9453a80061bef63aef76e2058a3290aba4f8c6d4
[oota-llvm.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "llvm/DebugInfo.h"
19 #include "llvm/Module.h"
20 #include "llvm/CodeGen/GCMetadataPrinter.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Target/Mangler.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Assembly/Writer.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Format.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/Timer.h"
49 using namespace llvm;
50
51 static const char *DWARFGroupName = "DWARF Emission";
52 static const char *DbgTimerName = "DWARF Debug Writer";
53 static const char *EHTimerName = "DWARF Exception Writer";
54
55 STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57 char AsmPrinter::ID = 0;
58
59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60 static gcp_map_type &getGCMap(void *&P) {
61   if (P == 0)
62     P = new gcp_map_type();
63   return *(gcp_map_type*)P;
64 }
65
66
67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
68 /// value in log2 form.  This rounds up to the preferred alignment if possible
69 /// and legal.
70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71                                    unsigned InBits = 0) {
72   unsigned NumBits = 0;
73   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74     NumBits = TD.getPreferredAlignmentLog(GVar);
75
76   // If InBits is specified, round it to it.
77   if (InBits > NumBits)
78     NumBits = InBits;
79
80   // If the GV has a specified alignment, take it into account.
81   if (GV->getAlignment() == 0)
82     return NumBits;
83
84   unsigned GVAlign = Log2_32(GV->getAlignment());
85
86   // If the GVAlign is larger than NumBits, or if we are required to obey
87   // NumBits because the GV has an assigned section, obey it.
88   if (GVAlign > NumBits || GV->hasSection())
89     NumBits = GVAlign;
90   return NumBits;
91 }
92
93
94
95
96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97   : MachineFunctionPass(ID),
98     TM(tm), MAI(tm.getMCAsmInfo()),
99     OutContext(Streamer.getContext()),
100     OutStreamer(Streamer),
101     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102   DD = 0; DE = 0; MMI = 0; LI = 0;
103   CurrentFnSym = CurrentFnSymForSize = 0;
104   GCMetadataPrinters = 0;
105   VerboseAsm = Streamer.isVerboseAsm();
106 }
107
108 AsmPrinter::~AsmPrinter() {
109   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
110
111   if (GCMetadataPrinters != 0) {
112     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
113
114     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
115       delete I->second;
116     delete &GCMap;
117     GCMetadataPrinters = 0;
118   }
119
120   delete &OutStreamer;
121 }
122
123 /// getFunctionNumber - Return a unique ID for the current function.
124 ///
125 unsigned AsmPrinter::getFunctionNumber() const {
126   return MF->getFunctionNumber();
127 }
128
129 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
130   return TM.getTargetLowering()->getObjFileLowering();
131 }
132
133
134 /// getTargetData - Return information about data layout.
135 const TargetData &AsmPrinter::getTargetData() const {
136   return *TM.getTargetData();
137 }
138
139 /// getCurrentSection() - Return the current section we are emitting to.
140 const MCSection *AsmPrinter::getCurrentSection() const {
141   return OutStreamer.getCurrentSection();
142 }
143
144
145
146 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
147   AU.setPreservesAll();
148   MachineFunctionPass::getAnalysisUsage(AU);
149   AU.addRequired<MachineModuleInfo>();
150   AU.addRequired<GCModuleInfo>();
151   if (isVerbose())
152     AU.addRequired<MachineLoopInfo>();
153 }
154
155 bool AsmPrinter::doInitialization(Module &M) {
156   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
157   MMI->AnalyzeModule(M);
158
159   // Initialize TargetLoweringObjectFile.
160   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
161     .Initialize(OutContext, TM);
162
163   Mang = new Mangler(OutContext, *TM.getTargetData());
164
165   // Allow the target to emit any magic that it wants at the start of the file.
166   EmitStartOfAsmFile(M);
167
168   // Very minimal debug info. It is ignored if we emit actual debug info. If we
169   // don't, this at least helps the user find where a global came from.
170   if (MAI->hasSingleParameterDotFile()) {
171     // .file "foo.c"
172     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
173   }
174
175   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
176   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
177   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
178     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
179       MP->beginAssembly(*this);
180
181   // Emit module-level inline asm if it exists.
182   if (!M.getModuleInlineAsm().empty()) {
183     OutStreamer.AddComment("Start of file scope inline assembly");
184     OutStreamer.AddBlankLine();
185     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
186     OutStreamer.AddComment("End of file scope inline assembly");
187     OutStreamer.AddBlankLine();
188   }
189
190   if (MAI->doesSupportDebugInformation())
191     DD = new DwarfDebug(this, &M);
192
193   switch (MAI->getExceptionHandlingType()) {
194   case ExceptionHandling::None:
195     return false;
196   case ExceptionHandling::SjLj:
197   case ExceptionHandling::DwarfCFI:
198     DE = new DwarfCFIException(this);
199     return false;
200   case ExceptionHandling::ARM:
201     DE = new ARMException(this);
202     return false;
203   case ExceptionHandling::Win64:
204     DE = new Win64Exception(this);
205     return false;
206   }
207
208   llvm_unreachable("Unknown exception type.");
209 }
210
211 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
212   switch ((GlobalValue::LinkageTypes)Linkage) {
213   case GlobalValue::CommonLinkage:
214   case GlobalValue::LinkOnceAnyLinkage:
215   case GlobalValue::LinkOnceODRLinkage:
216   case GlobalValue::LinkOnceODRAutoHideLinkage:
217   case GlobalValue::WeakAnyLinkage:
218   case GlobalValue::WeakODRLinkage:
219   case GlobalValue::LinkerPrivateWeakLinkage:
220     if (MAI->getWeakDefDirective() != 0) {
221       // .globl _foo
222       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
223
224       if ((GlobalValue::LinkageTypes)Linkage !=
225           GlobalValue::LinkOnceODRAutoHideLinkage)
226         // .weak_definition _foo
227         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
228       else
229         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
230     } else if (MAI->getLinkOnceDirective() != 0) {
231       // .globl _foo
232       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
233       //NOTE: linkonce is handled by the section the symbol was assigned to.
234     } else {
235       // .weak _foo
236       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
237     }
238     break;
239   case GlobalValue::DLLExportLinkage:
240   case GlobalValue::AppendingLinkage:
241     // FIXME: appending linkage variables should go into a section of
242     // their name or something.  For now, just emit them as external.
243   case GlobalValue::ExternalLinkage:
244     // If external or appending, declare as a global symbol.
245     // .globl _foo
246     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
247     break;
248   case GlobalValue::PrivateLinkage:
249   case GlobalValue::InternalLinkage:
250   case GlobalValue::LinkerPrivateLinkage:
251     break;
252   default:
253     llvm_unreachable("Unknown linkage type!");
254   }
255 }
256
257
258 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
259 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
260   if (GV->hasInitializer()) {
261     // Check to see if this is a special global used by LLVM, if so, emit it.
262     if (EmitSpecialLLVMGlobal(GV))
263       return;
264
265     if (isVerbose()) {
266       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
267                      /*PrintType=*/false, GV->getParent());
268       OutStreamer.GetCommentOS() << '\n';
269     }
270   }
271
272   MCSymbol *GVSym = Mang->getSymbol(GV);
273   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
274
275   if (!GV->hasInitializer())   // External globals require no extra code.
276     return;
277
278   if (MAI->hasDotTypeDotSizeDirective())
279     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
280
281   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
282
283   const TargetData *TD = TM.getTargetData();
284   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
285
286   // If the alignment is specified, we *must* obey it.  Overaligning a global
287   // with a specified alignment is a prompt way to break globals emitted to
288   // sections and expected to be contiguous (e.g. ObjC metadata).
289   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
290
291   // Handle common and BSS local symbols (.lcomm).
292   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
293     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
294     unsigned Align = 1 << AlignLog;
295
296     // Handle common symbols.
297     if (GVKind.isCommon()) {
298       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
299         Align = 0;
300
301       // .comm _foo, 42, 4
302       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
303       return;
304     }
305
306     // Handle local BSS symbols.
307     if (MAI->hasMachoZeroFillDirective()) {
308       const MCSection *TheSection =
309         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
310       // .zerofill __DATA, __bss, _foo, 400, 5
311       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
312       return;
313     }
314
315     if (Align == 1 ||
316         MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
317       // .lcomm _foo, 42
318       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
319       return;
320     }
321
322     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
323       Align = 0;
324
325     // .local _foo
326     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
327     // .comm _foo, 42, 4
328     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
329     return;
330   }
331
332   const MCSection *TheSection =
333     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
334
335   // Handle the zerofill directive on darwin, which is a special form of BSS
336   // emission.
337   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
338     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
339
340     // .globl _foo
341     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
342     // .zerofill __DATA, __common, _foo, 400, 5
343     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
344     return;
345   }
346
347   // Handle thread local data for mach-o which requires us to output an
348   // additional structure of data and mangle the original symbol so that we
349   // can reference it later.
350   //
351   // TODO: This should become an "emit thread local global" method on TLOF.
352   // All of this macho specific stuff should be sunk down into TLOFMachO and
353   // stuff like "TLSExtraDataSection" should no longer be part of the parent
354   // TLOF class.  This will also make it more obvious that stuff like
355   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
356   // specific code.
357   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
358     // Emit the .tbss symbol
359     MCSymbol *MangSym =
360       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
361
362     if (GVKind.isThreadBSS())
363       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
364     else if (GVKind.isThreadData()) {
365       OutStreamer.SwitchSection(TheSection);
366
367       EmitAlignment(AlignLog, GV);
368       OutStreamer.EmitLabel(MangSym);
369
370       EmitGlobalConstant(GV->getInitializer());
371     }
372
373     OutStreamer.AddBlankLine();
374
375     // Emit the variable struct for the runtime.
376     const MCSection *TLVSect
377       = getObjFileLowering().getTLSExtraDataSection();
378
379     OutStreamer.SwitchSection(TLVSect);
380     // Emit the linkage here.
381     EmitLinkage(GV->getLinkage(), GVSym);
382     OutStreamer.EmitLabel(GVSym);
383
384     // Three pointers in size:
385     //   - __tlv_bootstrap - used to make sure support exists
386     //   - spare pointer, used when mapped by the runtime
387     //   - pointer to mangled symbol above with initializer
388     unsigned PtrSize = TD->getPointerSizeInBits()/8;
389     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
390                           PtrSize, 0);
391     OutStreamer.EmitIntValue(0, PtrSize, 0);
392     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
393
394     OutStreamer.AddBlankLine();
395     return;
396   }
397
398   OutStreamer.SwitchSection(TheSection);
399
400   EmitLinkage(GV->getLinkage(), GVSym);
401   EmitAlignment(AlignLog, GV);
402
403   OutStreamer.EmitLabel(GVSym);
404
405   EmitGlobalConstant(GV->getInitializer());
406
407   if (MAI->hasDotTypeDotSizeDirective())
408     // .size foo, 42
409     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
410
411   OutStreamer.AddBlankLine();
412 }
413
414 /// EmitFunctionHeader - This method emits the header for the current
415 /// function.
416 void AsmPrinter::EmitFunctionHeader() {
417   // Print out constants referenced by the function
418   EmitConstantPool();
419
420   // Print the 'header' of function.
421   const Function *F = MF->getFunction();
422
423   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
424   EmitVisibility(CurrentFnSym, F->getVisibility());
425
426   EmitLinkage(F->getLinkage(), CurrentFnSym);
427   EmitAlignment(MF->getAlignment(), F);
428
429   if (MAI->hasDotTypeDotSizeDirective())
430     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
431
432   if (isVerbose()) {
433     WriteAsOperand(OutStreamer.GetCommentOS(), F,
434                    /*PrintType=*/false, F->getParent());
435     OutStreamer.GetCommentOS() << '\n';
436   }
437
438   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
439   // do their wild and crazy things as required.
440   EmitFunctionEntryLabel();
441
442   // If the function had address-taken blocks that got deleted, then we have
443   // references to the dangling symbols.  Emit them at the start of the function
444   // so that we don't get references to undefined symbols.
445   std::vector<MCSymbol*> DeadBlockSyms;
446   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
447   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
448     OutStreamer.AddComment("Address taken block that was later removed");
449     OutStreamer.EmitLabel(DeadBlockSyms[i]);
450   }
451
452   // Add some workaround for linkonce linkage on Cygwin\MinGW.
453   if (MAI->getLinkOnceDirective() != 0 &&
454       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
455     // FIXME: What is this?
456     MCSymbol *FakeStub =
457       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
458                                    CurrentFnSym->getName());
459     OutStreamer.EmitLabel(FakeStub);
460   }
461
462   // Emit pre-function debug and/or EH information.
463   if (DE) {
464     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
465     DE->BeginFunction(MF);
466   }
467   if (DD) {
468     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
469     DD->beginFunction(MF);
470   }
471 }
472
473 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
474 /// function.  This can be overridden by targets as required to do custom stuff.
475 void AsmPrinter::EmitFunctionEntryLabel() {
476   // The function label could have already been emitted if two symbols end up
477   // conflicting due to asm renaming.  Detect this and emit an error.
478   if (CurrentFnSym->isUndefined())
479     return OutStreamer.EmitLabel(CurrentFnSym);
480
481   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
482                      "' label emitted multiple times to assembly file");
483 }
484
485 /// emitComments - Pretty-print comments for instructions.
486 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
487   const MachineFunction *MF = MI.getParent()->getParent();
488   const TargetMachine &TM = MF->getTarget();
489
490   // Check for spills and reloads
491   int FI;
492
493   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
494
495   // We assume a single instruction only has a spill or reload, not
496   // both.
497   const MachineMemOperand *MMO;
498   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
499     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
500       MMO = *MI.memoperands_begin();
501       CommentOS << MMO->getSize() << "-byte Reload\n";
502     }
503   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
504     if (FrameInfo->isSpillSlotObjectIndex(FI))
505       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
506   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
507     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
508       MMO = *MI.memoperands_begin();
509       CommentOS << MMO->getSize() << "-byte Spill\n";
510     }
511   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
512     if (FrameInfo->isSpillSlotObjectIndex(FI))
513       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
514   }
515
516   // Check for spill-induced copies
517   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
518     CommentOS << " Reload Reuse\n";
519 }
520
521 /// emitImplicitDef - This method emits the specified machine instruction
522 /// that is an implicit def.
523 static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
524   unsigned RegNo = MI->getOperand(0).getReg();
525   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
526                             AP.TM.getRegisterInfo()->getName(RegNo));
527   AP.OutStreamer.AddBlankLine();
528 }
529
530 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
531   std::string Str = "kill:";
532   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
533     const MachineOperand &Op = MI->getOperand(i);
534     assert(Op.isReg() && "KILL instruction must have only register operands");
535     Str += ' ';
536     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
537     Str += (Op.isDef() ? "<def>" : "<kill>");
538   }
539   AP.OutStreamer.AddComment(Str);
540   AP.OutStreamer.AddBlankLine();
541 }
542
543 /// emitDebugValueComment - This method handles the target-independent form
544 /// of DBG_VALUE, returning true if it was able to do so.  A false return
545 /// means the target will need to handle MI in EmitInstruction.
546 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
547   // This code handles only the 3-operand target-independent form.
548   if (MI->getNumOperands() != 3)
549     return false;
550
551   SmallString<128> Str;
552   raw_svector_ostream OS(Str);
553   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
554
555   // cast away const; DIetc do not take const operands for some reason.
556   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
557   if (V.getContext().isSubprogram())
558     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
559   OS << V.getName() << " <- ";
560
561   // Register or immediate value. Register 0 means undef.
562   if (MI->getOperand(0).isFPImm()) {
563     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
564     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
565       OS << (double)APF.convertToFloat();
566     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
567       OS << APF.convertToDouble();
568     } else {
569       // There is no good way to print long double.  Convert a copy to
570       // double.  Ah well, it's only a comment.
571       bool ignored;
572       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
573                   &ignored);
574       OS << "(long double) " << APF.convertToDouble();
575     }
576   } else if (MI->getOperand(0).isImm()) {
577     OS << MI->getOperand(0).getImm();
578   } else if (MI->getOperand(0).isCImm()) {
579     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
580   } else {
581     assert(MI->getOperand(0).isReg() && "Unknown operand type");
582     if (MI->getOperand(0).getReg() == 0) {
583       // Suppress offset, it is not meaningful here.
584       OS << "undef";
585       // NOTE: Want this comment at start of line, don't emit with AddComment.
586       AP.OutStreamer.EmitRawText(OS.str());
587       return true;
588     }
589     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
590   }
591
592   OS << '+' << MI->getOperand(1).getImm();
593   // NOTE: Want this comment at start of line, don't emit with AddComment.
594   AP.OutStreamer.EmitRawText(OS.str());
595   return true;
596 }
597
598 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
599   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
600       MF->getFunction()->needsUnwindTableEntry())
601     return CFI_M_EH;
602
603   if (MMI->hasDebugInfo())
604     return CFI_M_Debug;
605
606   return CFI_M_None;
607 }
608
609 bool AsmPrinter::needsSEHMoves() {
610   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
611     MF->getFunction()->needsUnwindTableEntry();
612 }
613
614 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
615   return MAI->doesDwarfUseRelocationsAcrossSections();
616 }
617
618 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
619   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
620
621   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
622     return;
623
624   if (needsCFIMoves() == CFI_M_None)
625     return;
626
627   if (MMI->getCompactUnwindEncoding() != 0)
628     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
629
630   MachineModuleInfo &MMI = MF->getMMI();
631   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
632   bool FoundOne = false;
633   (void)FoundOne;
634   for (std::vector<MachineMove>::iterator I = Moves.begin(),
635          E = Moves.end(); I != E; ++I) {
636     if (I->getLabel() == Label) {
637       EmitCFIFrameMove(*I);
638       FoundOne = true;
639     }
640   }
641   assert(FoundOne);
642 }
643
644 /// EmitFunctionBody - This method emits the body and trailer for a
645 /// function.
646 void AsmPrinter::EmitFunctionBody() {
647   // Emit target-specific gunk before the function body.
648   EmitFunctionBodyStart();
649
650   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
651
652   // Print out code for the function.
653   bool HasAnyRealCode = false;
654   const MachineInstr *LastMI = 0;
655   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
656        I != E; ++I) {
657     // Print a label for the basic block.
658     EmitBasicBlockStart(I);
659     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
660          II != IE; ++II) {
661       LastMI = II;
662
663       // Print the assembly for the instruction.
664       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
665           !II->isDebugValue()) {
666         HasAnyRealCode = true;
667         ++EmittedInsts;
668       }
669
670       if (ShouldPrintDebugScopes) {
671         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
672         DD->beginInstruction(II);
673       }
674
675       if (isVerbose())
676         emitComments(*II, OutStreamer.GetCommentOS());
677
678       switch (II->getOpcode()) {
679       case TargetOpcode::PROLOG_LABEL:
680         emitPrologLabel(*II);
681         break;
682
683       case TargetOpcode::EH_LABEL:
684       case TargetOpcode::GC_LABEL:
685         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
686         break;
687       case TargetOpcode::INLINEASM:
688         EmitInlineAsm(II);
689         break;
690       case TargetOpcode::DBG_VALUE:
691         if (isVerbose()) {
692           if (!emitDebugValueComment(II, *this))
693             EmitInstruction(II);
694         }
695         break;
696       case TargetOpcode::IMPLICIT_DEF:
697         if (isVerbose()) emitImplicitDef(II, *this);
698         break;
699       case TargetOpcode::KILL:
700         if (isVerbose()) emitKill(II, *this);
701         break;
702       default:
703         if (!TM.hasMCUseLoc())
704           MCLineEntry::Make(&OutStreamer, getCurrentSection());
705
706         EmitInstruction(II);
707         break;
708       }
709
710       if (ShouldPrintDebugScopes) {
711         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
712         DD->endInstruction(II);
713       }
714     }
715   }
716
717   // If the last instruction was a prolog label, then we have a situation where
718   // we emitted a prolog but no function body. This results in the ending prolog
719   // label equaling the end of function label and an invalid "row" in the
720   // FDE. We need to emit a noop in this situation so that the FDE's rows are
721   // valid.
722   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
723
724   // If the function is empty and the object file uses .subsections_via_symbols,
725   // then we need to emit *something* to the function body to prevent the
726   // labels from collapsing together.  Just emit a noop.
727   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
728     MCInst Noop;
729     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
730     if (Noop.getOpcode()) {
731       OutStreamer.AddComment("avoids zero-length function");
732       OutStreamer.EmitInstruction(Noop);
733     } else  // Target not mc-ized yet.
734       OutStreamer.EmitRawText(StringRef("\tnop\n"));
735   }
736
737   const Function *F = MF->getFunction();
738   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
739     const BasicBlock *BB = i;
740     if (!BB->hasAddressTaken())
741       continue;
742     MCSymbol *Sym = GetBlockAddressSymbol(BB);
743     if (Sym->isDefined())
744       continue;
745     OutStreamer.AddComment("Address of block that was removed by CodeGen");
746     OutStreamer.EmitLabel(Sym);
747   }
748
749   // Emit target-specific gunk after the function body.
750   EmitFunctionBodyEnd();
751
752   // If the target wants a .size directive for the size of the function, emit
753   // it.
754   if (MAI->hasDotTypeDotSizeDirective()) {
755     // Create a symbol for the end of function, so we can get the size as
756     // difference between the function label and the temp label.
757     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
758     OutStreamer.EmitLabel(FnEndLabel);
759
760     const MCExpr *SizeExp =
761       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
762                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
763                                                       OutContext),
764                               OutContext);
765     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
766   }
767
768   // Emit post-function debug information.
769   if (DD) {
770     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
771     DD->endFunction(MF);
772   }
773   if (DE) {
774     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
775     DE->EndFunction();
776   }
777   MMI->EndFunction();
778
779   // Print out jump tables referenced by the function.
780   EmitJumpTableInfo();
781
782   OutStreamer.AddBlankLine();
783 }
784
785 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
786 /// operands.
787 MachineLocation AsmPrinter::
788 getDebugValueLocation(const MachineInstr *MI) const {
789   // Target specific DBG_VALUE instructions are handled by each target.
790   return MachineLocation();
791 }
792
793 /// EmitDwarfRegOp - Emit dwarf register operation.
794 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
795   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
796   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
797
798   for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
799        ++SR) {
800     Reg = TRI->getDwarfRegNum(*SR, false);
801     // FIXME: Get the bit range this register uses of the superregister
802     // so that we can produce a DW_OP_bit_piece
803   }
804
805   // FIXME: Handle cases like a super register being encoded as
806   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
807
808   // FIXME: We have no reasonable way of handling errors in here. The
809   // caller might be in the middle of an dwarf expression. We should
810   // probably assert that Reg >= 0 once debug info generation is more mature.
811
812   if (int Offset =  MLoc.getOffset()) {
813     if (Reg < 32) {
814       OutStreamer.AddComment(
815         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
816       EmitInt8(dwarf::DW_OP_breg0 + Reg);
817     } else {
818       OutStreamer.AddComment("DW_OP_bregx");
819       EmitInt8(dwarf::DW_OP_bregx);
820       OutStreamer.AddComment(Twine(Reg));
821       EmitULEB128(Reg);
822     }
823     EmitSLEB128(Offset);
824   } else {
825     if (Reg < 32) {
826       OutStreamer.AddComment(
827         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
828       EmitInt8(dwarf::DW_OP_reg0 + Reg);
829     } else {
830       OutStreamer.AddComment("DW_OP_regx");
831       EmitInt8(dwarf::DW_OP_regx);
832       OutStreamer.AddComment(Twine(Reg));
833       EmitULEB128(Reg);
834     }
835   }
836
837   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
838 }
839
840 bool AsmPrinter::doFinalization(Module &M) {
841   // Emit global variables.
842   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
843        I != E; ++I)
844     EmitGlobalVariable(I);
845
846   // Emit visibility info for declarations
847   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
848     const Function &F = *I;
849     if (!F.isDeclaration())
850       continue;
851     GlobalValue::VisibilityTypes V = F.getVisibility();
852     if (V == GlobalValue::DefaultVisibility)
853       continue;
854
855     MCSymbol *Name = Mang->getSymbol(&F);
856     EmitVisibility(Name, V, false);
857   }
858
859   // Emit module flags.
860   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
861   M.getModuleFlagsMetadata(ModuleFlags);
862   if (!ModuleFlags.empty())
863     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
864
865   // Finalize debug and EH information.
866   if (DE) {
867     {
868       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
869       DE->EndModule();
870     }
871     delete DE; DE = 0;
872   }
873   if (DD) {
874     {
875       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
876       DD->endModule();
877     }
878     delete DD; DD = 0;
879   }
880
881   // If the target wants to know about weak references, print them all.
882   if (MAI->getWeakRefDirective()) {
883     // FIXME: This is not lazy, it would be nice to only print weak references
884     // to stuff that is actually used.  Note that doing so would require targets
885     // to notice uses in operands (due to constant exprs etc).  This should
886     // happen with the MC stuff eventually.
887
888     // Print out module-level global variables here.
889     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
890          I != E; ++I) {
891       if (!I->hasExternalWeakLinkage()) continue;
892       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
893     }
894
895     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
896       if (!I->hasExternalWeakLinkage()) continue;
897       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
898     }
899   }
900
901   if (MAI->hasSetDirective()) {
902     OutStreamer.AddBlankLine();
903     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
904          I != E; ++I) {
905       MCSymbol *Name = Mang->getSymbol(I);
906
907       const GlobalValue *GV = I->getAliasedGlobal();
908       MCSymbol *Target = Mang->getSymbol(GV);
909
910       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
911         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
912       else if (I->hasWeakLinkage())
913         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
914       else
915         assert(I->hasLocalLinkage() && "Invalid alias linkage");
916
917       EmitVisibility(Name, I->getVisibility());
918
919       // Emit the directives as assignments aka .set:
920       OutStreamer.EmitAssignment(Name,
921                                  MCSymbolRefExpr::Create(Target, OutContext));
922     }
923   }
924
925   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
926   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
927   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
928     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
929       MP->finishAssembly(*this);
930
931   // If we don't have any trampolines, then we don't require stack memory
932   // to be executable. Some targets have a directive to declare this.
933   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
934   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
935     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
936       OutStreamer.SwitchSection(S);
937
938   // Allow the target to emit any magic that it wants at the end of the file,
939   // after everything else has gone out.
940   EmitEndOfAsmFile(M);
941
942   delete Mang; Mang = 0;
943   MMI = 0;
944
945   OutStreamer.Finish();
946   return false;
947 }
948
949 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
950   this->MF = &MF;
951   // Get the function symbol.
952   CurrentFnSym = Mang->getSymbol(MF.getFunction());
953   CurrentFnSymForSize = CurrentFnSym;
954
955   if (isVerbose())
956     LI = &getAnalysis<MachineLoopInfo>();
957 }
958
959 namespace {
960   // SectionCPs - Keep track the alignment, constpool entries per Section.
961   struct SectionCPs {
962     const MCSection *S;
963     unsigned Alignment;
964     SmallVector<unsigned, 4> CPEs;
965     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
966   };
967 }
968
969 /// EmitConstantPool - Print to the current output stream assembly
970 /// representations of the constants in the constant pool MCP. This is
971 /// used to print out constants which have been "spilled to memory" by
972 /// the code generator.
973 ///
974 void AsmPrinter::EmitConstantPool() {
975   const MachineConstantPool *MCP = MF->getConstantPool();
976   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
977   if (CP.empty()) return;
978
979   // Calculate sections for constant pool entries. We collect entries to go into
980   // the same section together to reduce amount of section switch statements.
981   SmallVector<SectionCPs, 4> CPSections;
982   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
983     const MachineConstantPoolEntry &CPE = CP[i];
984     unsigned Align = CPE.getAlignment();
985
986     SectionKind Kind;
987     switch (CPE.getRelocationInfo()) {
988     default: llvm_unreachable("Unknown section kind");
989     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
990     case 1:
991       Kind = SectionKind::getReadOnlyWithRelLocal();
992       break;
993     case 0:
994     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
995     case 4:  Kind = SectionKind::getMergeableConst4(); break;
996     case 8:  Kind = SectionKind::getMergeableConst8(); break;
997     case 16: Kind = SectionKind::getMergeableConst16();break;
998     default: Kind = SectionKind::getMergeableConst(); break;
999     }
1000     }
1001
1002     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1003
1004     // The number of sections are small, just do a linear search from the
1005     // last section to the first.
1006     bool Found = false;
1007     unsigned SecIdx = CPSections.size();
1008     while (SecIdx != 0) {
1009       if (CPSections[--SecIdx].S == S) {
1010         Found = true;
1011         break;
1012       }
1013     }
1014     if (!Found) {
1015       SecIdx = CPSections.size();
1016       CPSections.push_back(SectionCPs(S, Align));
1017     }
1018
1019     if (Align > CPSections[SecIdx].Alignment)
1020       CPSections[SecIdx].Alignment = Align;
1021     CPSections[SecIdx].CPEs.push_back(i);
1022   }
1023
1024   // Now print stuff into the calculated sections.
1025   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1026     OutStreamer.SwitchSection(CPSections[i].S);
1027     EmitAlignment(Log2_32(CPSections[i].Alignment));
1028
1029     unsigned Offset = 0;
1030     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1031       unsigned CPI = CPSections[i].CPEs[j];
1032       MachineConstantPoolEntry CPE = CP[CPI];
1033
1034       // Emit inter-object padding for alignment.
1035       unsigned AlignMask = CPE.getAlignment() - 1;
1036       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1037       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1038
1039       Type *Ty = CPE.getType();
1040       Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1041       OutStreamer.EmitLabel(GetCPISymbol(CPI));
1042
1043       if (CPE.isMachineConstantPoolEntry())
1044         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1045       else
1046         EmitGlobalConstant(CPE.Val.ConstVal);
1047     }
1048   }
1049 }
1050
1051 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1052 /// by the current function to the current output stream.
1053 ///
1054 void AsmPrinter::EmitJumpTableInfo() {
1055   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1056   if (MJTI == 0) return;
1057   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1058   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1059   if (JT.empty()) return;
1060
1061   // Pick the directive to use to print the jump table entries, and switch to
1062   // the appropriate section.
1063   const Function *F = MF->getFunction();
1064   bool JTInDiffSection = false;
1065   if (// In PIC mode, we need to emit the jump table to the same section as the
1066       // function body itself, otherwise the label differences won't make sense.
1067       // FIXME: Need a better predicate for this: what about custom entries?
1068       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1069       // We should also do if the section name is NULL or function is declared
1070       // in discardable section
1071       // FIXME: this isn't the right predicate, should be based on the MCSection
1072       // for the function.
1073       F->isWeakForLinker()) {
1074     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1075   } else {
1076     // Otherwise, drop it in the readonly section.
1077     const MCSection *ReadOnlySection =
1078       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1079     OutStreamer.SwitchSection(ReadOnlySection);
1080     JTInDiffSection = true;
1081   }
1082
1083   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1084
1085   // Jump tables in code sections are marked with a data_region directive
1086   // where that's supported.
1087   if (!JTInDiffSection)
1088     OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1089
1090   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1091     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1092
1093     // If this jump table was deleted, ignore it.
1094     if (JTBBs.empty()) continue;
1095
1096     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1097     // .set directive for each unique entry.  This reduces the number of
1098     // relocations the assembler will generate for the jump table.
1099     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1100         MAI->hasSetDirective()) {
1101       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1102       const TargetLowering *TLI = TM.getTargetLowering();
1103       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1104       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1105         const MachineBasicBlock *MBB = JTBBs[ii];
1106         if (!EmittedSets.insert(MBB)) continue;
1107
1108         // .set LJTSet, LBB32-base
1109         const MCExpr *LHS =
1110           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1111         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1112                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1113       }
1114     }
1115
1116     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1117     // before each jump table.  The first label is never referenced, but tells
1118     // the assembler and linker the extents of the jump table object.  The
1119     // second label is actually referenced by the code.
1120     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1121       // FIXME: This doesn't have to have any specific name, just any randomly
1122       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1123       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1124
1125     OutStreamer.EmitLabel(GetJTISymbol(JTI));
1126
1127     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1128       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1129   }
1130   if (!JTInDiffSection)
1131     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1132 }
1133
1134 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1135 /// current stream.
1136 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1137                                     const MachineBasicBlock *MBB,
1138                                     unsigned UID) const {
1139   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1140   const MCExpr *Value = 0;
1141   switch (MJTI->getEntryKind()) {
1142   case MachineJumpTableInfo::EK_Inline:
1143     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1144   case MachineJumpTableInfo::EK_Custom32:
1145     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1146                                                               OutContext);
1147     break;
1148   case MachineJumpTableInfo::EK_BlockAddress:
1149     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1150     //     .word LBB123
1151     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1152     break;
1153   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1154     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1155     // with a relocation as gp-relative, e.g.:
1156     //     .gprel32 LBB123
1157     MCSymbol *MBBSym = MBB->getSymbol();
1158     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1159     return;
1160   }
1161
1162   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1163     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1164     // with a relocation as gp-relative, e.g.:
1165     //     .gpdword LBB123
1166     MCSymbol *MBBSym = MBB->getSymbol();
1167     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1168     return;
1169   }
1170
1171   case MachineJumpTableInfo::EK_LabelDifference32: {
1172     // EK_LabelDifference32 - Each entry is the address of the block minus
1173     // the address of the jump table.  This is used for PIC jump tables where
1174     // gprel32 is not supported.  e.g.:
1175     //      .word LBB123 - LJTI1_2
1176     // If the .set directive is supported, this is emitted as:
1177     //      .set L4_5_set_123, LBB123 - LJTI1_2
1178     //      .word L4_5_set_123
1179
1180     // If we have emitted set directives for the jump table entries, print
1181     // them rather than the entries themselves.  If we're emitting PIC, then
1182     // emit the table entries as differences between two text section labels.
1183     if (MAI->hasSetDirective()) {
1184       // If we used .set, reference the .set's symbol.
1185       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1186                                       OutContext);
1187       break;
1188     }
1189     // Otherwise, use the difference as the jump table entry.
1190     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1191     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1192     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1193     break;
1194   }
1195   }
1196
1197   assert(Value && "Unknown entry kind!");
1198
1199   unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1200   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1201 }
1202
1203
1204 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1205 /// special global used by LLVM.  If so, emit it and return true, otherwise
1206 /// do nothing and return false.
1207 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1208   if (GV->getName() == "llvm.used") {
1209     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1210       EmitLLVMUsedList(GV->getInitializer());
1211     return true;
1212   }
1213
1214   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1215   if (GV->getSection() == "llvm.metadata" ||
1216       GV->hasAvailableExternallyLinkage())
1217     return true;
1218
1219   if (!GV->hasAppendingLinkage()) return false;
1220
1221   assert(GV->hasInitializer() && "Not a special LLVM global!");
1222
1223   if (GV->getName() == "llvm.global_ctors") {
1224     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1225
1226     if (TM.getRelocationModel() == Reloc::Static &&
1227         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1228       StringRef Sym(".constructors_used");
1229       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1230                                       MCSA_Reference);
1231     }
1232     return true;
1233   }
1234
1235   if (GV->getName() == "llvm.global_dtors") {
1236     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1237
1238     if (TM.getRelocationModel() == Reloc::Static &&
1239         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1240       StringRef Sym(".destructors_used");
1241       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1242                                       MCSA_Reference);
1243     }
1244     return true;
1245   }
1246
1247   return false;
1248 }
1249
1250 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1251 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1252 /// is true, as being used with this directive.
1253 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1254   // Should be an array of 'i8*'.
1255   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1256   if (InitList == 0) return;
1257
1258   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1259     const GlobalValue *GV =
1260       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1261     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1262       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1263   }
1264 }
1265
1266 typedef std::pair<unsigned, Constant*> Structor;
1267
1268 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1269   return lhs.first < rhs.first;
1270 }
1271
1272 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1273 /// priority.
1274 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1275   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1276   // init priority.
1277   if (!isa<ConstantArray>(List)) return;
1278
1279   // Sanity check the structors list.
1280   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1281   if (!InitList) return; // Not an array!
1282   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1283   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1284   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1285       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1286
1287   // Gather the structors in a form that's convenient for sorting by priority.
1288   SmallVector<Structor, 8> Structors;
1289   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1290     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1291     if (!CS) continue; // Malformed.
1292     if (CS->getOperand(1)->isNullValue())
1293       break;  // Found a null terminator, skip the rest.
1294     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1295     if (!Priority) continue; // Malformed.
1296     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1297                                        CS->getOperand(1)));
1298   }
1299
1300   // Emit the function pointers in the target-specific order
1301   const TargetData *TD = TM.getTargetData();
1302   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1303   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1304   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1305     const MCSection *OutputSection =
1306       (isCtor ?
1307        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1308        getObjFileLowering().getStaticDtorSection(Structors[i].first));
1309     OutStreamer.SwitchSection(OutputSection);
1310     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1311       EmitAlignment(Align);
1312     EmitXXStructor(Structors[i].second);
1313   }
1314 }
1315
1316 //===--------------------------------------------------------------------===//
1317 // Emission and print routines
1318 //
1319
1320 /// EmitInt8 - Emit a byte directive and value.
1321 ///
1322 void AsmPrinter::EmitInt8(int Value) const {
1323   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1324 }
1325
1326 /// EmitInt16 - Emit a short directive and value.
1327 ///
1328 void AsmPrinter::EmitInt16(int Value) const {
1329   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1330 }
1331
1332 /// EmitInt32 - Emit a long directive and value.
1333 ///
1334 void AsmPrinter::EmitInt32(int Value) const {
1335   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1336 }
1337
1338 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1339 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1340 /// labels.  This implicitly uses .set if it is available.
1341 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1342                                      unsigned Size) const {
1343   // Get the Hi-Lo expression.
1344   const MCExpr *Diff =
1345     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1346                             MCSymbolRefExpr::Create(Lo, OutContext),
1347                             OutContext);
1348
1349   if (!MAI->hasSetDirective()) {
1350     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1351     return;
1352   }
1353
1354   // Otherwise, emit with .set (aka assignment).
1355   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1356   OutStreamer.EmitAssignment(SetLabel, Diff);
1357   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1358 }
1359
1360 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1361 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1362 /// specify the labels.  This implicitly uses .set if it is available.
1363 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1364                                            const MCSymbol *Lo, unsigned Size)
1365   const {
1366
1367   // Emit Hi+Offset - Lo
1368   // Get the Hi+Offset expression.
1369   const MCExpr *Plus =
1370     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1371                             MCConstantExpr::Create(Offset, OutContext),
1372                             OutContext);
1373
1374   // Get the Hi+Offset-Lo expression.
1375   const MCExpr *Diff =
1376     MCBinaryExpr::CreateSub(Plus,
1377                             MCSymbolRefExpr::Create(Lo, OutContext),
1378                             OutContext);
1379
1380   if (!MAI->hasSetDirective())
1381     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1382   else {
1383     // Otherwise, emit with .set (aka assignment).
1384     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1385     OutStreamer.EmitAssignment(SetLabel, Diff);
1386     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1387   }
1388 }
1389
1390 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1391 /// where the size in bytes of the directive is specified by Size and Label
1392 /// specifies the label.  This implicitly uses .set if it is available.
1393 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1394                                       unsigned Size)
1395   const {
1396
1397   // Emit Label+Offset (or just Label if Offset is zero)
1398   const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1399   if (Offset)
1400     Expr = MCBinaryExpr::CreateAdd(Expr,
1401                                    MCConstantExpr::Create(Offset, OutContext),
1402                                    OutContext);
1403
1404   OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
1405 }
1406
1407
1408 //===----------------------------------------------------------------------===//
1409
1410 // EmitAlignment - Emit an alignment directive to the specified power of
1411 // two boundary.  For example, if you pass in 3 here, you will get an 8
1412 // byte alignment.  If a global value is specified, and if that global has
1413 // an explicit alignment requested, it will override the alignment request
1414 // if required for correctness.
1415 //
1416 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1417   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1418
1419   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1420
1421   if (getCurrentSection()->getKind().isText())
1422     OutStreamer.EmitCodeAlignment(1 << NumBits);
1423   else
1424     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1425 }
1426
1427 //===----------------------------------------------------------------------===//
1428 // Constant emission.
1429 //===----------------------------------------------------------------------===//
1430
1431 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1432 ///
1433 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1434   MCContext &Ctx = AP.OutContext;
1435
1436   if (CV->isNullValue() || isa<UndefValue>(CV))
1437     return MCConstantExpr::Create(0, Ctx);
1438
1439   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1440     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1441
1442   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1443     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1444
1445   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1446     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1447
1448   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1449   if (CE == 0) {
1450     llvm_unreachable("Unknown constant value to lower!");
1451   }
1452
1453   switch (CE->getOpcode()) {
1454   default:
1455     // If the code isn't optimized, there may be outstanding folding
1456     // opportunities. Attempt to fold the expression using TargetData as a
1457     // last resort before giving up.
1458     if (Constant *C =
1459           ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1460       if (C != CE)
1461         return lowerConstant(C, AP);
1462
1463     // Otherwise report the problem to the user.
1464     {
1465       std::string S;
1466       raw_string_ostream OS(S);
1467       OS << "Unsupported expression in static initializer: ";
1468       WriteAsOperand(OS, CE, /*PrintType=*/false,
1469                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1470       report_fatal_error(OS.str());
1471     }
1472   case Instruction::GetElementPtr: {
1473     const TargetData &TD = *AP.TM.getTargetData();
1474     // Generate a symbolic expression for the byte address
1475     const Constant *PtrVal = CE->getOperand(0);
1476     SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1477     int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1478
1479     const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1480     if (Offset == 0)
1481       return Base;
1482
1483     // Truncate/sext the offset to the pointer size.
1484     unsigned Width = TD.getPointerSizeInBits();
1485     if (Width < 64)
1486       Offset = SignExtend64(Offset, Width);
1487
1488     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1489                                    Ctx);
1490   }
1491
1492   case Instruction::Trunc:
1493     // We emit the value and depend on the assembler to truncate the generated
1494     // expression properly.  This is important for differences between
1495     // blockaddress labels.  Since the two labels are in the same function, it
1496     // is reasonable to treat their delta as a 32-bit value.
1497     // FALL THROUGH.
1498   case Instruction::BitCast:
1499     return lowerConstant(CE->getOperand(0), AP);
1500
1501   case Instruction::IntToPtr: {
1502     const TargetData &TD = *AP.TM.getTargetData();
1503     // Handle casts to pointers by changing them into casts to the appropriate
1504     // integer type.  This promotes constant folding and simplifies this code.
1505     Constant *Op = CE->getOperand(0);
1506     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1507                                       false/*ZExt*/);
1508     return lowerConstant(Op, AP);
1509   }
1510
1511   case Instruction::PtrToInt: {
1512     const TargetData &TD = *AP.TM.getTargetData();
1513     // Support only foldable casts to/from pointers that can be eliminated by
1514     // changing the pointer to the appropriately sized integer type.
1515     Constant *Op = CE->getOperand(0);
1516     Type *Ty = CE->getType();
1517
1518     const MCExpr *OpExpr = lowerConstant(Op, AP);
1519
1520     // We can emit the pointer value into this slot if the slot is an
1521     // integer slot equal to the size of the pointer.
1522     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1523       return OpExpr;
1524
1525     // Otherwise the pointer is smaller than the resultant integer, mask off
1526     // the high bits so we are sure to get a proper truncation if the input is
1527     // a constant expr.
1528     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1529     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1530     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1531   }
1532
1533   // The MC library also has a right-shift operator, but it isn't consistently
1534   // signed or unsigned between different targets.
1535   case Instruction::Add:
1536   case Instruction::Sub:
1537   case Instruction::Mul:
1538   case Instruction::SDiv:
1539   case Instruction::SRem:
1540   case Instruction::Shl:
1541   case Instruction::And:
1542   case Instruction::Or:
1543   case Instruction::Xor: {
1544     const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1545     const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1546     switch (CE->getOpcode()) {
1547     default: llvm_unreachable("Unknown binary operator constant cast expr");
1548     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1549     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1550     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1551     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1552     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1553     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1554     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1555     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1556     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1557     }
1558   }
1559   }
1560 }
1561
1562 static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1563                                    AsmPrinter &AP);
1564
1565 /// isRepeatedByteSequence - Determine whether the given value is
1566 /// composed of a repeated sequence of identical bytes and return the
1567 /// byte value.  If it is not a repeated sequence, return -1.
1568 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1569   StringRef Data = V->getRawDataValues();
1570   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1571   char C = Data[0];
1572   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1573     if (Data[i] != C) return -1;
1574   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1575 }
1576
1577
1578 /// isRepeatedByteSequence - Determine whether the given value is
1579 /// composed of a repeated sequence of identical bytes and return the
1580 /// byte value.  If it is not a repeated sequence, return -1.
1581 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1582
1583   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1584     if (CI->getBitWidth() > 64) return -1;
1585
1586     uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1587     uint64_t Value = CI->getZExtValue();
1588
1589     // Make sure the constant is at least 8 bits long and has a power
1590     // of 2 bit width.  This guarantees the constant bit width is
1591     // always a multiple of 8 bits, avoiding issues with padding out
1592     // to Size and other such corner cases.
1593     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1594
1595     uint8_t Byte = static_cast<uint8_t>(Value);
1596
1597     for (unsigned i = 1; i < Size; ++i) {
1598       Value >>= 8;
1599       if (static_cast<uint8_t>(Value) != Byte) return -1;
1600     }
1601     return Byte;
1602   }
1603   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1604     // Make sure all array elements are sequences of the same repeated
1605     // byte.
1606     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1607     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1608     if (Byte == -1) return -1;
1609
1610     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1611       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1612       if (ThisByte == -1) return -1;
1613       if (Byte != ThisByte) return -1;
1614     }
1615     return Byte;
1616   }
1617   
1618   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1619     return isRepeatedByteSequence(CDS);
1620
1621   return -1;
1622 }
1623
1624 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1625                                              unsigned AddrSpace,AsmPrinter &AP){
1626   
1627   // See if we can aggregate this into a .fill, if so, emit it as such.
1628   int Value = isRepeatedByteSequence(CDS, AP.TM);
1629   if (Value != -1) {
1630     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1631     // Don't emit a 1-byte object as a .fill.
1632     if (Bytes > 1)
1633       return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1634   }
1635   
1636   // If this can be emitted with .ascii/.asciz, emit it as such.
1637   if (CDS->isString())
1638     return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1639
1640   // Otherwise, emit the values in successive locations.
1641   unsigned ElementByteSize = CDS->getElementByteSize();
1642   if (isa<IntegerType>(CDS->getElementType())) {
1643     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1644       if (AP.isVerbose())
1645         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1646                                                 CDS->getElementAsInteger(i));
1647       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1648                                   ElementByteSize, AddrSpace);
1649     }
1650   } else if (ElementByteSize == 4) {
1651     // FP Constants are printed as integer constants to avoid losing
1652     // precision.
1653     assert(CDS->getElementType()->isFloatTy());
1654     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1655       union {
1656         float F;
1657         uint32_t I;
1658       };
1659       
1660       F = CDS->getElementAsFloat(i);
1661       if (AP.isVerbose())
1662         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1663       AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1664     }
1665   } else {
1666     assert(CDS->getElementType()->isDoubleTy());
1667     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1668       union {
1669         double F;
1670         uint64_t I;
1671       };
1672       
1673       F = CDS->getElementAsDouble(i);
1674       if (AP.isVerbose())
1675         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1676       AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1677     }
1678   }
1679
1680   const TargetData &TD = *AP.TM.getTargetData();
1681   unsigned Size = TD.getTypeAllocSize(CDS->getType());
1682   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1683                         CDS->getNumElements();
1684   if (unsigned Padding = Size - EmittedSize)
1685     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1686
1687 }
1688
1689 static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1690                                     AsmPrinter &AP) {
1691   // See if we can aggregate some values.  Make sure it can be
1692   // represented as a series of bytes of the constant value.
1693   int Value = isRepeatedByteSequence(CA, AP.TM);
1694
1695   if (Value != -1) {
1696     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1697     AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1698   }
1699   else {
1700     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1701       emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1702   }
1703 }
1704
1705 static void emitGlobalConstantVector(const ConstantVector *CV,
1706                                      unsigned AddrSpace, AsmPrinter &AP) {
1707   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1708     emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1709
1710   const TargetData &TD = *AP.TM.getTargetData();
1711   unsigned Size = TD.getTypeAllocSize(CV->getType());
1712   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1713                          CV->getType()->getNumElements();
1714   if (unsigned Padding = Size - EmittedSize)
1715     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1716 }
1717
1718 static void emitGlobalConstantStruct(const ConstantStruct *CS,
1719                                      unsigned AddrSpace, AsmPrinter &AP) {
1720   // Print the fields in successive locations. Pad to align if needed!
1721   const TargetData *TD = AP.TM.getTargetData();
1722   unsigned Size = TD->getTypeAllocSize(CS->getType());
1723   const StructLayout *Layout = TD->getStructLayout(CS->getType());
1724   uint64_t SizeSoFar = 0;
1725   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1726     const Constant *Field = CS->getOperand(i);
1727
1728     // Check if padding is needed and insert one or more 0s.
1729     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1730     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1731                         - Layout->getElementOffset(i)) - FieldSize;
1732     SizeSoFar += FieldSize + PadSize;
1733
1734     // Now print the actual field value.
1735     emitGlobalConstantImpl(Field, AddrSpace, AP);
1736
1737     // Insert padding - this may include padding to increase the size of the
1738     // current field up to the ABI size (if the struct is not packed) as well
1739     // as padding to ensure that the next field starts at the right offset.
1740     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1741   }
1742   assert(SizeSoFar == Layout->getSizeInBytes() &&
1743          "Layout of constant struct may be incorrect!");
1744 }
1745
1746 static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1747                                  AsmPrinter &AP) {
1748   if (CFP->getType()->isHalfTy()) {
1749     if (AP.isVerbose()) {
1750       SmallString<10> Str;
1751       CFP->getValueAPF().toString(Str);
1752       AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1753     }
1754     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1755     AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1756     return;
1757   }
1758
1759   if (CFP->getType()->isFloatTy()) {
1760     if (AP.isVerbose()) {
1761       float Val = CFP->getValueAPF().convertToFloat();
1762       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1763       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1764                                     << " (" << format("0x%x", IntVal) << ")\n";
1765     }
1766     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1767     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1768     return;
1769   }
1770
1771   // FP Constants are printed as integer constants to avoid losing
1772   // precision.
1773   if (CFP->getType()->isDoubleTy()) {
1774     if (AP.isVerbose()) {
1775       double Val = CFP->getValueAPF().convertToDouble();
1776       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1777       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1778                                     << " (" << format("0x%lx", IntVal) << ")\n";
1779     }
1780
1781     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1782     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1783     return;
1784   }
1785
1786   if (CFP->getType()->isX86_FP80Ty()) {
1787     // all long double variants are printed as hex
1788     // API needed to prevent premature destruction
1789     APInt API = CFP->getValueAPF().bitcastToAPInt();
1790     const uint64_t *p = API.getRawData();
1791     if (AP.isVerbose()) {
1792       // Convert to double so we can print the approximate val as a comment.
1793       APFloat DoubleVal = CFP->getValueAPF();
1794       bool ignored;
1795       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1796                         &ignored);
1797       AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1798         << DoubleVal.convertToDouble() << '\n';
1799     }
1800
1801     if (AP.TM.getTargetData()->isBigEndian()) {
1802       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1803       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1804     } else {
1805       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1806       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1807     }
1808
1809     // Emit the tail padding for the long double.
1810     const TargetData &TD = *AP.TM.getTargetData();
1811     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1812                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1813     return;
1814   }
1815
1816   assert(CFP->getType()->isPPC_FP128Ty() &&
1817          "Floating point constant type not handled");
1818   // All long double variants are printed as hex
1819   // API needed to prevent premature destruction.
1820   APInt API = CFP->getValueAPF().bitcastToAPInt();
1821   const uint64_t *p = API.getRawData();
1822   if (AP.TM.getTargetData()->isBigEndian()) {
1823     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1824     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1825   } else {
1826     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1827     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1828   }
1829 }
1830
1831 static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1832                                        unsigned AddrSpace, AsmPrinter &AP) {
1833   const TargetData *TD = AP.TM.getTargetData();
1834   unsigned BitWidth = CI->getBitWidth();
1835   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1836
1837   // We don't expect assemblers to support integer data directives
1838   // for more than 64 bits, so we emit the data in at most 64-bit
1839   // quantities at a time.
1840   const uint64_t *RawData = CI->getValue().getRawData();
1841   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1842     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1843     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1844   }
1845 }
1846
1847 static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1848                                    AsmPrinter &AP) {
1849   const TargetData *TD = AP.TM.getTargetData();
1850   uint64_t Size = TD->getTypeAllocSize(CV->getType());
1851   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1852     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1853
1854   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1855     switch (Size) {
1856     case 1:
1857     case 2:
1858     case 4:
1859     case 8:
1860       if (AP.isVerbose())
1861         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1862                                                 CI->getZExtValue());
1863       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1864       return;
1865     default:
1866       emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1867       return;
1868     }
1869   }
1870
1871   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1872     return emitGlobalConstantFP(CFP, AddrSpace, AP);
1873
1874   if (isa<ConstantPointerNull>(CV)) {
1875     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1876     return;
1877   }
1878
1879   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1880     return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1881   
1882   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1883     return emitGlobalConstantArray(CVA, AddrSpace, AP);
1884
1885   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1886     return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1887
1888   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1889     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1890     // vectors).
1891     if (CE->getOpcode() == Instruction::BitCast)
1892       return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1893
1894     if (Size > 8) {
1895       // If the constant expression's size is greater than 64-bits, then we have
1896       // to emit the value in chunks. Try to constant fold the value and emit it
1897       // that way.
1898       Constant *New = ConstantFoldConstantExpression(CE, TD);
1899       if (New && New != CE)
1900         return emitGlobalConstantImpl(New, AddrSpace, AP);
1901     }
1902   }
1903   
1904   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1905     return emitGlobalConstantVector(V, AddrSpace, AP);
1906     
1907   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1908   // thread the streamer with EmitValue.
1909   AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1910 }
1911
1912 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1913 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1914   uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1915   if (Size)
1916     emitGlobalConstantImpl(CV, AddrSpace, *this);
1917   else if (MAI->hasSubsectionsViaSymbols()) {
1918     // If the global has zero size, emit a single byte so that two labels don't
1919     // look like they are at the same location.
1920     OutStreamer.EmitIntValue(0, 1, AddrSpace);
1921   }
1922 }
1923
1924 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1925   // Target doesn't support this yet!
1926   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1927 }
1928
1929 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1930   if (Offset > 0)
1931     OS << '+' << Offset;
1932   else if (Offset < 0)
1933     OS << Offset;
1934 }
1935
1936 //===----------------------------------------------------------------------===//
1937 // Symbol Lowering Routines.
1938 //===----------------------------------------------------------------------===//
1939
1940 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1941 /// temporary label with the specified stem and unique ID.
1942 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1943   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1944                                       Name + Twine(ID));
1945 }
1946
1947 /// GetTempSymbol - Return an assembler temporary label with the specified
1948 /// stem.
1949 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1950   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1951                                       Name);
1952 }
1953
1954
1955 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1956   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1957 }
1958
1959 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1960   return MMI->getAddrLabelSymbol(BB);
1961 }
1962
1963 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
1964 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1965   return OutContext.GetOrCreateSymbol
1966     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1967      + "_" + Twine(CPID));
1968 }
1969
1970 /// GetJTISymbol - Return the symbol for the specified jump table entry.
1971 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1972   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1973 }
1974
1975 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1976 /// FIXME: privatize to AsmPrinter.
1977 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1978   return OutContext.GetOrCreateSymbol
1979   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1980    Twine(UID) + "_set_" + Twine(MBBID));
1981 }
1982
1983 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1984 /// global value name as its base, with the specified suffix, and where the
1985 /// symbol is forced to have private linkage if ForcePrivate is true.
1986 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1987                                                    StringRef Suffix,
1988                                                    bool ForcePrivate) const {
1989   SmallString<60> NameStr;
1990   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1991   NameStr.append(Suffix.begin(), Suffix.end());
1992   return OutContext.GetOrCreateSymbol(NameStr.str());
1993 }
1994
1995 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1996 /// ExternalSymbol.
1997 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1998   SmallString<60> NameStr;
1999   Mang->getNameWithPrefix(NameStr, Sym);
2000   return OutContext.GetOrCreateSymbol(NameStr.str());
2001 }
2002
2003
2004
2005 /// PrintParentLoopComment - Print comments about parent loops of this one.
2006 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2007                                    unsigned FunctionNumber) {
2008   if (Loop == 0) return;
2009   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2010   OS.indent(Loop->getLoopDepth()*2)
2011     << "Parent Loop BB" << FunctionNumber << "_"
2012     << Loop->getHeader()->getNumber()
2013     << " Depth=" << Loop->getLoopDepth() << '\n';
2014 }
2015
2016
2017 /// PrintChildLoopComment - Print comments about child loops within
2018 /// the loop for this basic block, with nesting.
2019 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2020                                   unsigned FunctionNumber) {
2021   // Add child loop information
2022   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2023     OS.indent((*CL)->getLoopDepth()*2)
2024       << "Child Loop BB" << FunctionNumber << "_"
2025       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2026       << '\n';
2027     PrintChildLoopComment(OS, *CL, FunctionNumber);
2028   }
2029 }
2030
2031 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2032 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2033                                        const MachineLoopInfo *LI,
2034                                        const AsmPrinter &AP) {
2035   // Add loop depth information
2036   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2037   if (Loop == 0) return;
2038
2039   MachineBasicBlock *Header = Loop->getHeader();
2040   assert(Header && "No header for loop");
2041
2042   // If this block is not a loop header, just print out what is the loop header
2043   // and return.
2044   if (Header != &MBB) {
2045     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2046                               Twine(AP.getFunctionNumber())+"_" +
2047                               Twine(Loop->getHeader()->getNumber())+
2048                               " Depth="+Twine(Loop->getLoopDepth()));
2049     return;
2050   }
2051
2052   // Otherwise, it is a loop header.  Print out information about child and
2053   // parent loops.
2054   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2055
2056   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2057
2058   OS << "=>";
2059   OS.indent(Loop->getLoopDepth()*2-2);
2060
2061   OS << "This ";
2062   if (Loop->empty())
2063     OS << "Inner ";
2064   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2065
2066   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2067 }
2068
2069
2070 /// EmitBasicBlockStart - This method prints the label for the specified
2071 /// MachineBasicBlock, an alignment (if present) and a comment describing
2072 /// it if appropriate.
2073 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2074   // Emit an alignment directive for this block, if needed.
2075   if (unsigned Align = MBB->getAlignment())
2076     EmitAlignment(Align);
2077
2078   // If the block has its address taken, emit any labels that were used to
2079   // reference the block.  It is possible that there is more than one label
2080   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2081   // the references were generated.
2082   if (MBB->hasAddressTaken()) {
2083     const BasicBlock *BB = MBB->getBasicBlock();
2084     if (isVerbose())
2085       OutStreamer.AddComment("Block address taken");
2086
2087     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2088
2089     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2090       OutStreamer.EmitLabel(Syms[i]);
2091   }
2092
2093   // Print some verbose block comments.
2094   if (isVerbose()) {
2095     if (const BasicBlock *BB = MBB->getBasicBlock())
2096       if (BB->hasName())
2097         OutStreamer.AddComment("%" + BB->getName());
2098     emitBasicBlockLoopComments(*MBB, LI, *this);
2099   }
2100
2101   // Print the main label for the block.
2102   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2103     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2104       // NOTE: Want this comment at start of line, don't emit with AddComment.
2105       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2106                               Twine(MBB->getNumber()) + ":");
2107     }
2108   } else {
2109     OutStreamer.EmitLabel(MBB->getSymbol());
2110   }
2111 }
2112
2113 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2114                                 bool IsDefinition) const {
2115   MCSymbolAttr Attr = MCSA_Invalid;
2116
2117   switch (Visibility) {
2118   default: break;
2119   case GlobalValue::HiddenVisibility:
2120     if (IsDefinition)
2121       Attr = MAI->getHiddenVisibilityAttr();
2122     else
2123       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2124     break;
2125   case GlobalValue::ProtectedVisibility:
2126     Attr = MAI->getProtectedVisibilityAttr();
2127     break;
2128   }
2129
2130   if (Attr != MCSA_Invalid)
2131     OutStreamer.EmitSymbolAttribute(Sym, Attr);
2132 }
2133
2134 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2135 /// exactly one predecessor and the control transfer mechanism between
2136 /// the predecessor and this block is a fall-through.
2137 bool AsmPrinter::
2138 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2139   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2140   // then nothing falls through to it.
2141   if (MBB->isLandingPad() || MBB->pred_empty())
2142     return false;
2143
2144   // If there isn't exactly one predecessor, it can't be a fall through.
2145   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2146   ++PI2;
2147   if (PI2 != MBB->pred_end())
2148     return false;
2149
2150   // The predecessor has to be immediately before this block.
2151   MachineBasicBlock *Pred = *PI;
2152
2153   if (!Pred->isLayoutSuccessor(MBB))
2154     return false;
2155
2156   // If the block is completely empty, then it definitely does fall through.
2157   if (Pred->empty())
2158     return true;
2159
2160   // Check the terminators in the previous blocks
2161   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2162          IE = Pred->end(); II != IE; ++II) {
2163     MachineInstr &MI = *II;
2164
2165     // If it is not a simple branch, we are in a table somewhere.
2166     if (!MI.isBranch() || MI.isIndirectBranch())
2167       return false;
2168
2169     // If we are the operands of one of the branches, this is not
2170     // a fall through.
2171     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2172            OE = MI.operands_end(); OI != OE; ++OI) {
2173       const MachineOperand& OP = *OI;
2174       if (OP.isJTI())
2175         return false;
2176       if (OP.isMBB() && OP.getMBB() == MBB)
2177         return false;
2178     }
2179   }
2180
2181   return true;
2182 }
2183
2184
2185
2186 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2187   if (!S->usesMetadata())
2188     return 0;
2189
2190   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2191   gcp_map_type::iterator GCPI = GCMap.find(S);
2192   if (GCPI != GCMap.end())
2193     return GCPI->second;
2194
2195   const char *Name = S->getName().c_str();
2196
2197   for (GCMetadataPrinterRegistry::iterator
2198          I = GCMetadataPrinterRegistry::begin(),
2199          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2200     if (strcmp(Name, I->getName()) == 0) {
2201       GCMetadataPrinter *GMP = I->instantiate();
2202       GMP->S = S;
2203       GCMap.insert(std::make_pair(S, GMP));
2204       return GMP;
2205     }
2206
2207   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2208 }