Move TargetData to DataLayout.
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineSimplifyDemanded.cpp
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14
15
16 #include "InstCombine.h"
17 #include "llvm/DataLayout.h"
18 #include "llvm/IntrinsicInst.h"
19
20 using namespace llvm;
21
22
23 /// ShrinkDemandedConstant - Check to see if the specified operand of the 
24 /// specified instruction is a constant integer.  If so, check to see if there
25 /// are any bits set in the constant that are not demanded.  If so, shrink the
26 /// constant and return true.
27 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 
28                                    APInt Demanded) {
29   assert(I && "No instruction?");
30   assert(OpNo < I->getNumOperands() && "Operand index too large");
31
32   // If the operand is not a constant integer, nothing to do.
33   ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
34   if (!OpC) return false;
35
36   // If there are no bits set that aren't demanded, nothing to do.
37   Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
38   if ((~Demanded & OpC->getValue()) == 0)
39     return false;
40
41   // This instruction is producing bits that are not demanded. Shrink the RHS.
42   Demanded &= OpC->getValue();
43   I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
44   return true;
45 }
46
47
48
49 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
50 /// SimplifyDemandedBits knows about.  See if the instruction has any
51 /// properties that allow us to simplify its operands.
52 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
53   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
54   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
55   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
56   
57   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 
58                                      KnownZero, KnownOne, 0);
59   if (V == 0) return false;
60   if (V == &Inst) return true;
61   ReplaceInstUsesWith(Inst, V);
62   return true;
63 }
64
65 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
66 /// specified instruction operand if possible, updating it in place.  It returns
67 /// true if it made any change and false otherwise.
68 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 
69                                         APInt &KnownZero, APInt &KnownOne,
70                                         unsigned Depth) {
71   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
72                                           KnownZero, KnownOne, Depth);
73   if (NewVal == 0) return false;
74   U = NewVal;
75   return true;
76 }
77
78
79 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
80 /// value based on the demanded bits.  When this function is called, it is known
81 /// that only the bits set in DemandedMask of the result of V are ever used
82 /// downstream. Consequently, depending on the mask and V, it may be possible
83 /// to replace V with a constant or one of its operands. In such cases, this
84 /// function does the replacement and returns true. In all other cases, it
85 /// returns false after analyzing the expression and setting KnownOne and known
86 /// to be one in the expression.  KnownZero contains all the bits that are known
87 /// to be zero in the expression. These are provided to potentially allow the
88 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
89 /// the expression. KnownOne and KnownZero always follow the invariant that 
90 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
91 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
92 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
93 /// and KnownOne must all be the same.
94 ///
95 /// This returns null if it did not change anything and it permits no
96 /// simplification.  This returns V itself if it did some simplification of V's
97 /// operands based on the information about what bits are demanded. This returns
98 /// some other non-null value if it found out that V is equal to another value
99 /// in the context where the specified bits are demanded, but not for all users.
100 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
101                                              APInt &KnownZero, APInt &KnownOne,
102                                              unsigned Depth) {
103   assert(V != 0 && "Null pointer of Value???");
104   assert(Depth <= 6 && "Limit Search Depth");
105   uint32_t BitWidth = DemandedMask.getBitWidth();
106   Type *VTy = V->getType();
107   assert((TD || !VTy->isPointerTy()) &&
108          "SimplifyDemandedBits needs to know bit widths!");
109   assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
110          (!VTy->isIntOrIntVectorTy() ||
111           VTy->getScalarSizeInBits() == BitWidth) &&
112          KnownZero.getBitWidth() == BitWidth &&
113          KnownOne.getBitWidth() == BitWidth &&
114          "Value *V, DemandedMask, KnownZero and KnownOne "
115          "must have same BitWidth");
116   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
117     // We know all of the bits for a constant!
118     KnownOne = CI->getValue() & DemandedMask;
119     KnownZero = ~KnownOne & DemandedMask;
120     return 0;
121   }
122   if (isa<ConstantPointerNull>(V)) {
123     // We know all of the bits for a constant!
124     KnownOne.clearAllBits();
125     KnownZero = DemandedMask;
126     return 0;
127   }
128
129   KnownZero.clearAllBits();
130   KnownOne.clearAllBits();
131   if (DemandedMask == 0) {   // Not demanding any bits from V.
132     if (isa<UndefValue>(V))
133       return 0;
134     return UndefValue::get(VTy);
135   }
136   
137   if (Depth == 6)        // Limit search depth.
138     return 0;
139   
140   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
141   APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
142
143   Instruction *I = dyn_cast<Instruction>(V);
144   if (!I) {
145     ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
146     return 0;        // Only analyze instructions.
147   }
148
149   // If there are multiple uses of this value and we aren't at the root, then
150   // we can't do any simplifications of the operands, because DemandedMask
151   // only reflects the bits demanded by *one* of the users.
152   if (Depth != 0 && !I->hasOneUse()) {
153     // Despite the fact that we can't simplify this instruction in all User's
154     // context, we can at least compute the knownzero/knownone bits, and we can
155     // do simplifications that apply to *just* the one user if we know that
156     // this instruction has a simpler value in that context.
157     if (I->getOpcode() == Instruction::And) {
158       // If either the LHS or the RHS are Zero, the result is zero.
159       ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
160       ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
161       
162       // If all of the demanded bits are known 1 on one side, return the other.
163       // These bits cannot contribute to the result of the 'and' in this
164       // context.
165       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 
166           (DemandedMask & ~LHSKnownZero))
167         return I->getOperand(0);
168       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 
169           (DemandedMask & ~RHSKnownZero))
170         return I->getOperand(1);
171       
172       // If all of the demanded bits in the inputs are known zeros, return zero.
173       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
174         return Constant::getNullValue(VTy);
175       
176     } else if (I->getOpcode() == Instruction::Or) {
177       // We can simplify (X|Y) -> X or Y in the user's context if we know that
178       // only bits from X or Y are demanded.
179       
180       // If either the LHS or the RHS are One, the result is One.
181       ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
182       ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
183       
184       // If all of the demanded bits are known zero on one side, return the
185       // other.  These bits cannot contribute to the result of the 'or' in this
186       // context.
187       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 
188           (DemandedMask & ~LHSKnownOne))
189         return I->getOperand(0);
190       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 
191           (DemandedMask & ~RHSKnownOne))
192         return I->getOperand(1);
193       
194       // If all of the potentially set bits on one side are known to be set on
195       // the other side, just use the 'other' side.
196       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 
197           (DemandedMask & (~RHSKnownZero)))
198         return I->getOperand(0);
199       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 
200           (DemandedMask & (~LHSKnownZero)))
201         return I->getOperand(1);
202     }
203     
204     // Compute the KnownZero/KnownOne bits to simplify things downstream.
205     ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
206     return 0;
207   }
208   
209   // If this is the root being simplified, allow it to have multiple uses,
210   // just set the DemandedMask to all bits so that we can try to simplify the
211   // operands.  This allows visitTruncInst (for example) to simplify the
212   // operand of a trunc without duplicating all the logic below.
213   if (Depth == 0 && !V->hasOneUse())
214     DemandedMask = APInt::getAllOnesValue(BitWidth);
215   
216   switch (I->getOpcode()) {
217   default:
218     ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
219     break;
220   case Instruction::And:
221     // If either the LHS or the RHS are Zero, the result is zero.
222     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
223                              RHSKnownZero, RHSKnownOne, Depth+1) ||
224         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
225                              LHSKnownZero, LHSKnownOne, Depth+1))
226       return I;
227     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
228     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
229
230     // If all of the demanded bits are known 1 on one side, return the other.
231     // These bits cannot contribute to the result of the 'and'.
232     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 
233         (DemandedMask & ~LHSKnownZero))
234       return I->getOperand(0);
235     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 
236         (DemandedMask & ~RHSKnownZero))
237       return I->getOperand(1);
238     
239     // If all of the demanded bits in the inputs are known zeros, return zero.
240     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
241       return Constant::getNullValue(VTy);
242       
243     // If the RHS is a constant, see if we can simplify it.
244     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
245       return I;
246       
247     // Output known-1 bits are only known if set in both the LHS & RHS.
248     KnownOne = RHSKnownOne & LHSKnownOne;
249     // Output known-0 are known to be clear if zero in either the LHS | RHS.
250     KnownZero = RHSKnownZero | LHSKnownZero;
251     break;
252   case Instruction::Or:
253     // If either the LHS or the RHS are One, the result is One.
254     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 
255                              RHSKnownZero, RHSKnownOne, Depth+1) ||
256         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 
257                              LHSKnownZero, LHSKnownOne, Depth+1))
258       return I;
259     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
260     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
261     
262     // If all of the demanded bits are known zero on one side, return the other.
263     // These bits cannot contribute to the result of the 'or'.
264     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 
265         (DemandedMask & ~LHSKnownOne))
266       return I->getOperand(0);
267     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 
268         (DemandedMask & ~RHSKnownOne))
269       return I->getOperand(1);
270
271     // If all of the potentially set bits on one side are known to be set on
272     // the other side, just use the 'other' side.
273     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 
274         (DemandedMask & (~RHSKnownZero)))
275       return I->getOperand(0);
276     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 
277         (DemandedMask & (~LHSKnownZero)))
278       return I->getOperand(1);
279         
280     // If the RHS is a constant, see if we can simplify it.
281     if (ShrinkDemandedConstant(I, 1, DemandedMask))
282       return I;
283           
284     // Output known-0 bits are only known if clear in both the LHS & RHS.
285     KnownZero = RHSKnownZero & LHSKnownZero;
286     // Output known-1 are known to be set if set in either the LHS | RHS.
287     KnownOne = RHSKnownOne | LHSKnownOne;
288     break;
289   case Instruction::Xor: {
290     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
291                              RHSKnownZero, RHSKnownOne, Depth+1) ||
292         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 
293                              LHSKnownZero, LHSKnownOne, Depth+1))
294       return I;
295     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
296     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
297     
298     // If all of the demanded bits are known zero on one side, return the other.
299     // These bits cannot contribute to the result of the 'xor'.
300     if ((DemandedMask & RHSKnownZero) == DemandedMask)
301       return I->getOperand(0);
302     if ((DemandedMask & LHSKnownZero) == DemandedMask)
303       return I->getOperand(1);
304     
305     // If all of the demanded bits are known to be zero on one side or the
306     // other, turn this into an *inclusive* or.
307     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
308     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
309       Instruction *Or = 
310         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
311                                  I->getName());
312       return InsertNewInstWith(Or, *I);
313     }
314     
315     // If all of the demanded bits on one side are known, and all of the set
316     // bits on that side are also known to be set on the other side, turn this
317     // into an AND, as we know the bits will be cleared.
318     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
319     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 
320       // all known
321       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
322         Constant *AndC = Constant::getIntegerValue(VTy,
323                                                    ~RHSKnownOne & DemandedMask);
324         Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
325         return InsertNewInstWith(And, *I);
326       }
327     }
328     
329     // If the RHS is a constant, see if we can simplify it.
330     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
331     if (ShrinkDemandedConstant(I, 1, DemandedMask))
332       return I;
333     
334     // If our LHS is an 'and' and if it has one use, and if any of the bits we
335     // are flipping are known to be set, then the xor is just resetting those
336     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
337     // simplifying both of them.
338     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
339       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
340           isa<ConstantInt>(I->getOperand(1)) &&
341           isa<ConstantInt>(LHSInst->getOperand(1)) &&
342           (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
343         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
344         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
345         APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
346         
347         Constant *AndC =
348           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
349         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
350         InsertNewInstWith(NewAnd, *I);
351         
352         Constant *XorC =
353           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
354         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
355         return InsertNewInstWith(NewXor, *I);
356       }
357
358     // Output known-0 bits are known if clear or set in both the LHS & RHS.
359     KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
360     // Output known-1 are known to be set if set in only one of the LHS, RHS.
361     KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
362     break;
363   }
364   case Instruction::Select:
365     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
366                              RHSKnownZero, RHSKnownOne, Depth+1) ||
367         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 
368                              LHSKnownZero, LHSKnownOne, Depth+1))
369       return I;
370     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
371     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
372     
373     // If the operands are constants, see if we can simplify them.
374     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
375         ShrinkDemandedConstant(I, 2, DemandedMask))
376       return I;
377     
378     // Only known if known in both the LHS and RHS.
379     KnownOne = RHSKnownOne & LHSKnownOne;
380     KnownZero = RHSKnownZero & LHSKnownZero;
381     break;
382   case Instruction::Trunc: {
383     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
384     DemandedMask = DemandedMask.zext(truncBf);
385     KnownZero = KnownZero.zext(truncBf);
386     KnownOne = KnownOne.zext(truncBf);
387     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 
388                              KnownZero, KnownOne, Depth+1))
389       return I;
390     DemandedMask = DemandedMask.trunc(BitWidth);
391     KnownZero = KnownZero.trunc(BitWidth);
392     KnownOne = KnownOne.trunc(BitWidth);
393     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 
394     break;
395   }
396   case Instruction::BitCast:
397     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
398       return 0;  // vector->int or fp->int?
399
400     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
401       if (VectorType *SrcVTy =
402             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
403         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
404           // Don't touch a bitcast between vectors of different element counts.
405           return 0;
406       } else
407         // Don't touch a scalar-to-vector bitcast.
408         return 0;
409     } else if (I->getOperand(0)->getType()->isVectorTy())
410       // Don't touch a vector-to-scalar bitcast.
411       return 0;
412
413     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
414                              KnownZero, KnownOne, Depth+1))
415       return I;
416     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 
417     break;
418   case Instruction::ZExt: {
419     // Compute the bits in the result that are not present in the input.
420     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
421     
422     DemandedMask = DemandedMask.trunc(SrcBitWidth);
423     KnownZero = KnownZero.trunc(SrcBitWidth);
424     KnownOne = KnownOne.trunc(SrcBitWidth);
425     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
426                              KnownZero, KnownOne, Depth+1))
427       return I;
428     DemandedMask = DemandedMask.zext(BitWidth);
429     KnownZero = KnownZero.zext(BitWidth);
430     KnownOne = KnownOne.zext(BitWidth);
431     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 
432     // The top bits are known to be zero.
433     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
434     break;
435   }
436   case Instruction::SExt: {
437     // Compute the bits in the result that are not present in the input.
438     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
439     
440     APInt InputDemandedBits = DemandedMask & 
441                               APInt::getLowBitsSet(BitWidth, SrcBitWidth);
442
443     APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
444     // If any of the sign extended bits are demanded, we know that the sign
445     // bit is demanded.
446     if ((NewBits & DemandedMask) != 0)
447       InputDemandedBits.setBit(SrcBitWidth-1);
448       
449     InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
450     KnownZero = KnownZero.trunc(SrcBitWidth);
451     KnownOne = KnownOne.trunc(SrcBitWidth);
452     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
453                              KnownZero, KnownOne, Depth+1))
454       return I;
455     InputDemandedBits = InputDemandedBits.zext(BitWidth);
456     KnownZero = KnownZero.zext(BitWidth);
457     KnownOne = KnownOne.zext(BitWidth);
458     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 
459       
460     // If the sign bit of the input is known set or clear, then we know the
461     // top bits of the result.
462
463     // If the input sign bit is known zero, or if the NewBits are not demanded
464     // convert this into a zero extension.
465     if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
466       // Convert to ZExt cast
467       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
468       return InsertNewInstWith(NewCast, *I);
469     } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
470       KnownOne |= NewBits;
471     }
472     break;
473   }
474   case Instruction::Add: {
475     // Figure out what the input bits are.  If the top bits of the and result
476     // are not demanded, then the add doesn't demand them from its input
477     // either.
478     unsigned NLZ = DemandedMask.countLeadingZeros();
479       
480     // If there is a constant on the RHS, there are a variety of xformations
481     // we can do.
482     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
483       // If null, this should be simplified elsewhere.  Some of the xforms here
484       // won't work if the RHS is zero.
485       if (RHS->isZero())
486         break;
487       
488       // If the top bit of the output is demanded, demand everything from the
489       // input.  Otherwise, we demand all the input bits except NLZ top bits.
490       APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
491
492       // Find information about known zero/one bits in the input.
493       if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 
494                                LHSKnownZero, LHSKnownOne, Depth+1))
495         return I;
496
497       // If the RHS of the add has bits set that can't affect the input, reduce
498       // the constant.
499       if (ShrinkDemandedConstant(I, 1, InDemandedBits))
500         return I;
501       
502       // Avoid excess work.
503       if (LHSKnownZero == 0 && LHSKnownOne == 0)
504         break;
505       
506       // Turn it into OR if input bits are zero.
507       if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
508         Instruction *Or =
509           BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
510                                    I->getName());
511         return InsertNewInstWith(Or, *I);
512       }
513       
514       // We can say something about the output known-zero and known-one bits,
515       // depending on potential carries from the input constant and the
516       // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
517       // bits set and the RHS constant is 0x01001, then we know we have a known
518       // one mask of 0x00001 and a known zero mask of 0xE0F0E.
519       
520       // To compute this, we first compute the potential carry bits.  These are
521       // the bits which may be modified.  I'm not aware of a better way to do
522       // this scan.
523       const APInt &RHSVal = RHS->getValue();
524       APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
525       
526       // Now that we know which bits have carries, compute the known-1/0 sets.
527       
528       // Bits are known one if they are known zero in one operand and one in the
529       // other, and there is no input carry.
530       KnownOne = ((LHSKnownZero & RHSVal) | 
531                   (LHSKnownOne & ~RHSVal)) & ~CarryBits;
532       
533       // Bits are known zero if they are known zero in both operands and there
534       // is no input carry.
535       KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
536     } else {
537       // If the high-bits of this ADD are not demanded, then it does not demand
538       // the high bits of its LHS or RHS.
539       if (DemandedMask[BitWidth-1] == 0) {
540         // Right fill the mask of bits for this ADD to demand the most
541         // significant bit and all those below it.
542         APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
543         if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
544                                  LHSKnownZero, LHSKnownOne, Depth+1) ||
545             SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
546                                  LHSKnownZero, LHSKnownOne, Depth+1))
547           return I;
548       }
549     }
550     break;
551   }
552   case Instruction::Sub:
553     // If the high-bits of this SUB are not demanded, then it does not demand
554     // the high bits of its LHS or RHS.
555     if (DemandedMask[BitWidth-1] == 0) {
556       // Right fill the mask of bits for this SUB to demand the most
557       // significant bit and all those below it.
558       uint32_t NLZ = DemandedMask.countLeadingZeros();
559       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
560       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
561                                LHSKnownZero, LHSKnownOne, Depth+1) ||
562           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
563                                LHSKnownZero, LHSKnownOne, Depth+1))
564         return I;
565     }
566
567     // Otherwise just hand the sub off to ComputeMaskedBits to fill in
568     // the known zeros and ones.
569     ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
570
571     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
572     // zero.
573     if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
574       APInt I0 = C0->getValue();
575       if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
576         Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
577         return InsertNewInstWith(Xor, *I);
578       }
579     }
580     break;
581   case Instruction::Shl:
582     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
583       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
584       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
585       
586       // If the shift is NUW/NSW, then it does demand the high bits.
587       ShlOperator *IOp = cast<ShlOperator>(I);
588       if (IOp->hasNoSignedWrap())
589         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
590       else if (IOp->hasNoUnsignedWrap())
591         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
592       
593       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 
594                                KnownZero, KnownOne, Depth+1))
595         return I;
596       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
597       KnownZero <<= ShiftAmt;
598       KnownOne  <<= ShiftAmt;
599       // low bits known zero.
600       if (ShiftAmt)
601         KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
602     }
603     break;
604   case Instruction::LShr:
605     // For a logical shift right
606     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
607       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
608       
609       // Unsigned shift right.
610       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
611       
612       // If the shift is exact, then it does demand the low bits (and knows that
613       // they are zero).
614       if (cast<LShrOperator>(I)->isExact())
615         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
616       
617       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
618                                KnownZero, KnownOne, Depth+1))
619         return I;
620       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
621       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
622       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
623       if (ShiftAmt) {
624         // Compute the new bits that are at the top now.
625         APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
626         KnownZero |= HighBits;  // high bits known zero.
627       }
628     }
629     break;
630   case Instruction::AShr:
631     // If this is an arithmetic shift right and only the low-bit is set, we can
632     // always convert this into a logical shr, even if the shift amount is
633     // variable.  The low bit of the shift cannot be an input sign bit unless
634     // the shift amount is >= the size of the datatype, which is undefined.
635     if (DemandedMask == 1) {
636       // Perform the logical shift right.
637       Instruction *NewVal = BinaryOperator::CreateLShr(
638                         I->getOperand(0), I->getOperand(1), I->getName());
639       return InsertNewInstWith(NewVal, *I);
640     }    
641
642     // If the sign bit is the only bit demanded by this ashr, then there is no
643     // need to do it, the shift doesn't change the high bit.
644     if (DemandedMask.isSignBit())
645       return I->getOperand(0);
646     
647     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
648       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
649       
650       // Signed shift right.
651       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
652       // If any of the "high bits" are demanded, we should set the sign bit as
653       // demanded.
654       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
655         DemandedMaskIn.setBit(BitWidth-1);
656       
657       // If the shift is exact, then it does demand the low bits (and knows that
658       // they are zero).
659       if (cast<AShrOperator>(I)->isExact())
660         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
661       
662       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
663                                KnownZero, KnownOne, Depth+1))
664         return I;
665       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
666       // Compute the new bits that are at the top now.
667       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
668       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
669       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
670         
671       // Handle the sign bits.
672       APInt SignBit(APInt::getSignBit(BitWidth));
673       // Adjust to where it is now in the mask.
674       SignBit = APIntOps::lshr(SignBit, ShiftAmt);  
675         
676       // If the input sign bit is known to be zero, or if none of the top bits
677       // are demanded, turn this into an unsigned shift right.
678       if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 
679           (HighBits & ~DemandedMask) == HighBits) {
680         // Perform the logical shift right.
681         BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
682                                                             SA, I->getName());
683         NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
684         return InsertNewInstWith(NewVal, *I);
685       } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
686         KnownOne |= HighBits;
687       }
688     }
689     break;
690   case Instruction::SRem:
691     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
692       // X % -1 demands all the bits because we don't want to introduce
693       // INT_MIN % -1 (== undef) by accident.
694       if (Rem->isAllOnesValue())
695         break;
696       APInt RA = Rem->getValue().abs();
697       if (RA.isPowerOf2()) {
698         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
699           return I->getOperand(0);
700
701         APInt LowBits = RA - 1;
702         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
703         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
704                                  LHSKnownZero, LHSKnownOne, Depth+1))
705           return I;
706
707         // The low bits of LHS are unchanged by the srem.
708         KnownZero = LHSKnownZero & LowBits;
709         KnownOne = LHSKnownOne & LowBits;
710
711         // If LHS is non-negative or has all low bits zero, then the upper bits
712         // are all zero.
713         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
714           KnownZero |= ~LowBits;
715
716         // If LHS is negative and not all low bits are zero, then the upper bits
717         // are all one.
718         if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
719           KnownOne |= ~LowBits;
720
721         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 
722       }
723     }
724
725     // The sign bit is the LHS's sign bit, except when the result of the
726     // remainder is zero.
727     if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
728       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
729       ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
730       // If it's known zero, our sign bit is also zero.
731       if (LHSKnownZero.isNegative())
732         KnownZero |= LHSKnownZero;
733     }
734     break;
735   case Instruction::URem: {
736     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
737     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
738     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
739                              KnownZero2, KnownOne2, Depth+1) ||
740         SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
741                              KnownZero2, KnownOne2, Depth+1))
742       return I;
743
744     unsigned Leaders = KnownZero2.countLeadingOnes();
745     Leaders = std::max(Leaders,
746                        KnownZero2.countLeadingOnes());
747     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
748     break;
749   }
750   case Instruction::Call:
751     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
752       switch (II->getIntrinsicID()) {
753       default: break;
754       case Intrinsic::bswap: {
755         // If the only bits demanded come from one byte of the bswap result,
756         // just shift the input byte into position to eliminate the bswap.
757         unsigned NLZ = DemandedMask.countLeadingZeros();
758         unsigned NTZ = DemandedMask.countTrailingZeros();
759           
760         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
761         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
762         // have 14 leading zeros, round to 8.
763         NLZ &= ~7;
764         NTZ &= ~7;
765         // If we need exactly one byte, we can do this transformation.
766         if (BitWidth-NLZ-NTZ == 8) {
767           unsigned ResultBit = NTZ;
768           unsigned InputBit = BitWidth-NTZ-8;
769           
770           // Replace this with either a left or right shift to get the byte into
771           // the right place.
772           Instruction *NewVal;
773           if (InputBit > ResultBit)
774             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
775                     ConstantInt::get(I->getType(), InputBit-ResultBit));
776           else
777             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
778                     ConstantInt::get(I->getType(), ResultBit-InputBit));
779           NewVal->takeName(I);
780           return InsertNewInstWith(NewVal, *I);
781         }
782           
783         // TODO: Could compute known zero/one bits based on the input.
784         break;
785       }
786       case Intrinsic::x86_sse42_crc32_64_8:
787       case Intrinsic::x86_sse42_crc32_64_64:
788         KnownZero = APInt::getHighBitsSet(64, 32);
789         return 0;
790       }
791     }
792     ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
793     break;
794   }
795   
796   // If the client is only demanding bits that we know, return the known
797   // constant.
798   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
799     return Constant::getIntegerValue(VTy, KnownOne);
800   return 0;
801 }
802
803
804 /// SimplifyDemandedVectorElts - The specified value produces a vector with
805 /// any number of elements. DemandedElts contains the set of elements that are
806 /// actually used by the caller.  This method analyzes which elements of the
807 /// operand are undef and returns that information in UndefElts.
808 ///
809 /// If the information about demanded elements can be used to simplify the
810 /// operation, the operation is simplified, then the resultant value is
811 /// returned.  This returns null if no change was made.
812 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
813                                                 APInt &UndefElts,
814                                                 unsigned Depth) {
815   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
816   APInt EltMask(APInt::getAllOnesValue(VWidth));
817   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
818
819   if (isa<UndefValue>(V)) {
820     // If the entire vector is undefined, just return this info.
821     UndefElts = EltMask;
822     return 0;
823   }
824   
825   if (DemandedElts == 0) { // If nothing is demanded, provide undef.
826     UndefElts = EltMask;
827     return UndefValue::get(V->getType());
828   }
829
830   UndefElts = 0;
831   
832   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
833   if (Constant *C = dyn_cast<Constant>(V)) {
834     // Check if this is identity. If so, return 0 since we are not simplifying
835     // anything.
836     if (DemandedElts.isAllOnesValue())
837       return 0;
838
839     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
840     Constant *Undef = UndefValue::get(EltTy);
841     
842     SmallVector<Constant*, 16> Elts;
843     for (unsigned i = 0; i != VWidth; ++i) {
844       if (!DemandedElts[i]) {   // If not demanded, set to undef.
845         Elts.push_back(Undef);
846         UndefElts.setBit(i);
847         continue;
848       }
849       
850       Constant *Elt = C->getAggregateElement(i);
851       if (Elt == 0) return 0;
852       
853       if (isa<UndefValue>(Elt)) {   // Already undef.
854         Elts.push_back(Undef);
855         UndefElts.setBit(i);
856       } else {                               // Otherwise, defined.
857         Elts.push_back(Elt);
858       }
859     }
860     
861     // If we changed the constant, return it.
862     Constant *NewCV = ConstantVector::get(Elts);
863     return NewCV != C ? NewCV : 0;
864   }
865   
866   // Limit search depth.
867   if (Depth == 10)
868     return 0;
869
870   // If multiple users are using the root value, proceed with
871   // simplification conservatively assuming that all elements
872   // are needed.
873   if (!V->hasOneUse()) {
874     // Quit if we find multiple users of a non-root value though.
875     // They'll be handled when it's their turn to be visited by
876     // the main instcombine process.
877     if (Depth != 0)
878       // TODO: Just compute the UndefElts information recursively.
879       return 0;
880
881     // Conservatively assume that all elements are needed.
882     DemandedElts = EltMask;
883   }
884   
885   Instruction *I = dyn_cast<Instruction>(V);
886   if (!I) return 0;        // Only analyze instructions.
887   
888   bool MadeChange = false;
889   APInt UndefElts2(VWidth, 0);
890   Value *TmpV;
891   switch (I->getOpcode()) {
892   default: break;
893     
894   case Instruction::InsertElement: {
895     // If this is a variable index, we don't know which element it overwrites.
896     // demand exactly the same input as we produce.
897     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
898     if (Idx == 0) {
899       // Note that we can't propagate undef elt info, because we don't know
900       // which elt is getting updated.
901       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
902                                         UndefElts2, Depth+1);
903       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
904       break;
905     }
906     
907     // If this is inserting an element that isn't demanded, remove this
908     // insertelement.
909     unsigned IdxNo = Idx->getZExtValue();
910     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
911       Worklist.Add(I);
912       return I->getOperand(0);
913     }
914     
915     // Otherwise, the element inserted overwrites whatever was there, so the
916     // input demanded set is simpler than the output set.
917     APInt DemandedElts2 = DemandedElts;
918     DemandedElts2.clearBit(IdxNo);
919     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
920                                       UndefElts, Depth+1);
921     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
922
923     // The inserted element is defined.
924     UndefElts.clearBit(IdxNo);
925     break;
926   }
927   case Instruction::ShuffleVector: {
928     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
929     uint64_t LHSVWidth =
930       cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
931     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
932     for (unsigned i = 0; i < VWidth; i++) {
933       if (DemandedElts[i]) {
934         unsigned MaskVal = Shuffle->getMaskValue(i);
935         if (MaskVal != -1u) {
936           assert(MaskVal < LHSVWidth * 2 &&
937                  "shufflevector mask index out of range!");
938           if (MaskVal < LHSVWidth)
939             LeftDemanded.setBit(MaskVal);
940           else
941             RightDemanded.setBit(MaskVal - LHSVWidth);
942         }
943       }
944     }
945
946     APInt UndefElts4(LHSVWidth, 0);
947     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
948                                       UndefElts4, Depth+1);
949     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
950
951     APInt UndefElts3(LHSVWidth, 0);
952     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
953                                       UndefElts3, Depth+1);
954     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
955
956     bool NewUndefElts = false;
957     for (unsigned i = 0; i < VWidth; i++) {
958       unsigned MaskVal = Shuffle->getMaskValue(i);
959       if (MaskVal == -1u) {
960         UndefElts.setBit(i);
961       } else if (!DemandedElts[i]) {
962         NewUndefElts = true;
963         UndefElts.setBit(i);
964       } else if (MaskVal < LHSVWidth) {
965         if (UndefElts4[MaskVal]) {
966           NewUndefElts = true;
967           UndefElts.setBit(i);
968         }
969       } else {
970         if (UndefElts3[MaskVal - LHSVWidth]) {
971           NewUndefElts = true;
972           UndefElts.setBit(i);
973         }
974       }
975     }
976
977     if (NewUndefElts) {
978       // Add additional discovered undefs.
979       SmallVector<Constant*, 16> Elts;
980       for (unsigned i = 0; i < VWidth; ++i) {
981         if (UndefElts[i])
982           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
983         else
984           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
985                                           Shuffle->getMaskValue(i)));
986       }
987       I->setOperand(2, ConstantVector::get(Elts));
988       MadeChange = true;
989     }
990     break;
991   }
992   case Instruction::Select: {
993     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
994     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
995       for (unsigned i = 0; i < VWidth; i++) {
996         if (CV->getAggregateElement(i)->isNullValue())
997           LeftDemanded.clearBit(i);
998         else
999           RightDemanded.clearBit(i);
1000       }
1001     }
1002
1003     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
1004                                       UndefElts, Depth+1);
1005     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1006
1007     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1008                                       UndefElts2, Depth+1);
1009     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1010       
1011     // Output elements are undefined if both are undefined.
1012     UndefElts &= UndefElts2;
1013     break;
1014   }
1015   case Instruction::BitCast: {
1016     // Vector->vector casts only.
1017     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1018     if (!VTy) break;
1019     unsigned InVWidth = VTy->getNumElements();
1020     APInt InputDemandedElts(InVWidth, 0);
1021     unsigned Ratio;
1022
1023     if (VWidth == InVWidth) {
1024       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1025       // elements as are demanded of us.
1026       Ratio = 1;
1027       InputDemandedElts = DemandedElts;
1028     } else if (VWidth > InVWidth) {
1029       // Untested so far.
1030       break;
1031       
1032       // If there are more elements in the result than there are in the source,
1033       // then an input element is live if any of the corresponding output
1034       // elements are live.
1035       Ratio = VWidth/InVWidth;
1036       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1037         if (DemandedElts[OutIdx])
1038           InputDemandedElts.setBit(OutIdx/Ratio);
1039       }
1040     } else {
1041       // Untested so far.
1042       break;
1043       
1044       // If there are more elements in the source than there are in the result,
1045       // then an input element is live if the corresponding output element is
1046       // live.
1047       Ratio = InVWidth/VWidth;
1048       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1049         if (DemandedElts[InIdx/Ratio])
1050           InputDemandedElts.setBit(InIdx);
1051     }
1052     
1053     // div/rem demand all inputs, because they don't want divide by zero.
1054     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1055                                       UndefElts2, Depth+1);
1056     if (TmpV) {
1057       I->setOperand(0, TmpV);
1058       MadeChange = true;
1059     }
1060     
1061     UndefElts = UndefElts2;
1062     if (VWidth > InVWidth) {
1063       llvm_unreachable("Unimp");
1064       // If there are more elements in the result than there are in the source,
1065       // then an output element is undef if the corresponding input element is
1066       // undef.
1067       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1068         if (UndefElts2[OutIdx/Ratio])
1069           UndefElts.setBit(OutIdx);
1070     } else if (VWidth < InVWidth) {
1071       llvm_unreachable("Unimp");
1072       // If there are more elements in the source than there are in the result,
1073       // then a result element is undef if all of the corresponding input
1074       // elements are undef.
1075       UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
1076       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1077         if (!UndefElts2[InIdx])            // Not undef?
1078           UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
1079     }
1080     break;
1081   }
1082   case Instruction::And:
1083   case Instruction::Or:
1084   case Instruction::Xor:
1085   case Instruction::Add:
1086   case Instruction::Sub:
1087   case Instruction::Mul:
1088     // div/rem demand all inputs, because they don't want divide by zero.
1089     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1090                                       UndefElts, Depth+1);
1091     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1092     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1093                                       UndefElts2, Depth+1);
1094     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1095       
1096     // Output elements are undefined if both are undefined.  Consider things
1097     // like undef&0.  The result is known zero, not undef.
1098     UndefElts &= UndefElts2;
1099     break;
1100   case Instruction::FPTrunc:
1101   case Instruction::FPExt:
1102     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1103                                       UndefElts, Depth+1);
1104     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1105     break;
1106     
1107   case Instruction::Call: {
1108     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1109     if (!II) break;
1110     switch (II->getIntrinsicID()) {
1111     default: break;
1112       
1113     // Binary vector operations that work column-wise.  A dest element is a
1114     // function of the corresponding input elements from the two inputs.
1115     case Intrinsic::x86_sse_sub_ss:
1116     case Intrinsic::x86_sse_mul_ss:
1117     case Intrinsic::x86_sse_min_ss:
1118     case Intrinsic::x86_sse_max_ss:
1119     case Intrinsic::x86_sse2_sub_sd:
1120     case Intrinsic::x86_sse2_mul_sd:
1121     case Intrinsic::x86_sse2_min_sd:
1122     case Intrinsic::x86_sse2_max_sd:
1123       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1124                                         UndefElts, Depth+1);
1125       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1126       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1127                                         UndefElts2, Depth+1);
1128       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1129
1130       // If only the low elt is demanded and this is a scalarizable intrinsic,
1131       // scalarize it now.
1132       if (DemandedElts == 1) {
1133         switch (II->getIntrinsicID()) {
1134         default: break;
1135         case Intrinsic::x86_sse_sub_ss:
1136         case Intrinsic::x86_sse_mul_ss:
1137         case Intrinsic::x86_sse2_sub_sd:
1138         case Intrinsic::x86_sse2_mul_sd:
1139           // TODO: Lower MIN/MAX/ABS/etc
1140           Value *LHS = II->getArgOperand(0);
1141           Value *RHS = II->getArgOperand(1);
1142           // Extract the element as scalars.
1143           LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 
1144             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1145           RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1146             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1147           
1148           switch (II->getIntrinsicID()) {
1149           default: llvm_unreachable("Case stmts out of sync!");
1150           case Intrinsic::x86_sse_sub_ss:
1151           case Intrinsic::x86_sse2_sub_sd:
1152             TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1153                                                         II->getName()), *II);
1154             break;
1155           case Intrinsic::x86_sse_mul_ss:
1156           case Intrinsic::x86_sse2_mul_sd:
1157             TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1158                                                          II->getName()), *II);
1159             break;
1160           }
1161           
1162           Instruction *New =
1163             InsertElementInst::Create(
1164               UndefValue::get(II->getType()), TmpV,
1165               ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1166                                       II->getName());
1167           InsertNewInstWith(New, *II);
1168           return New;
1169         }            
1170       }
1171         
1172       // Output elements are undefined if both are undefined.  Consider things
1173       // like undef&0.  The result is known zero, not undef.
1174       UndefElts &= UndefElts2;
1175       break;
1176     }
1177     break;
1178   }
1179   }
1180   return MadeChange ? I : 0;
1181 }