Move TargetData to DataLayout.
[oota-llvm.git] / lib / VMCore / Value.cpp
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constant.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InstrTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include <algorithm>
32 using namespace llvm;
33
34 //===----------------------------------------------------------------------===//
35 //                                Value Class
36 //===----------------------------------------------------------------------===//
37
38 static inline Type *checkType(Type *Ty) {
39   assert(Ty && "Value defined with a null type: Error!");
40   return const_cast<Type*>(Ty);
41 }
42
43 Value::Value(Type *ty, unsigned scid)
44   : SubclassID(scid), HasValueHandle(0),
45     SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
46     UseList(0), Name(0) {
47   // FIXME: Why isn't this in the subclass gunk??
48   if (isa<CallInst>(this) || isa<InvokeInst>(this))
49     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
50            "invalid CallInst type!");
51   else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
52     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
53            "Cannot create non-first-class values except for constants!");
54 }
55
56 Value::~Value() {
57   // Notify all ValueHandles (if present) that this value is going away.
58   if (HasValueHandle)
59     ValueHandleBase::ValueIsDeleted(this);
60
61 #ifndef NDEBUG      // Only in -g mode...
62   // Check to make sure that there are no uses of this value that are still
63   // around when the value is destroyed.  If there are, then we have a dangling
64   // reference and something is wrong.  This code is here to print out what is
65   // still being referenced.  The value in question should be printed as
66   // a <badref>
67   //
68   if (!use_empty()) {
69     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
70     for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
71       dbgs() << "Use still stuck around after Def is destroyed:"
72            << **I << "\n";
73   }
74 #endif
75   assert(use_empty() && "Uses remain when a value is destroyed!");
76
77   // If this value is named, destroy the name.  This should not be in a symtab
78   // at this point.
79   if (Name && SubclassID != MDStringVal)
80     Name->Destroy();
81
82   // There should be no uses of this object anymore, remove it.
83   LeakDetector::removeGarbageObject(this);
84 }
85
86 /// hasNUses - Return true if this Value has exactly N users.
87 ///
88 bool Value::hasNUses(unsigned N) const {
89   const_use_iterator UI = use_begin(), E = use_end();
90
91   for (; N; --N, ++UI)
92     if (UI == E) return false;  // Too few.
93   return UI == E;
94 }
95
96 /// hasNUsesOrMore - Return true if this value has N users or more.  This is
97 /// logically equivalent to getNumUses() >= N.
98 ///
99 bool Value::hasNUsesOrMore(unsigned N) const {
100   const_use_iterator UI = use_begin(), E = use_end();
101
102   for (; N; --N, ++UI)
103     if (UI == E) return false;  // Too few.
104
105   return true;
106 }
107
108 /// isUsedInBasicBlock - Return true if this value is used in the specified
109 /// basic block.
110 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
111   // Start by scanning over the instructions looking for a use before we start
112   // the expensive use iteration.
113   unsigned MaxBlockSize = 3;
114   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
115     if (std::find(I->op_begin(), I->op_end(), this) != I->op_end())
116       return true;
117     if (MaxBlockSize-- == 0) // If the block is larger fall back to use_iterator
118       break;
119   }
120
121   if (MaxBlockSize != 0) // We scanned the entire block and found no use.
122     return false;
123
124   for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
125     const Instruction *User = dyn_cast<Instruction>(*I);
126     if (User && User->getParent() == BB)
127       return true;
128   }
129   return false;
130 }
131
132
133 /// getNumUses - This method computes the number of uses of this Value.  This
134 /// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
135 /// values.
136 unsigned Value::getNumUses() const {
137   return (unsigned)std::distance(use_begin(), use_end());
138 }
139
140 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
141   ST = 0;
142   if (Instruction *I = dyn_cast<Instruction>(V)) {
143     if (BasicBlock *P = I->getParent())
144       if (Function *PP = P->getParent())
145         ST = &PP->getValueSymbolTable();
146   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
147     if (Function *P = BB->getParent())
148       ST = &P->getValueSymbolTable();
149   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
150     if (Module *P = GV->getParent())
151       ST = &P->getValueSymbolTable();
152   } else if (Argument *A = dyn_cast<Argument>(V)) {
153     if (Function *P = A->getParent())
154       ST = &P->getValueSymbolTable();
155   } else if (isa<MDString>(V))
156     return true;
157   else {
158     assert(isa<Constant>(V) && "Unknown value type!");
159     return true;  // no name is setable for this.
160   }
161   return false;
162 }
163
164 StringRef Value::getName() const {
165   // Make sure the empty string is still a C string. For historical reasons,
166   // some clients want to call .data() on the result and expect it to be null
167   // terminated.
168   if (!Name) return StringRef("", 0);
169   return Name->getKey();
170 }
171
172 void Value::setName(const Twine &NewName) {
173   assert(SubclassID != MDStringVal &&
174          "Cannot set the name of MDString with this method!");
175
176   // Fast path for common IRBuilder case of setName("") when there is no name.
177   if (NewName.isTriviallyEmpty() && !hasName())
178     return;
179
180   SmallString<256> NameData;
181   StringRef NameRef = NewName.toStringRef(NameData);
182
183   // Name isn't changing?
184   if (getName() == NameRef)
185     return;
186
187   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
188
189   // Get the symbol table to update for this object.
190   ValueSymbolTable *ST;
191   if (getSymTab(this, ST))
192     return;  // Cannot set a name on this value (e.g. constant).
193
194   if (!ST) { // No symbol table to update?  Just do the change.
195     if (NameRef.empty()) {
196       // Free the name for this value.
197       Name->Destroy();
198       Name = 0;
199       return;
200     }
201
202     if (Name)
203       Name->Destroy();
204
205     // NOTE: Could optimize for the case the name is shrinking to not deallocate
206     // then reallocated.
207
208     // Create the new name.
209     Name = ValueName::Create(NameRef.begin(), NameRef.end());
210     Name->setValue(this);
211     return;
212   }
213
214   // NOTE: Could optimize for the case the name is shrinking to not deallocate
215   // then reallocated.
216   if (hasName()) {
217     // Remove old name.
218     ST->removeValueName(Name);
219     Name->Destroy();
220     Name = 0;
221
222     if (NameRef.empty())
223       return;
224   }
225
226   // Name is changing to something new.
227   Name = ST->createValueName(NameRef, this);
228 }
229
230
231 /// takeName - transfer the name from V to this value, setting V's name to
232 /// empty.  It is an error to call V->takeName(V).
233 void Value::takeName(Value *V) {
234   assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
235
236   ValueSymbolTable *ST = 0;
237   // If this value has a name, drop it.
238   if (hasName()) {
239     // Get the symtab this is in.
240     if (getSymTab(this, ST)) {
241       // We can't set a name on this value, but we need to clear V's name if
242       // it has one.
243       if (V->hasName()) V->setName("");
244       return;  // Cannot set a name on this value (e.g. constant).
245     }
246
247     // Remove old name.
248     if (ST)
249       ST->removeValueName(Name);
250     Name->Destroy();
251     Name = 0;
252   }
253
254   // Now we know that this has no name.
255
256   // If V has no name either, we're done.
257   if (!V->hasName()) return;
258
259   // Get this's symtab if we didn't before.
260   if (!ST) {
261     if (getSymTab(this, ST)) {
262       // Clear V's name.
263       V->setName("");
264       return;  // Cannot set a name on this value (e.g. constant).
265     }
266   }
267
268   // Get V's ST, this should always succed, because V has a name.
269   ValueSymbolTable *VST;
270   bool Failure = getSymTab(V, VST);
271   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
272
273   // If these values are both in the same symtab, we can do this very fast.
274   // This works even if both values have no symtab yet.
275   if (ST == VST) {
276     // Take the name!
277     Name = V->Name;
278     V->Name = 0;
279     Name->setValue(this);
280     return;
281   }
282
283   // Otherwise, things are slightly more complex.  Remove V's name from VST and
284   // then reinsert it into ST.
285
286   if (VST)
287     VST->removeValueName(V->Name);
288   Name = V->Name;
289   V->Name = 0;
290   Name->setValue(this);
291
292   if (ST)
293     ST->reinsertValue(this);
294 }
295
296
297 void Value::replaceAllUsesWith(Value *New) {
298   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
299   assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
300   assert(New->getType() == getType() &&
301          "replaceAllUses of value with new value of different type!");
302
303   // Notify all ValueHandles (if present) that this value is going away.
304   if (HasValueHandle)
305     ValueHandleBase::ValueIsRAUWd(this, New);
306   
307   while (!use_empty()) {
308     Use &U = *UseList;
309     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
310     // constant because they are uniqued.
311     if (Constant *C = dyn_cast<Constant>(U.getUser())) {
312       if (!isa<GlobalValue>(C)) {
313         C->replaceUsesOfWithOnConstant(this, New, &U);
314         continue;
315       }
316     }
317     
318     U.set(New);
319   }
320   
321   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
322     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
323 }
324
325 namespace {
326 // Various metrics for how much to strip off of pointers.
327 enum PointerStripKind {
328   PSK_ZeroIndices,
329   PSK_InBoundsConstantIndices,
330   PSK_InBounds
331 };
332
333 template <PointerStripKind StripKind>
334 static Value *stripPointerCastsAndOffsets(Value *V) {
335   if (!V->getType()->isPointerTy())
336     return V;
337
338   // Even though we don't look through PHI nodes, we could be called on an
339   // instruction in an unreachable block, which may be on a cycle.
340   SmallPtrSet<Value *, 4> Visited;
341
342   Visited.insert(V);
343   do {
344     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
345       switch (StripKind) {
346       case PSK_ZeroIndices:
347         if (!GEP->hasAllZeroIndices())
348           return V;
349         break;
350       case PSK_InBoundsConstantIndices:
351         if (!GEP->hasAllConstantIndices())
352           return V;
353         // fallthrough
354       case PSK_InBounds:
355         if (!GEP->isInBounds())
356           return V;
357         break;
358       }
359       V = GEP->getPointerOperand();
360     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
361       V = cast<Operator>(V)->getOperand(0);
362     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
363       if (GA->mayBeOverridden())
364         return V;
365       V = GA->getAliasee();
366     } else {
367       return V;
368     }
369     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
370   } while (Visited.insert(V));
371
372   return V;
373 }
374 } // namespace
375
376 Value *Value::stripPointerCasts() {
377   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
378 }
379
380 Value *Value::stripInBoundsConstantOffsets() {
381   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
382 }
383
384 Value *Value::stripInBoundsOffsets() {
385   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
386 }
387
388 /// isDereferenceablePointer - Test if this value is always a pointer to
389 /// allocated and suitably aligned memory for a simple load or store.
390 static bool isDereferenceablePointer(const Value *V,
391                                      SmallPtrSet<const Value *, 32> &Visited) {
392   // Note that it is not safe to speculate into a malloc'd region because
393   // malloc may return null.
394   // It's also not always safe to follow a bitcast, for example:
395   //   bitcast i8* (alloca i8) to i32*
396   // would result in a 4-byte load from a 1-byte alloca. Some cases could
397   // be handled using DataLayout to check sizes and alignments though.
398
399   // These are obviously ok.
400   if (isa<AllocaInst>(V)) return true;
401
402   // Global variables which can't collapse to null are ok.
403   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
404     return !GV->hasExternalWeakLinkage();
405
406   // byval arguments are ok.
407   if (const Argument *A = dyn_cast<Argument>(V))
408     return A->hasByValAttr();
409
410   // For GEPs, determine if the indexing lands within the allocated object.
411   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
412     // Conservatively require that the base pointer be fully dereferenceable.
413     if (!Visited.insert(GEP->getOperand(0)))
414       return false;
415     if (!isDereferenceablePointer(GEP->getOperand(0), Visited))
416       return false;
417     // Check the indices.
418     gep_type_iterator GTI = gep_type_begin(GEP);
419     for (User::const_op_iterator I = GEP->op_begin()+1,
420          E = GEP->op_end(); I != E; ++I) {
421       Value *Index = *I;
422       Type *Ty = *GTI++;
423       // Struct indices can't be out of bounds.
424       if (isa<StructType>(Ty))
425         continue;
426       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
427       if (!CI)
428         return false;
429       // Zero is always ok.
430       if (CI->isZero())
431         continue;
432       // Check to see that it's within the bounds of an array.
433       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
434       if (!ATy)
435         return false;
436       if (CI->getValue().getActiveBits() > 64)
437         return false;
438       if (CI->getZExtValue() >= ATy->getNumElements())
439         return false;
440     }
441     // Indices check out; this is dereferenceable.
442     return true;
443   }
444
445   // If we don't know, assume the worst.
446   return false;
447 }
448
449 /// isDereferenceablePointer - Test if this value is always a pointer to
450 /// allocated and suitably aligned memory for a simple load or store.
451 bool Value::isDereferenceablePointer() const {
452   SmallPtrSet<const Value *, 32> Visited;
453   return ::isDereferenceablePointer(this, Visited);
454 }
455
456 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
457 /// return the value in the PHI node corresponding to PredBB.  If not, return
458 /// ourself.  This is useful if you want to know the value something has in a
459 /// predecessor block.
460 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
461                                const BasicBlock *PredBB) {
462   PHINode *PN = dyn_cast<PHINode>(this);
463   if (PN && PN->getParent() == CurBB)
464     return PN->getIncomingValueForBlock(PredBB);
465   return this;
466 }
467
468 LLVMContext &Value::getContext() const { return VTy->getContext(); }
469
470 //===----------------------------------------------------------------------===//
471 //                             ValueHandleBase Class
472 //===----------------------------------------------------------------------===//
473
474 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
475 /// List is known to point into the existing use list.
476 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
477   assert(List && "Handle list is null?");
478
479   // Splice ourselves into the list.
480   Next = *List;
481   *List = this;
482   setPrevPtr(List);
483   if (Next) {
484     Next->setPrevPtr(&Next);
485     assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
486   }
487 }
488
489 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
490   assert(List && "Must insert after existing node");
491
492   Next = List->Next;
493   setPrevPtr(&List->Next);
494   List->Next = this;
495   if (Next)
496     Next->setPrevPtr(&Next);
497 }
498
499 /// AddToUseList - Add this ValueHandle to the use list for VP.
500 void ValueHandleBase::AddToUseList() {
501   assert(VP.getPointer() && "Null pointer doesn't have a use list!");
502
503   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
504
505   if (VP.getPointer()->HasValueHandle) {
506     // If this value already has a ValueHandle, then it must be in the
507     // ValueHandles map already.
508     ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
509     assert(Entry != 0 && "Value doesn't have any handles?");
510     AddToExistingUseList(&Entry);
511     return;
512   }
513
514   // Ok, it doesn't have any handles yet, so we must insert it into the
515   // DenseMap.  However, doing this insertion could cause the DenseMap to
516   // reallocate itself, which would invalidate all of the PrevP pointers that
517   // point into the old table.  Handle this by checking for reallocation and
518   // updating the stale pointers only if needed.
519   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
520   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
521
522   ValueHandleBase *&Entry = Handles[VP.getPointer()];
523   assert(Entry == 0 && "Value really did already have handles?");
524   AddToExistingUseList(&Entry);
525   VP.getPointer()->HasValueHandle = true;
526
527   // If reallocation didn't happen or if this was the first insertion, don't
528   // walk the table.
529   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
530       Handles.size() == 1) {
531     return;
532   }
533
534   // Okay, reallocation did happen.  Fix the Prev Pointers.
535   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
536        E = Handles.end(); I != E; ++I) {
537     assert(I->second && I->first == I->second->VP.getPointer() &&
538            "List invariant broken!");
539     I->second->setPrevPtr(&I->second);
540   }
541 }
542
543 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
544 void ValueHandleBase::RemoveFromUseList() {
545   assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
546          "Pointer doesn't have a use list!");
547
548   // Unlink this from its use list.
549   ValueHandleBase **PrevPtr = getPrevPtr();
550   assert(*PrevPtr == this && "List invariant broken");
551
552   *PrevPtr = Next;
553   if (Next) {
554     assert(Next->getPrevPtr() == &Next && "List invariant broken");
555     Next->setPrevPtr(PrevPtr);
556     return;
557   }
558
559   // If the Next pointer was null, then it is possible that this was the last
560   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
561   // map.
562   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
563   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
564   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
565     Handles.erase(VP.getPointer());
566     VP.getPointer()->HasValueHandle = false;
567   }
568 }
569
570
571 void ValueHandleBase::ValueIsDeleted(Value *V) {
572   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
573
574   // Get the linked list base, which is guaranteed to exist since the
575   // HasValueHandle flag is set.
576   LLVMContextImpl *pImpl = V->getContext().pImpl;
577   ValueHandleBase *Entry = pImpl->ValueHandles[V];
578   assert(Entry && "Value bit set but no entries exist");
579
580   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
581   // and remove themselves from the list without breaking our iteration.  This
582   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
583   // Note that we deliberately do not the support the case when dropping a value
584   // handle results in a new value handle being permanently added to the list
585   // (as might occur in theory for CallbackVH's): the new value handle will not
586   // be processed and the checking code will mete out righteous punishment if
587   // the handle is still present once we have finished processing all the other
588   // value handles (it is fine to momentarily add then remove a value handle).
589   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
590     Iterator.RemoveFromUseList();
591     Iterator.AddToExistingUseListAfter(Entry);
592     assert(Entry->Next == &Iterator && "Loop invariant broken.");
593
594     switch (Entry->getKind()) {
595     case Assert:
596       break;
597     case Tracking:
598       // Mark that this value has been deleted by setting it to an invalid Value
599       // pointer.
600       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
601       break;
602     case Weak:
603       // Weak just goes to null, which will unlink it from the list.
604       Entry->operator=(0);
605       break;
606     case Callback:
607       // Forward to the subclass's implementation.
608       static_cast<CallbackVH*>(Entry)->deleted();
609       break;
610     }
611   }
612
613   // All callbacks, weak references, and assertingVHs should be dropped by now.
614   if (V->HasValueHandle) {
615 #ifndef NDEBUG      // Only in +Asserts mode...
616     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
617            << "\n";
618     if (pImpl->ValueHandles[V]->getKind() == Assert)
619       llvm_unreachable("An asserting value handle still pointed to this"
620                        " value!");
621
622 #endif
623     llvm_unreachable("All references to V were not removed?");
624   }
625 }
626
627
628 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
629   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
630   assert(Old != New && "Changing value into itself!");
631
632   // Get the linked list base, which is guaranteed to exist since the
633   // HasValueHandle flag is set.
634   LLVMContextImpl *pImpl = Old->getContext().pImpl;
635   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
636
637   assert(Entry && "Value bit set but no entries exist");
638
639   // We use a local ValueHandleBase as an iterator so that
640   // ValueHandles can add and remove themselves from the list without
641   // breaking our iteration.  This is not really an AssertingVH; we
642   // just have to give ValueHandleBase some kind.
643   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
644     Iterator.RemoveFromUseList();
645     Iterator.AddToExistingUseListAfter(Entry);
646     assert(Entry->Next == &Iterator && "Loop invariant broken.");
647
648     switch (Entry->getKind()) {
649     case Assert:
650       // Asserting handle does not follow RAUW implicitly.
651       break;
652     case Tracking:
653       // Tracking goes to new value like a WeakVH. Note that this may make it
654       // something incompatible with its templated type. We don't want to have a
655       // virtual (or inline) interface to handle this though, so instead we make
656       // the TrackingVH accessors guarantee that a client never sees this value.
657
658       // FALLTHROUGH
659     case Weak:
660       // Weak goes to the new value, which will unlink it from Old's list.
661       Entry->operator=(New);
662       break;
663     case Callback:
664       // Forward to the subclass's implementation.
665       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
666       break;
667     }
668   }
669
670 #ifndef NDEBUG
671   // If any new tracking or weak value handles were added while processing the
672   // list, then complain about it now.
673   if (Old->HasValueHandle)
674     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
675       switch (Entry->getKind()) {
676       case Tracking:
677       case Weak:
678         dbgs() << "After RAUW from " << *Old->getType() << " %"
679                << Old->getName() << " to " << *New->getType() << " %"
680                << New->getName() << "\n";
681         llvm_unreachable("A tracking or weak value handle still pointed to the"
682                          " old value!\n");
683       default:
684         break;
685       }
686 #endif
687 }
688
689 // Default implementation for CallbackVH.
690 void CallbackVH::allUsesReplacedWith(Value *) {}
691
692 void CallbackVH::deleted() {
693   setValPtr(NULL);
694 }