Move TargetData to DataLayout.
[oota-llvm.git] / include / llvm / Analysis / AliasAnalysis.h
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the generic AliasAnalysis interface, which is used as the
11 // common interface used by all clients of alias analysis information, and
12 // implemented by all alias analysis implementations.  Mod/Ref information is
13 // also captured by this interface.
14 //
15 // Implementations of this interface must implement the various virtual methods,
16 // which automatically provides functionality for the entire suite of client
17 // APIs.
18 //
19 // This API identifies memory regions with the Location class. The pointer
20 // component specifies the base memory address of the region. The Size specifies
21 // the maximum size (in address units) of the memory region, or UnknownSize if
22 // the size is not known. The TBAA tag identifies the "type" of the memory
23 // reference; see the TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
38 #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
39
40 #include "llvm/Support/CallSite.h"
41 #include "llvm/ADT/DenseMap.h"
42
43 namespace llvm {
44
45 class LoadInst;
46 class StoreInst;
47 class VAArgInst;
48 class DataLayout;
49 class TargetLibraryInfo;
50 class Pass;
51 class AnalysisUsage;
52 class MemTransferInst;
53 class MemIntrinsic;
54 class DominatorTree;
55
56 class AliasAnalysis {
57 protected:
58   const DataLayout *TD;
59   const TargetLibraryInfo *TLI;
60
61 private:
62   AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
63
64 protected:
65   /// InitializeAliasAnalysis - Subclasses must call this method to initialize
66   /// the AliasAnalysis interface before any other methods are called.  This is
67   /// typically called by the run* methods of these subclasses.  This may be
68   /// called multiple times.
69   ///
70   void InitializeAliasAnalysis(Pass *P);
71
72   /// getAnalysisUsage - All alias analysis implementations should invoke this
73   /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
74   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
75
76 public:
77   static char ID; // Class identification, replacement for typeinfo
78   AliasAnalysis() : TD(0), TLI(0), AA(0) {}
79   virtual ~AliasAnalysis();  // We want to be subclassed
80
81   /// UnknownSize - This is a special value which can be used with the
82   /// size arguments in alias queries to indicate that the caller does not
83   /// know the sizes of the potential memory references.
84   static uint64_t const UnknownSize = ~UINT64_C(0);
85
86   /// getDataLayout - Return a pointer to the current DataLayout object, or
87   /// null if no DataLayout object is available.
88   ///
89   const DataLayout *getDataLayout() const { return TD; }
90
91   /// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
92   /// object, or null if no TargetLibraryInfo object is available.
93   ///
94   const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
95
96   /// getTypeStoreSize - Return the DataLayout store size for the given type,
97   /// if known, or a conservative value otherwise.
98   ///
99   uint64_t getTypeStoreSize(Type *Ty);
100
101   //===--------------------------------------------------------------------===//
102   /// Alias Queries...
103   ///
104
105   /// Location - A description of a memory location.
106   struct Location {
107     /// Ptr - The address of the start of the location.
108     const Value *Ptr;
109     /// Size - The maximum size of the location, in address-units, or
110     /// UnknownSize if the size is not known.  Note that an unknown size does
111     /// not mean the pointer aliases the entire virtual address space, because
112     /// there are restrictions on stepping out of one object and into another.
113     /// See http://llvm.org/docs/LangRef.html#pointeraliasing
114     uint64_t Size;
115     /// TBAATag - The metadata node which describes the TBAA type of
116     /// the location, or null if there is no known unique tag.
117     const MDNode *TBAATag;
118
119     explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
120                       const MDNode *N = 0)
121       : Ptr(P), Size(S), TBAATag(N) {}
122
123     Location getWithNewPtr(const Value *NewPtr) const {
124       Location Copy(*this);
125       Copy.Ptr = NewPtr;
126       return Copy;
127     }
128
129     Location getWithNewSize(uint64_t NewSize) const {
130       Location Copy(*this);
131       Copy.Size = NewSize;
132       return Copy;
133     }
134
135     Location getWithoutTBAATag() const {
136       Location Copy(*this);
137       Copy.TBAATag = 0;
138       return Copy;
139     }
140   };
141
142   /// getLocation - Fill in Loc with information about the memory reference by
143   /// the given instruction.
144   Location getLocation(const LoadInst *LI);
145   Location getLocation(const StoreInst *SI);
146   Location getLocation(const VAArgInst *VI);
147   Location getLocation(const AtomicCmpXchgInst *CXI);
148   Location getLocation(const AtomicRMWInst *RMWI);
149   static Location getLocationForSource(const MemTransferInst *MTI);
150   static Location getLocationForDest(const MemIntrinsic *MI);
151
152   /// Alias analysis result - Either we know for sure that it does not alias, we
153   /// know for sure it must alias, or we don't know anything: The two pointers
154   /// _might_ alias.  This enum is designed so you can do things like:
155   ///     if (AA.alias(P1, P2)) { ... }
156   /// to check to see if two pointers might alias.
157   ///
158   /// See docs/AliasAnalysis.html for more information on the specific meanings
159   /// of these values.
160   ///
161   enum AliasResult {
162     NoAlias = 0,        ///< No dependencies.
163     MayAlias,           ///< Anything goes.
164     PartialAlias,       ///< Pointers differ, but pointees overlap.
165     MustAlias           ///< Pointers are equal.
166   };
167
168   /// alias - The main low level interface to the alias analysis implementation.
169   /// Returns an AliasResult indicating whether the two pointers are aliased to
170   /// each other.  This is the interface that must be implemented by specific
171   /// alias analysis implementations.
172   virtual AliasResult alias(const Location &LocA, const Location &LocB);
173
174   /// alias - A convenience wrapper.
175   AliasResult alias(const Value *V1, uint64_t V1Size,
176                     const Value *V2, uint64_t V2Size) {
177     return alias(Location(V1, V1Size), Location(V2, V2Size));
178   }
179
180   /// alias - A convenience wrapper.
181   AliasResult alias(const Value *V1, const Value *V2) {
182     return alias(V1, UnknownSize, V2, UnknownSize);
183   }
184
185   /// isNoAlias - A trivial helper function to check to see if the specified
186   /// pointers are no-alias.
187   bool isNoAlias(const Location &LocA, const Location &LocB) {
188     return alias(LocA, LocB) == NoAlias;
189   }
190
191   /// isNoAlias - A convenience wrapper.
192   bool isNoAlias(const Value *V1, uint64_t V1Size,
193                  const Value *V2, uint64_t V2Size) {
194     return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
195   }
196   
197   /// isNoAlias - A convenience wrapper.
198   bool isNoAlias(const Value *V1, const Value *V2) {
199     return isNoAlias(Location(V1), Location(V2));
200   }
201   
202   /// isMustAlias - A convenience wrapper.
203   bool isMustAlias(const Location &LocA, const Location &LocB) {
204     return alias(LocA, LocB) == MustAlias;
205   }
206
207   /// isMustAlias - A convenience wrapper.
208   bool isMustAlias(const Value *V1, const Value *V2) {
209     return alias(V1, 1, V2, 1) == MustAlias;
210   }
211   
212   /// pointsToConstantMemory - If the specified memory location is
213   /// known to be constant, return true. If OrLocal is true and the
214   /// specified memory location is known to be "local" (derived from
215   /// an alloca), return true. Otherwise return false.
216   virtual bool pointsToConstantMemory(const Location &Loc,
217                                       bool OrLocal = false);
218
219   /// pointsToConstantMemory - A convenient wrapper.
220   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
221     return pointsToConstantMemory(Location(P), OrLocal);
222   }
223
224   //===--------------------------------------------------------------------===//
225   /// Simple mod/ref information...
226   ///
227
228   /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
229   /// bits which may be or'd together.
230   ///
231   enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
232
233   /// These values define additional bits used to define the
234   /// ModRefBehavior values.
235   enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
236
237   /// ModRefBehavior - Summary of how a function affects memory in the program.
238   /// Loads from constant globals are not considered memory accesses for this
239   /// interface.  Also, functions may freely modify stack space local to their
240   /// invocation without having to report it through these interfaces.
241   enum ModRefBehavior {
242     /// DoesNotAccessMemory - This function does not perform any non-local loads
243     /// or stores to memory.
244     ///
245     /// This property corresponds to the GCC 'const' attribute.
246     /// This property corresponds to the LLVM IR 'readnone' attribute.
247     /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
248     DoesNotAccessMemory = Nowhere | NoModRef,
249
250     /// OnlyReadsArgumentPointees - The only memory references in this function
251     /// (if it has any) are non-volatile loads from objects pointed to by its
252     /// pointer-typed arguments, with arbitrary offsets.
253     ///
254     /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
255     OnlyReadsArgumentPointees = ArgumentPointees | Ref,
256
257     /// OnlyAccessesArgumentPointees - The only memory references in this
258     /// function (if it has any) are non-volatile loads and stores from objects
259     /// pointed to by its pointer-typed arguments, with arbitrary offsets.
260     ///
261     /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
262     OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
263
264     /// OnlyReadsMemory - This function does not perform any non-local stores or
265     /// volatile loads, but may read from any memory location.
266     ///
267     /// This property corresponds to the GCC 'pure' attribute.
268     /// This property corresponds to the LLVM IR 'readonly' attribute.
269     /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
270     OnlyReadsMemory = Anywhere | Ref,
271
272     /// UnknownModRefBehavior - This indicates that the function could not be
273     /// classified into one of the behaviors above.
274     UnknownModRefBehavior = Anywhere | ModRef
275   };
276
277   /// getModRefBehavior - Return the behavior when calling the given call site.
278   virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
279
280   /// getModRefBehavior - Return the behavior when calling the given function.
281   /// For use when the call site is not known.
282   virtual ModRefBehavior getModRefBehavior(const Function *F);
283
284   /// doesNotAccessMemory - If the specified call is known to never read or
285   /// write memory, return true.  If the call only reads from known-constant
286   /// memory, it is also legal to return true.  Calls that unwind the stack
287   /// are legal for this predicate.
288   ///
289   /// Many optimizations (such as CSE and LICM) can be performed on such calls
290   /// without worrying about aliasing properties, and many calls have this
291   /// property (e.g. calls to 'sin' and 'cos').
292   ///
293   /// This property corresponds to the GCC 'const' attribute.
294   ///
295   bool doesNotAccessMemory(ImmutableCallSite CS) {
296     return getModRefBehavior(CS) == DoesNotAccessMemory;
297   }
298
299   /// doesNotAccessMemory - If the specified function is known to never read or
300   /// write memory, return true.  For use when the call site is not known.
301   ///
302   bool doesNotAccessMemory(const Function *F) {
303     return getModRefBehavior(F) == DoesNotAccessMemory;
304   }
305
306   /// onlyReadsMemory - If the specified call is known to only read from
307   /// non-volatile memory (or not access memory at all), return true.  Calls
308   /// that unwind the stack are legal for this predicate.
309   ///
310   /// This property allows many common optimizations to be performed in the
311   /// absence of interfering store instructions, such as CSE of strlen calls.
312   ///
313   /// This property corresponds to the GCC 'pure' attribute.
314   ///
315   bool onlyReadsMemory(ImmutableCallSite CS) {
316     return onlyReadsMemory(getModRefBehavior(CS));
317   }
318
319   /// onlyReadsMemory - If the specified function is known to only read from
320   /// non-volatile memory (or not access memory at all), return true.  For use
321   /// when the call site is not known.
322   ///
323   bool onlyReadsMemory(const Function *F) {
324     return onlyReadsMemory(getModRefBehavior(F));
325   }
326
327   /// onlyReadsMemory - Return true if functions with the specified behavior are
328   /// known to only read from non-volatile memory (or not access memory at all).
329   ///
330   static bool onlyReadsMemory(ModRefBehavior MRB) {
331     return !(MRB & Mod);
332   }
333
334   /// onlyAccessesArgPointees - Return true if functions with the specified
335   /// behavior are known to read and write at most from objects pointed to by
336   /// their pointer-typed arguments (with arbitrary offsets).
337   ///
338   static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
339     return !(MRB & Anywhere & ~ArgumentPointees);
340   }
341
342   /// doesAccessArgPointees - Return true if functions with the specified
343   /// behavior are known to potentially read or write from objects pointed
344   /// to be their pointer-typed arguments (with arbitrary offsets).
345   ///
346   static bool doesAccessArgPointees(ModRefBehavior MRB) {
347     return (MRB & ModRef) && (MRB & ArgumentPointees);
348   }
349
350   /// getModRefInfo - Return information about whether or not an instruction may
351   /// read or write the specified memory location.  An instruction
352   /// that doesn't read or write memory may be trivially LICM'd for example.
353   ModRefResult getModRefInfo(const Instruction *I,
354                              const Location &Loc) {
355     switch (I->getOpcode()) {
356     case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
357     case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
358     case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
359     case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
360     case Instruction::AtomicCmpXchg:
361       return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
362     case Instruction::AtomicRMW:
363       return getModRefInfo((const AtomicRMWInst*)I, Loc);
364     case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
365     case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
366     default:                  return NoModRef;
367     }
368   }
369
370   /// getModRefInfo - A convenience wrapper.
371   ModRefResult getModRefInfo(const Instruction *I,
372                              const Value *P, uint64_t Size) {
373     return getModRefInfo(I, Location(P, Size));
374   }
375
376   /// getModRefInfo (for call sites) - Return whether information about whether
377   /// a particular call site modifies or reads the specified memory location.
378   virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
379                                      const Location &Loc);
380
381   /// getModRefInfo (for call sites) - A convenience wrapper.
382   ModRefResult getModRefInfo(ImmutableCallSite CS,
383                              const Value *P, uint64_t Size) {
384     return getModRefInfo(CS, Location(P, Size));
385   }
386
387   /// getModRefInfo (for calls) - Return whether information about whether
388   /// a particular call modifies or reads the specified memory location.
389   ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
390     return getModRefInfo(ImmutableCallSite(C), Loc);
391   }
392
393   /// getModRefInfo (for calls) - A convenience wrapper.
394   ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
395     return getModRefInfo(C, Location(P, Size));
396   }
397
398   /// getModRefInfo (for invokes) - Return whether information about whether
399   /// a particular invoke modifies or reads the specified memory location.
400   ModRefResult getModRefInfo(const InvokeInst *I,
401                              const Location &Loc) {
402     return getModRefInfo(ImmutableCallSite(I), Loc);
403   }
404
405   /// getModRefInfo (for invokes) - A convenience wrapper.
406   ModRefResult getModRefInfo(const InvokeInst *I,
407                              const Value *P, uint64_t Size) {
408     return getModRefInfo(I, Location(P, Size));
409   }
410
411   /// getModRefInfo (for loads) - Return whether information about whether
412   /// a particular load modifies or reads the specified memory location.
413   ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
414
415   /// getModRefInfo (for loads) - A convenience wrapper.
416   ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
417     return getModRefInfo(L, Location(P, Size));
418   }
419
420   /// getModRefInfo (for stores) - Return whether information about whether
421   /// a particular store modifies or reads the specified memory location.
422   ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
423
424   /// getModRefInfo (for stores) - A convenience wrapper.
425   ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
426     return getModRefInfo(S, Location(P, Size));
427   }
428
429   /// getModRefInfo (for fences) - Return whether information about whether
430   /// a particular store modifies or reads the specified memory location.
431   ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
432     // Conservatively correct.  (We could possibly be a bit smarter if
433     // Loc is a alloca that doesn't escape.)
434     return ModRef;
435   }
436
437   /// getModRefInfo (for fences) - A convenience wrapper.
438   ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
439     return getModRefInfo(S, Location(P, Size));
440   }
441
442   /// getModRefInfo (for cmpxchges) - Return whether information about whether
443   /// a particular cmpxchg modifies or reads the specified memory location.
444   ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
445
446   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
447   ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
448                              const Value *P, unsigned Size) {
449     return getModRefInfo(CX, Location(P, Size));
450   }
451
452   /// getModRefInfo (for atomicrmws) - Return whether information about whether
453   /// a particular atomicrmw modifies or reads the specified memory location.
454   ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
455
456   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
457   ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
458                              const Value *P, unsigned Size) {
459     return getModRefInfo(RMW, Location(P, Size));
460   }
461
462   /// getModRefInfo (for va_args) - Return whether information about whether
463   /// a particular va_arg modifies or reads the specified memory location.
464   ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
465
466   /// getModRefInfo (for va_args) - A convenience wrapper.
467   ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
468     return getModRefInfo(I, Location(P, Size));
469   }
470
471   /// getModRefInfo - Return information about whether two call sites may refer
472   /// to the same set of memory locations.  See 
473   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
474   /// for details.
475   virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
476                                      ImmutableCallSite CS2);
477
478   /// callCapturesBefore - Return information about whether a particular call 
479   /// site modifies or reads the specified memory location.
480   ModRefResult callCapturesBefore(const Instruction *I,
481                                   const AliasAnalysis::Location &MemLoc,
482                                   DominatorTree *DT);
483
484   /// callCapturesBefore - A convenience wrapper.
485   ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
486                                   uint64_t Size, DominatorTree *DT) {
487     return callCapturesBefore(I, Location(P, Size), DT);
488   }
489
490   //===--------------------------------------------------------------------===//
491   /// Higher level methods for querying mod/ref information.
492   ///
493
494   /// canBasicBlockModify - Return true if it is possible for execution of the
495   /// specified basic block to modify the value pointed to by Ptr.
496   bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
497
498   /// canBasicBlockModify - A convenience wrapper.
499   bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
500     return canBasicBlockModify(BB, Location(P, Size));
501   }
502
503   /// canInstructionRangeModify - Return true if it is possible for the
504   /// execution of the specified instructions to modify the value pointed to by
505   /// Ptr.  The instructions to consider are all of the instructions in the
506   /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
507   bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
508                                  const Location &Loc);
509
510   /// canInstructionRangeModify - A convenience wrapper.
511   bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
512                                  const Value *Ptr, uint64_t Size) {
513     return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
514   }
515
516   //===--------------------------------------------------------------------===//
517   /// Methods that clients should call when they transform the program to allow
518   /// alias analyses to update their internal data structures.  Note that these
519   /// methods may be called on any instruction, regardless of whether or not
520   /// they have pointer-analysis implications.
521   ///
522
523   /// deleteValue - This method should be called whenever an LLVM Value is
524   /// deleted from the program, for example when an instruction is found to be
525   /// redundant and is eliminated.
526   ///
527   virtual void deleteValue(Value *V);
528
529   /// copyValue - This method should be used whenever a preexisting value in the
530   /// program is copied or cloned, introducing a new value.  Note that analysis
531   /// implementations should tolerate clients that use this method to introduce
532   /// the same value multiple times: if the analysis already knows about a
533   /// value, it should ignore the request.
534   ///
535   virtual void copyValue(Value *From, Value *To);
536
537   /// addEscapingUse - This method should be used whenever an escaping use is
538   /// added to a pointer value.  Analysis implementations may either return
539   /// conservative responses for that value in the future, or may recompute
540   /// some or all internal state to continue providing precise responses.
541   ///
542   /// Escaping uses are considered by anything _except_ the following:
543   ///  - GEPs or bitcasts of the pointer
544   ///  - Loads through the pointer
545   ///  - Stores through (but not of) the pointer
546   virtual void addEscapingUse(Use &U);
547
548   /// replaceWithNewValue - This method is the obvious combination of the two
549   /// above, and it provided as a helper to simplify client code.
550   ///
551   void replaceWithNewValue(Value *Old, Value *New) {
552     copyValue(Old, New);
553     deleteValue(Old);
554   }
555 };
556
557 // Specialize DenseMapInfo for Location.
558 template<>
559 struct DenseMapInfo<AliasAnalysis::Location> {
560   static inline AliasAnalysis::Location getEmptyKey() {
561     return
562       AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
563                               0, 0);
564   }
565   static inline AliasAnalysis::Location getTombstoneKey() {
566     return
567       AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
568                               0, 0);
569   }
570   static unsigned getHashValue(const AliasAnalysis::Location &Val) {
571     return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
572            DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
573            DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
574   }
575   static bool isEqual(const AliasAnalysis::Location &LHS,
576                       const AliasAnalysis::Location &RHS) {
577     return LHS.Ptr == RHS.Ptr &&
578            LHS.Size == RHS.Size &&
579            LHS.TBAATag == RHS.TBAATag;
580   }
581 };
582
583 /// isNoAliasCall - Return true if this pointer is returned by a noalias
584 /// function.
585 bool isNoAliasCall(const Value *V);
586
587 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
588 /// identifiable object.  This returns true for:
589 ///    Global Variables and Functions (but not Global Aliases)
590 ///    Allocas and Mallocs
591 ///    ByVal and NoAlias Arguments
592 ///    NoAlias returns
593 ///
594 bool isIdentifiedObject(const Value *V);
595
596 /// isKnownNonNull - Return true if this pointer couldn't possibly be null by
597 /// its definition.  This returns true for allocas, non-extern-weak globals and
598 /// byval arguments.
599 bool isKnownNonNull(const Value *V);
600
601 } // End llvm namespace
602
603 #endif