreamer.AddComment("low_pc");
Asm->OutStreamer.EmitSymbolValue(LI->first,
- Asm->getTargetData().getPointerSize(),0);
+ Asm->getDataLayout().getPointerSize(),0);
}
}
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
// that we're omitting that bit.
TTypeEncoding = dwarf::DW_EH_PE_omit;
// dwarf::DW_EH_PE_absptr
- TypeFormatSize = Asm->getTargetData().getPointerSize();
+ TypeFormatSize = Asm->getDataLayout().getPointerSize();
} else {
// Okay, we have actual filters or typeinfos to emit. As such, we need to
// pick a type encoding for them. We're about to emit a list of pointers to
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallString.h"
/// either condition is detected in a function which uses the GC.
///
void OcamlGCMetadataPrinter::finishAssembly(AsmPrinter &AP) {
- unsigned IntPtrSize = AP.TM.getTargetData()->getPointerSize();
+ unsigned IntPtrSize = AP.TM.getDataLayout()->getPointerSize();
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getTextSection());
EmitCamlGlobal(getModule(), AP, "code_end");
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
using namespace llvm;
template <class ArgIt>
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetFrameLowering.h"
if (Fn->getFnAttributes().hasStackAlignmentAttr())
FrameInfo->ensureMaxAlignment(Fn->getAttributes().
getFnAttributes().getStackAlignment());
- ConstantPool = new (Allocator) MachineConstantPool(TM.getTargetData());
+ ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout());
Alignment = TM.getTargetLowering()->getMinFunctionAlignment();
// FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
if (!Fn->getFnAttributes().hasOptimizeForSizeAttr())
//===----------------------------------------------------------------------===//
/// getEntrySize - Return the size of each entry in the jump table.
-unsigned MachineJumpTableInfo::getEntrySize(const TargetData &TD) const {
+unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
// The size of a jump table entry is 4 bytes unless the entry is just the
// address of a block, in which case it is the pointer size.
switch (getEntryKind()) {
}
/// getEntryAlignment - Return the alignment of each entry in the jump table.
-unsigned MachineJumpTableInfo::getEntryAlignment(const TargetData &TD) const {
+unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
// The alignment of a jump table entry is the alignment of int32 unless the
// entry is just the address of a block, in which case it is the pointer
// alignment.
/// CanShareConstantPoolEntry - Test whether the given two constants
/// can be allocated the same constant pool entry.
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
- const TargetData *TD) {
+ const DataLayout *TD) {
// Handle the trivial case quickly.
if (A == B) return true;
// Try constant folding a bitcast of both instructions to an integer. If we
// get two identical ConstantInt's, then we are good to share them. We use
// the constant folding APIs to do this so that we get the benefit of
- // TargetData.
+ // DataLayout.
if (isa<PointerType>(A->getType()))
A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy,
const_cast<Constant*>(A), TD);
using namespace llvm;
using namespace llvm::dwarf;
-// Handle the Pass registration stuff necessary to use TargetData's.
+// Handle the Pass registration stuff necessary to use DataLayout's.
INITIALIZE_PASS(MachineModuleInfo, "machinemoduleinfo",
"Machine Module Information", false, false)
char MachineModuleInfo::ID = 0;
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
!LD2->isVolatile() &&
DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
unsigned Align = LD1->getAlignment();
- unsigned NewAlign = TLI.getTargetData()->
+ unsigned NewAlign = TLI.getDataLayout()->
getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
if (NewAlign <= Align &&
!cast<LoadSDNode>(N0)->isVolatile() &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- unsigned Align = TLI.getTargetData()->
+ unsigned Align = TLI.getDataLayout()->
getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
unsigned OrigAlign = LN0->getAlignment();
unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
- if (NewAlign < TLI.getTargetData()->getABITypeAlignment(NewVTTy))
+ if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
return SDValue();
SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
unsigned LDAlign = LD->getAlignment();
unsigned STAlign = ST->getAlignment();
Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
- unsigned ABIAlign = TLI.getTargetData()->getABITypeAlignment(IntVTTy);
+ unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
if (LDAlign < ABIAlign || STAlign < ABIAlign)
return SDValue();
ST->isUnindexed()) {
unsigned OrigAlign = ST->getAlignment();
EVT SVT = Value.getOperand(0).getValueType();
- unsigned Align = TLI.getTargetData()->
+ unsigned Align = TLI.getDataLayout()->
getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
if (Align <= OrigAlign &&
((!LegalOperations && !ST->isVolatile()) ||
// Check the resultant load doesn't need a higher alignment than the
// original load.
unsigned NewAlign =
- TLI.getTargetData()
+ TLI.getDataLayout()
->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
const_cast<ConstantFP*>(TV->getConstantFPValue())
};
Type *FPTy = Elts[0]->getType();
- const TargetData &TD = *TLI.getTargetData();
+ const DataLayout &TD = *TLI.getDataLayout();
// Create a ConstantArray of the two constants.
Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetLowering.h"
MFI(*FuncInfo.MF->getFrameInfo()),
MCP(*FuncInfo.MF->getConstantPool()),
TM(FuncInfo.MF->getTarget()),
- TD(*TM.getTargetData()),
+ TD(*TM.getDataLayout()),
TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()),
TRI(*TM.getRegisterInfo()),
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
Type *Ty = AI->getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
+ uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
unsigned Align =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
+ std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
AI->getAlignment());
TySize *= CUI->getZExtValue(); // Get total allocated size.
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
Type *Type = CP->getType();
// MachineConstantPool wants an explicit alignment.
if (Align == 0) {
- Align = TM->getTargetData()->getPrefTypeAlignment(Type);
+ Align = TM->getDataLayout()->getPrefTypeAlignment(Type);
if (Align == 0) {
// Alignment of vector types. FIXME!
- Align = TM->getTargetData()->getTypeAllocSize(Type);
+ Align = TM->getDataLayout()->getTypeAllocSize(Type);
}
}
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
// expand it.
if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
- unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
+ unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
if (ST->getAlignment() < ABIAlignment)
ExpandUnalignedStore(cast<StoreSDNode>(Node),
DAG, TLI, this);
// expand it.
if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
- unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
+ unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
if (ST->getAlignment() < ABIAlignment)
ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
}
if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment =
- TLI.getTargetData()->getABITypeAlignment(Ty);
+ TLI.getDataLayout()->getABITypeAlignment(Ty);
if (LD->getAlignment() < ABIAlignment){
ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
}
Type *Ty =
LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment =
- TLI.getTargetData()->getABITypeAlignment(Ty);
+ TLI.getDataLayout()->getABITypeAlignment(Ty);
if (LD->getAlignment() < ABIAlignment){
ExpandUnalignedLoad(cast<LoadSDNode>(Node),
DAG, TLI, Value, Chain);
DebugLoc dl) {
// Create the stack frame object.
unsigned SrcAlign =
- TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
+ TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
getTypeForEVT(*DAG.getContext()));
SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
unsigned SlotSize = SlotVT.getSizeInBits();
unsigned DestSize = DestVT.getSizeInBits();
Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
- unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
+ unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
// Emit a store to the stack slot. Use a truncstore if the input value is
// later than DestVT.
// Increment the pointer, VAList, to the next vaarg
Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
- DAG.getConstant(TLI.getTargetData()->
+ DAG.getConstant(TLI.getDataLayout()->
getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
TLI.getPointerTy()));
// Store the incremented VAList to the legalized pointer
EVT PTy = TLI.getPointerTy();
- const TargetData &TD = *TLI.getTargetData();
+ const DataLayout &TD = *TLI.getDataLayout();
unsigned EntrySize =
DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
#include "LegalizeTypes.h"
#include "llvm/CallingConv.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Create the stack frame object. Make sure it is aligned for both
// the source and expanded destination types.
unsigned Alignment =
- TLI.getTargetData()->getPrefTypeAlignment(NOutVT.
+ TLI.getDataLayout()->getPrefTypeAlignment(NOutVT.
getTypeForEVT(*DAG.getContext()));
SDValue StackPtr = DAG.CreateStackTemporary(InVT, Alignment);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
unsigned Alignment =
- TLI.getTargetData()->getPrefTypeAlignment(VecType);
+ TLI.getDataLayout()->getPrefTypeAlignment(VecType);
Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
false, false, 0);
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
#include "llvm/Target/TargetOptions.h"
PointerType::get(Type::getInt8Ty(*getContext()), 0) :
VT.getTypeForEVT(*getContext());
- return TLI.getTargetData()->getABITypeAlignment(Ty);
+ return TLI.getDataLayout()->getABITypeAlignment(Ty);
}
// EntryNode could meaningfully have debug info if we can find it...
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
- Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
+ Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
- Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
+ Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
unsigned ByteSize = VT.getStoreSize();
Type *Ty = VT.getTypeForEVT(*getContext());
unsigned StackAlign =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
+ std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
return getFrameIndex(FrameIdx, TLI.getPointerTy());
VT2.getStoreSizeInBits())/8;
Type *Ty1 = VT1.getTypeForEVT(*getContext());
Type *Ty2 = VT2.getTypeForEVT(*getContext());
- const TargetData *TD = TLI.getTargetData();
+ const DataLayout *TD = TLI.getDataLayout();
unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
TD->getPrefTypeAlignment(Ty2));
DAG.getMachineFunction());
if (VT == MVT::Other) {
- if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
+ if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() ||
TLI.allowsUnalignedMemoryAccesses(VT)) {
VT = TLI.getPointerTy();
} else {
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
+ unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
+ unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
+ unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
+ Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
+ Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
return Result;
// Emit a library call.
- Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
+ Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst; Entry.Ty = IntPtrTy;
unsigned PtrWidth = TLI.getPointerTy().getSizeInBits();
APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
- TLI.getTargetData());
+ TLI.getDataLayout());
unsigned AlignBits = KnownZero.countTrailingOnes();
unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
if (Align)
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
AA = &aa;
GFI = gfi;
LibInfo = li;
- TD = DAG.getTarget().getTargetData();
+ TD = DAG.getTarget().getDataLayout();
Context = DAG.getContext();
LPadToCallSiteMap.clear();
}
return; // getValue will auto-populate this.
Type *Ty = I.getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
+ uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
unsigned Align =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
+ std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
I.getAlignment());
SDValue AllocSize = getValue(I.getArraySize());
int DemoteStackIdx = -100;
if (!CanLowerReturn) {
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
+ uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
FTy->getReturnType());
- unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(
+ unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(
FTy->getReturnType());
MachineFunction &MF = DAG.getMachineFunction();
DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
/// MVT::Other.
EVT getCallOperandValEVT(LLVMContext &Context,
const TargetLowering &TLI,
- const TargetData *TD) const {
+ const DataLayout *TD) const {
if (CallOperandVal == 0) return MVT::Other;
if (isa<BasicBlock>(CallOperandVal))
// Otherwise, create a stack slot and emit a store to it before the
// asm.
Type *Ty = OpVal->getType();
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
- unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
+ uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
+ unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
}
void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
- const TargetData &TD = *TLI.getTargetData();
+ const DataLayout &TD = *TLI.getDataLayout();
SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
getRoot(), getValue(I.getOperand(0)),
DAG.getSrcValue(I.getOperand(0)),
Args[i].Node.getResNo() + Value);
ISD::ArgFlagsTy Flags;
unsigned OriginalAlignment =
- getTargetData()->getABITypeAlignment(ArgTy);
+ getDataLayout()->getABITypeAlignment(ArgTy);
if (Args[i].isZExt)
Flags.setZExt();
Flags.setByVal();
PointerType *Ty = cast<PointerType>(Args[i].Ty);
Type *ElementTy = Ty->getElementType();
- Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
+ Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
// For ByVal, alignment should come from FE. BE will guess if this
// info is not there but there are cases it cannot get right.
unsigned FrameAlign;
const Function &F = *LLVMBB->getParent();
SelectionDAG &DAG = SDB->DAG;
DebugLoc dl = SDB->getCurDebugLoc();
- const TargetData *TD = TLI.getTargetData();
+ const DataLayout *TD = TLI.getDataLayout();
SmallVector<ISD::InputArg, 16> Ins;
// Check whether the function can return without sret-demotion.
class SIToFPInst;
class StoreInst;
class SwitchInst;
-class TargetData;
+class DataLayout;
class TargetLibraryInfo;
class TargetLowering;
class TruncInst;
const TargetMachine &TM;
const TargetLowering &TLI;
SelectionDAG &DAG;
- const TargetData *TD;
+ const DataLayout *TD;
AliasAnalysis *AA;
const TargetLibraryInfo *LibInfo;
#include "llvm/Target/TargetLowering.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
/// NOTE: The constructor takes ownership of TLOF.
TargetLowering::TargetLowering(const TargetMachine &tm,
const TargetLoweringObjectFile *tlof)
- : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
+ : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
// All operations default to being supported.
memset(OpActions, 0, sizeof(OpActions));
memset(LoadExtActions, 0, sizeof(LoadExtActions));
using namespace llvm;
TargetSelectionDAGInfo::TargetSelectionDAGInfo(const TargetMachine &TM)
- : TD(TM.getTargetData()) {
+ : TD(TM.getDataLayout()) {
}
TargetSelectionDAGInfo::~TargetSelectionDAGInfo() {
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
// that needs to be restored on all exits from the function. This is an alloca
// because the value needs to be added to the global context list.
unsigned Align =
- TLI->getTargetData()->getPrefTypeAlignment(FunctionContextTy);
+ TLI->getDataLayout()->getPrefTypeAlignment(FunctionContextTy);
FuncCtx =
new AllocaInst(FunctionContextTy, 0, Align, "fn_context", EntryBB->begin());
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Triple.h"
// If an array has more than SSPBufferSize bytes of allocated space, then we
// emit stack protectors.
- if (TM.Options.SSPBufferSize <= TLI->getTargetData()->getTypeAllocSize(AT))
+ if (TM.Options.SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT))
return true;
}
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Dwarf.h"
Flags,
SectionKind::getDataRel(),
0, Label->getName());
- unsigned Size = TM.getTargetData()->getPointerSize();
+ unsigned Size = TM.getDataLayout()->getPointerSize();
Streamer.SwitchSection(Sec);
- Streamer.EmitValueToAlignment(TM.getTargetData()->getPointerABIAlignment());
+ Streamer.EmitValueToAlignment(TM.getDataLayout()->getPointerABIAlignment());
Streamer.EmitSymbolAttribute(Label, MCSA_ELF_TypeObject);
const MCExpr *E = MCConstantExpr::Create(Size, getContext());
Streamer.EmitELFSize(Label, E);
// FIXME: this is getting the alignment of the character, not the
// alignment of the global!
unsigned Align =
- TM.getTargetData()->getPreferredAlignment(cast<GlobalVariable>(GV));
+ TM.getDataLayout()->getPreferredAlignment(cast<GlobalVariable>(GV));
const char *SizeSpec = ".rodata.str1.";
if (Kind.isMergeable2ByteCString())
// FIXME: Alignment check should be handled by section classifier.
if (Kind.isMergeable1ByteCString() &&
- TM.getTargetData()->getPreferredAlignment(cast<GlobalVariable>(GV)) < 32)
+ TM.getDataLayout()->getPreferredAlignment(cast<GlobalVariable>(GV)) < 32)
return CStringSection;
// Do not put 16-bit arrays in the UString section if they have an
// externally visible label, this runs into issues with certain linker
// versions.
if (Kind.isMergeable2ByteCString() && !GV->hasExternalLinkage() &&
- TM.getTargetData()->getPreferredAlignment(cast<GlobalVariable>(GV)) < 32)
+ TM.getDataLayout()->getPreferredAlignment(cast<GlobalVariable>(GV)) < 32)
return UStringSection;
if (Kind.isMergeableConst()) {
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetRegistry.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include <cmath>
#include <cstring>
public:
/// \brief Returns the address the GlobalVariable should be written into. The
/// GVMemoryBlock object prefixes that.
- static char *Create(const GlobalVariable *GV, const TargetData& TD) {
+ static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
void *RawMemory = ::operator new(
- TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
+ DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock),
TD.getPreferredAlignment(GV))
+ GVSize);
new(RawMemory) GVMemoryBlock(GV);
} // anonymous namespace
char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
- return GVMemoryBlock::Create(GV, *getTargetData());
+ return GVMemoryBlock::Create(GV, *getDataLayout());
}
bool ExecutionEngine::removeModule(Module *M) {
void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
const std::vector<std::string> &InputArgv) {
clear(); // Free the old contents.
- unsigned PtrSize = EE->getTargetData()->getPointerSize();
+ unsigned PtrSize = EE->getDataLayout()->getPointerSize();
Array = new char[(InputArgv.size()+1)*PtrSize];
DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
#ifndef NDEBUG
/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
- unsigned PtrSize = EE->getTargetData()->getPointerSize();
+ unsigned PtrSize = EE->getDataLayout()->getPointerSize();
for (unsigned i = 0; i < PtrSize; ++i)
if (*(i + (uint8_t*)Loc))
return false;
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
GenericValue *Ptr, Type *Ty) {
- const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
+ const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
dbgs() << "Cannot store value of type " << *Ty << "!\n";
}
- if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
+ if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian())
// Host and target are different endian - reverse the stored bytes.
std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
}
void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
GenericValue *Ptr,
Type *Ty) {
- const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
+ const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
unsigned ElementSize =
- getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
+ getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
return;
}
if (isa<ConstantAggregateZero>(Init)) {
- memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
+ memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
return;
}
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
unsigned ElementSize =
- getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
+ getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
return;
if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
const StructLayout *SL =
- getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
+ getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
return;
InitializeMemory(GV->getInitializer(), GA);
Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
+ size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
NumInitBytes += (unsigned)GVSize;
++NumGlobals;
}
}
LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) {
- return wrap(unwrap(EE)->getTargetData());
+ return wrap(unwrap(EE)->getDataLayout());
}
void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global,
#include "llvm/Config/config.h" // Detect libffi
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/DynamicLibrary.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include <csignal>
static bool ffiInvoke(RawFunc Fn, Function *F,
const std::vector<GenericValue> &ArgVals,
- const TargetData *TD, GenericValue &Result) {
+ const DataLayout *TD, GenericValue &Result) {
ffi_cif cif;
FunctionType *FTy = F->getFunctionType();
const unsigned NumArgs = F->arg_size();
FunctionsLock->release();
GenericValue Result;
- if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
+ if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
return Result;
#endif // USE_LIBFFI
case 'x': case 'X':
if (HowLong >= 1) {
if (HowLong == 1 &&
- TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
+ TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
sizeof(long) < sizeof(int64_t)) {
// Make sure we use %lld with a 64 bit argument because we might be
// compiling LLI on a 32 bit compiler.
: ExecutionEngine(M), TD(M) {
memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
- setTargetData(&TD);
+ setDataLayout(&TD);
// Initialize the "backend"
initializeExecutionEngine();
initializeExternalFunctions();
#include "llvm/Function.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
//
class Interpreter : public ExecutionEngine, public InstVisitor<Interpreter> {
GenericValue ExitValue; // The return value of the called function
- TargetData TD;
+ DataLayout TD;
IntrinsicLowering *IL;
// The runtime stack of executing code. The top of the stack is the current
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Support/Dwarf.h"
: ExecutionEngine(M), TM(tm), TJI(tji),
JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
- setTargetData(TM.getTargetData());
+ setDataLayout(TM.getDataLayout());
jitstate = new JITState(M);
// Add target data
MutexGuard locked(lock);
FunctionPassManager &PM = jitstate->getPM(locked);
- PM.add(new TargetData(*TM.getTargetData()));
+ PM.add(new DataLayout(*TM.getDataLayout()));
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
jitstate = new JITState(M);
FunctionPassManager &PM = jitstate->getPM(locked);
- PM.add(new TargetData(*TM.getTargetData()));
+ PM.add(new DataLayout(*TM.getDataLayout()));
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
jitstate = new JITState(Modules[0]);
FunctionPassManager &PM = jitstate->getPM(locked);
- PM.add(new TargetData(*TM.getTargetData()));
+ PM.add(new DataLayout(*TM.getDataLayout()));
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
// through the memory manager which puts them near the code but not in the
// same buffer.
Type *GlobalType = GV->getType()->getElementType();
- size_t S = getTargetData()->getTypeAllocSize(GlobalType);
- size_t A = getTargetData()->getPreferredAlignment(GV);
+ size_t S = getDataLayout()->getTypeAllocSize(GlobalType);
+ size_t A = getDataLayout()->getPreferredAlignment(GV);
if (GV->isThreadLocal()) {
MutexGuard locked(lock);
Ptr = TJI.allocateThreadLocalMemory(S);
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
assert(MMI && "MachineModuleInfo not registered!");
const TargetMachine& TM = F.getTarget();
- TD = TM.getTargetData();
+ TD = TM.getDataLayout();
stackGrowthDirection = TM.getFrameLowering()->getStackGrowthDirection();
RI = TM.getRegisterInfo();
MAI = TM.getMCAsmInfo();
class MachineModuleInfo;
class MachineMove;
class MCAsmInfo;
-class TargetData;
+class DataLayout;
class TargetMachine;
class TargetRegisterInfo;
class JITDwarfEmitter {
- const TargetData* TD;
+ const DataLayout* TD;
JITCodeEmitter* JCE;
const TargetRegisterInfo* RI;
const MCAsmInfo *MAI;
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Target/TargetMachine.h"
}
static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
- const TargetData *TD) {
+ const DataLayout *TD) {
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
if (Constants.empty()) return 0;
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
if (Constants.empty()) return;
- unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
+ unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
unsigned Align = MCP->getConstantPoolAlignment();
ConstantPoolBase = allocateSpace(Size, Align);
ConstantPool = MCP;
dbgs().write_hex(CAddr) << "]\n");
Type *Ty = CPE.Val.ConstVal->getType();
- Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
+ Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
}
}
for (unsigned i = 0, e = JT.size(); i != e; ++i)
NumEntries += JT[i].MBBs.size();
- unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
+ unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
// Just allocate space for all the jump tables now. We will fix up the actual
// MBB entries in the tables after we emit the code for each block, since then
// we will know the final locations of the MBBs in memory.
JumpTable = MJTI;
JumpTableBase = allocateSpace(NumEntries * EntrySize,
- MJTI->getEntryAlignment(*TheJIT->getTargetData()));
+ MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
}
void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
case MachineJumpTableInfo::EK_BlockAddress: {
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
// .word LBB123
- assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
+ assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
"Cross JIT'ing?");
// For each jump table, map each target in the jump table to the address of
case MachineJumpTableInfo::EK_Custom32:
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
case MachineJumpTableInfo::EK_LabelDifference32: {
- assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
+ assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
// For each jump table, place the offset from the beginning of the table
// to the target address.
int *SlotPtr = (int*)JumpTableBase;
const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
assert(Index < JT.size() && "Invalid jump table index!");
- unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
+ unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
unsigned Offset = 0;
for (unsigned i = 0; i < Index; ++i)
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MutexGuard.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
using namespace llvm;
: ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(MM), Dyld(MM),
isCompiled(false), M(m) {
- setTargetData(TM->getTargetData());
+ setDataLayout(TM->getDataLayout());
}
MCJIT::~MCJIT() {
PassManager PM;
- PM.add(new TargetData(*TM->getTargetData()));
+ PM.add(new DataLayout(*TM->getDataLayout()));
// The RuntimeDyld will take ownership of this shortly
OwningPtr<ObjectBufferStream> Buffer(new ObjectBufferStream());
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
}
void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
- uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
+ uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
assert(Size && "C++ constructor pointer had zero size!");
const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
- int Size = TM.getTargetData()->getTypeAllocSize(MCPV->getType());
+ int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
class ARMCodeEmitter : public MachineFunctionPass {
ARMJITInfo *JTI;
const ARMBaseInstrInfo *II;
- const TargetData *TD;
+ const DataLayout *TD;
const ARMSubtarget *Subtarget;
TargetMachine &TM;
JITCodeEmitter &MCE;
ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
: MachineFunctionPass(ID), JTI(0),
II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
- TD(tm.getTargetData()), TM(tm),
+ TD(tm.getDataLayout()), TM(tm),
MCE(mce), MCPEs(0), MJTEs(0),
IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
"JIT relocation model must be set to static or default!");
JTI = ((ARMBaseTargetMachine &)MF.getTarget()).getJITInfo();
II = (const ARMBaseInstrInfo *)MF.getTarget().getInstrInfo();
- TD = MF.getTarget().getTargetData();
+ TD = MF.getTarget().getDataLayout();
Subtarget = &TM.getSubtarget<ARMSubtarget>();
MCPEs = &MF.getConstantPool()->getConstants();
MJTEs = 0;
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
// identity mapping of CPI's to CPE's.
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
- const TargetData &TD = *MF->getTarget().getTargetData();
+ const DataLayout &TD = *MF->getTarget().getDataLayout();
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
assert(Size >= 4 && "Too small constant pool entry");
#include "ARMRelocations.h"
#include "llvm/Function.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/ELF.h"
//===----------------------------------------------------------------------===//
ARMELFWriterInfo::ARMELFWriterInfo(TargetMachine &TM)
- : TargetELFWriterInfo(TM.getTargetData()->getPointerSizeInBits() == 64,
- TM.getTargetData()->isLittleEndian()) {
+ : TargetELFWriterInfo(TM.getDataLayout()->getPointerSizeInBits() == 64,
+ TM.getDataLayout()->isLittleEndian()) {
}
ARMELFWriterInfo::~ARMELFWriterInfo() {}
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
// MachineConstantPool wants an explicit alignment.
- unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
if (Align == 0)
- Align = getTargetData()->getTypeAllocSize(C->getType());
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
unsigned VReg1 = MRI->createVirtualRegister(TRC);
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
// MachineConstantPool wants an explicit alignment.
- unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
if (Align == 0)
- Align = getTargetData()->getTypeAllocSize(C->getType());
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
unsigned VReg1 = MRI->createVirtualRegister(TRC);
const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
// MachineConstantPool wants an explicit alignment.
- unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
if (Align == 0)
- Align = getTargetData()->getTypeAllocSize(C->getType());
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
case Intrinsic::arm_neon_vld4lane: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// Conservatively set memVT to the entire set of vectors loaded.
- uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
+ uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Type *ArgTy = I.getArgOperand(ArgI)->getType();
if (!ArgTy->isVectorTy())
break;
- NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
+ NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
}
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
"_GLOBAL_OFFSET_TABLE_");
unsigned Id = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id);
- unsigned Align = TM->getTargetData()->getPrefTypeAlignment(GV->getType());
+ unsigned Align = TM->getDataLayout()->getPrefTypeAlignment(GV->getType());
unsigned Idx = MF.getConstantPool()->getConstantPoolIndex(CPV, Align);
MachineBasicBlock &FirstMBB = MF.front();
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
static char ID;
ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {}
- const TargetData *TD;
+ const DataLayout *TD;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const ARMSubtarget *STI;
}
bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
- TD = Fn.getTarget().getTargetData();
+ TD = Fn.getTarget().getDataLayout();
TII = Fn.getTarget().getInstrInfo();
TRI = Fn.getTarget().getRegisterInfo();
STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
TargetLowering::ArgListEntry Entry;
// First argument: data pointer
- Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*DAG.getContext());
+ Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*DAG.getContext());
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
CodeGenOpt::Level OL)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
InstrInfo(Subtarget),
- DataLayout(Subtarget.isAPCS_ABI() ?
+ DL(Subtarget.isAPCS_ABI() ?
std::string("e-p:32:32-f64:32:64-i64:32:64-"
"v128:32:128-v64:32:64-n32-S32") :
Subtarget.isAAPCS_ABI() ?
InstrInfo(Subtarget.hasThumb2()
? ((ARMBaseInstrInfo*)new Thumb2InstrInfo(Subtarget))
: ((ARMBaseInstrInfo*)new Thumb1InstrInfo(Subtarget))),
- DataLayout(Subtarget.isAPCS_ABI() ?
+ DL(Subtarget.isAPCS_ABI() ?
std::string("e-p:32:32-f64:32:64-i64:32:64-"
"i16:16:32-i8:8:32-i1:8:32-"
"v128:32:128-v64:32:64-a:0:32-n32-S32") :
#include "Thumb1FrameLowering.h"
#include "Thumb2InstrInfo.h"
#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/DataLayout.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/ADT/OwningPtr.h"
class ARMTargetMachine : public ARMBaseTargetMachine {
virtual void anchor();
ARMInstrInfo InstrInfo;
- const TargetData DataLayout; // Calculates type size & alignment
+ const DataLayout DL; // Calculates type size & alignment
ARMELFWriterInfo ELFWriterInfo;
ARMTargetLowering TLInfo;
ARMSelectionDAGInfo TSInfo;
}
virtual const ARMInstrInfo *getInstrInfo() const { return &InstrInfo; }
- virtual const TargetData *getTargetData() const { return &DataLayout; }
+ virtual const DataLayout *getDataLayout() const { return &DL; }
virtual const ARMELFWriterInfo *getELFWriterInfo() const {
return Subtarget.isTargetELF() ? &ELFWriterInfo : 0;
}
virtual void anchor();
// Either Thumb1InstrInfo or Thumb2InstrInfo.
OwningPtr<ARMBaseInstrInfo> InstrInfo;
- const TargetData DataLayout; // Calculates type size & alignment
+ const DataLayout DL; // Calculates type size & alignment
ARMELFWriterInfo ELFWriterInfo;
ARMTargetLowering TLInfo;
ARMSelectionDAGInfo TSInfo;