Revert r194865 and r194874.
[oota-llvm.git] / lib / Target / Hexagon / HexagonInstrInfo.cpp
1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonInstrInfo.h"
15 #include "Hexagon.h"
16 #include "HexagonRegisterInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/DFAPacketizer.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #define GET_INSTRINFO_CTOR
30 #define GET_INSTRMAP_INFO
31 #include "HexagonGenInstrInfo.inc"
32 #include "HexagonGenDFAPacketizer.inc"
33
34 using namespace llvm;
35
36 ///
37 /// Constants for Hexagon instructions.
38 ///
39 const int Hexagon_MEMW_OFFSET_MAX = 4095;
40 const int Hexagon_MEMW_OFFSET_MIN = -4096;
41 const int Hexagon_MEMD_OFFSET_MAX = 8191;
42 const int Hexagon_MEMD_OFFSET_MIN = -8192;
43 const int Hexagon_MEMH_OFFSET_MAX = 2047;
44 const int Hexagon_MEMH_OFFSET_MIN = -2048;
45 const int Hexagon_MEMB_OFFSET_MAX = 1023;
46 const int Hexagon_MEMB_OFFSET_MIN = -1024;
47 const int Hexagon_ADDI_OFFSET_MAX = 32767;
48 const int Hexagon_ADDI_OFFSET_MIN = -32768;
49 const int Hexagon_MEMD_AUTOINC_MAX = 56;
50 const int Hexagon_MEMD_AUTOINC_MIN = -64;
51 const int Hexagon_MEMW_AUTOINC_MAX = 28;
52 const int Hexagon_MEMW_AUTOINC_MIN = -32;
53 const int Hexagon_MEMH_AUTOINC_MAX = 14;
54 const int Hexagon_MEMH_AUTOINC_MIN = -16;
55 const int Hexagon_MEMB_AUTOINC_MAX = 7;
56 const int Hexagon_MEMB_AUTOINC_MIN = -8;
57
58
59 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
60   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
61     RI(ST), Subtarget(ST) {
62 }
63
64
65 /// isLoadFromStackSlot - If the specified machine instruction is a direct
66 /// load from a stack slot, return the virtual or physical register number of
67 /// the destination along with the FrameIndex of the loaded stack slot.  If
68 /// not, return 0.  This predicate must return 0 if the instruction has
69 /// any side effects other than loading from the stack slot.
70 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
71                                              int &FrameIndex) const {
72
73
74   switch (MI->getOpcode()) {
75   default: break;
76   case Hexagon::LDriw:
77   case Hexagon::LDrid:
78   case Hexagon::LDrih:
79   case Hexagon::LDrib:
80   case Hexagon::LDriub:
81     if (MI->getOperand(2).isFI() &&
82         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
83       FrameIndex = MI->getOperand(2).getIndex();
84       return MI->getOperand(0).getReg();
85     }
86     break;
87   }
88   return 0;
89 }
90
91
92 /// isStoreToStackSlot - If the specified machine instruction is a direct
93 /// store to a stack slot, return the virtual or physical register number of
94 /// the source reg along with the FrameIndex of the loaded stack slot.  If
95 /// not, return 0.  This predicate must return 0 if the instruction has
96 /// any side effects other than storing to the stack slot.
97 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
98                                             int &FrameIndex) const {
99   switch (MI->getOpcode()) {
100   default: break;
101   case Hexagon::STriw:
102   case Hexagon::STrid:
103   case Hexagon::STrih:
104   case Hexagon::STrib:
105     if (MI->getOperand(2).isFI() &&
106         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
107       FrameIndex = MI->getOperand(0).getIndex();
108       return MI->getOperand(2).getReg();
109     }
110     break;
111   }
112   return 0;
113 }
114
115
116 unsigned
117 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
118                              MachineBasicBlock *FBB,
119                              const SmallVectorImpl<MachineOperand> &Cond,
120                              DebugLoc DL) const{
121
122     int BOpc   = Hexagon::JMP;
123     int BccOpc = Hexagon::JMP_t;
124
125     assert(TBB && "InsertBranch must not be told to insert a fallthrough");
126
127     int regPos = 0;
128     // Check if ReverseBranchCondition has asked to reverse this branch
129     // If we want to reverse the branch an odd number of times, we want
130     // JMP_f.
131     if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
132       BccOpc = Hexagon::JMP_f;
133       regPos = 1;
134     }
135
136     if (FBB == 0) {
137       if (Cond.empty()) {
138         // Due to a bug in TailMerging/CFG Optimization, we need to add a
139         // special case handling of a predicated jump followed by an
140         // unconditional jump. If not, Tail Merging and CFG Optimization go
141         // into an infinite loop.
142         MachineBasicBlock *NewTBB, *NewFBB;
143         SmallVector<MachineOperand, 4> Cond;
144         MachineInstr *Term = MBB.getFirstTerminator();
145         if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
146                                                  false)) {
147           MachineBasicBlock *NextBB =
148             llvm::next(MachineFunction::iterator(&MBB));
149           if (NewTBB == NextBB) {
150             ReverseBranchCondition(Cond);
151             RemoveBranch(MBB);
152             return InsertBranch(MBB, TBB, 0, Cond, DL);
153           }
154         }
155         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
156       } else {
157         BuildMI(&MBB, DL,
158                 get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
159       }
160       return 1;
161     }
162
163     BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
164     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
165
166     return 2;
167 }
168
169
170 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
171                                      MachineBasicBlock *&TBB,
172                                  MachineBasicBlock *&FBB,
173                                  SmallVectorImpl<MachineOperand> &Cond,
174                                  bool AllowModify) const {
175   TBB = NULL;
176   FBB = NULL;
177
178   // If the block has no terminators, it just falls into the block after it.
179   MachineBasicBlock::instr_iterator I = MBB.instr_end();
180   if (I == MBB.instr_begin())
181     return false;
182
183   // A basic block may looks like this:
184   //
185   //  [   insn
186   //     EH_LABEL
187   //      insn
188   //      insn
189   //      insn
190   //     EH_LABEL
191   //      insn     ]
192   //
193   // It has two succs but does not have a terminator
194   // Don't know how to handle it.
195   do {
196     --I;
197     if (I->isEHLabel())
198       return true;
199   } while (I != MBB.instr_begin());
200
201   I = MBB.instr_end();
202   --I;
203
204   while (I->isDebugValue()) {
205     if (I == MBB.instr_begin())
206       return false;
207     --I;
208   }
209
210   // Delete the JMP if it's equivalent to a fall-through.
211   if (AllowModify && I->getOpcode() == Hexagon::JMP &&
212       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
213     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
214     I->eraseFromParent();
215     I = MBB.instr_end();
216     if (I == MBB.instr_begin())
217       return false;
218     --I;
219   }
220   if (!isUnpredicatedTerminator(I))
221     return false;
222
223   // Get the last instruction in the block.
224   MachineInstr *LastInst = I;
225   MachineInstr *SecondLastInst = NULL;
226   // Find one more terminator if present.
227   do {
228     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
229       if (!SecondLastInst)
230         SecondLastInst = I;
231       else
232         // This is a third branch.
233         return true;
234     }
235     if (I == MBB.instr_begin())
236       break;
237     --I;
238   } while(I);
239
240   int LastOpcode = LastInst->getOpcode();
241
242   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
243   bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
244
245   // If there is only one terminator instruction, process it.
246   if (LastInst && !SecondLastInst) {
247     if (LastOpcode == Hexagon::JMP) {
248       TBB = LastInst->getOperand(0).getMBB();
249       return false;
250     }
251     if (LastOpcode == Hexagon::ENDLOOP0) {
252       TBB = LastInst->getOperand(0).getMBB();
253       Cond.push_back(LastInst->getOperand(0));
254       return false;
255     }
256     if (LastOpcodeHasJMP_c) {
257       TBB = LastInst->getOperand(1).getMBB();
258       if (LastOpcodeHasNot) {
259         Cond.push_back(MachineOperand::CreateImm(0));
260       }
261       Cond.push_back(LastInst->getOperand(0));
262       return false;
263     }
264     // Otherwise, don't know what this is.
265     return true;
266   }
267
268   int SecLastOpcode = SecondLastInst->getOpcode();
269
270   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
271   bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
272   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
273     TBB =  SecondLastInst->getOperand(1).getMBB();
274     if (SecLastOpcodeHasNot)
275       Cond.push_back(MachineOperand::CreateImm(0));
276     Cond.push_back(SecondLastInst->getOperand(0));
277     FBB = LastInst->getOperand(0).getMBB();
278     return false;
279   }
280
281   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
282   // executed, so remove it.
283   if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
284     TBB = SecondLastInst->getOperand(0).getMBB();
285     I = LastInst;
286     if (AllowModify)
287       I->eraseFromParent();
288     return false;
289   }
290
291   // If the block ends with an ENDLOOP, and JMP, handle it.
292   if (SecLastOpcode == Hexagon::ENDLOOP0 &&
293       LastOpcode == Hexagon::JMP) {
294     TBB = SecondLastInst->getOperand(0).getMBB();
295     Cond.push_back(SecondLastInst->getOperand(0));
296     FBB = LastInst->getOperand(0).getMBB();
297     return false;
298   }
299
300   // Otherwise, can't handle this.
301   return true;
302 }
303
304
305 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
306   int BOpc   = Hexagon::JMP;
307   int BccOpc = Hexagon::JMP_t;
308   int BccOpcNot = Hexagon::JMP_f;
309
310   MachineBasicBlock::iterator I = MBB.end();
311   if (I == MBB.begin()) return 0;
312   --I;
313   if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
314       I->getOpcode() != BccOpcNot)
315     return 0;
316
317   // Remove the branch.
318   I->eraseFromParent();
319
320   I = MBB.end();
321
322   if (I == MBB.begin()) return 1;
323   --I;
324   if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
325     return 1;
326
327   // Remove the branch.
328   I->eraseFromParent();
329   return 2;
330 }
331
332
333 /// \brief For a comparison instruction, return the source registers in
334 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
335 /// compares against in CmpValue. Return true if the comparison instruction
336 /// can be analyzed.
337 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
338                                       unsigned &SrcReg, unsigned &SrcReg2,
339                                       int &Mask, int &Value) const {
340   unsigned Opc = MI->getOpcode();
341
342   // Set mask and the first source register.
343   switch (Opc) {
344     case Hexagon::CMPEHexagon4rr:
345     case Hexagon::CMPEQri:
346     case Hexagon::CMPEQrr:
347     case Hexagon::CMPGT64rr:
348     case Hexagon::CMPGTU64rr:
349     case Hexagon::CMPGTUri:
350     case Hexagon::CMPGTUrr:
351     case Hexagon::CMPGTri:
352     case Hexagon::CMPGTrr:
353       SrcReg = MI->getOperand(1).getReg();
354       Mask = ~0;
355       break;
356     case Hexagon::CMPbEQri_V4:
357     case Hexagon::CMPbEQrr_sbsb_V4:
358     case Hexagon::CMPbEQrr_ubub_V4:
359     case Hexagon::CMPbGTUri_V4:
360     case Hexagon::CMPbGTUrr_V4:
361     case Hexagon::CMPbGTrr_V4:
362       SrcReg = MI->getOperand(1).getReg();
363       Mask = 0xFF;
364       break;
365     case Hexagon::CMPhEQri_V4:
366     case Hexagon::CMPhEQrr_shl_V4:
367     case Hexagon::CMPhEQrr_xor_V4:
368     case Hexagon::CMPhGTUri_V4:
369     case Hexagon::CMPhGTUrr_V4:
370     case Hexagon::CMPhGTrr_shl_V4:
371       SrcReg = MI->getOperand(1).getReg();
372       Mask = 0xFFFF;
373       break;
374   }
375
376   // Set the value/second source register.
377   switch (Opc) {
378     case Hexagon::CMPEHexagon4rr:
379     case Hexagon::CMPEQrr:
380     case Hexagon::CMPGT64rr:
381     case Hexagon::CMPGTU64rr:
382     case Hexagon::CMPGTUrr:
383     case Hexagon::CMPGTrr:
384     case Hexagon::CMPbEQrr_sbsb_V4:
385     case Hexagon::CMPbEQrr_ubub_V4:
386     case Hexagon::CMPbGTUrr_V4:
387     case Hexagon::CMPbGTrr_V4:
388     case Hexagon::CMPhEQrr_shl_V4:
389     case Hexagon::CMPhEQrr_xor_V4:
390     case Hexagon::CMPhGTUrr_V4:
391     case Hexagon::CMPhGTrr_shl_V4:
392       SrcReg2 = MI->getOperand(2).getReg();
393       return true;
394
395     case Hexagon::CMPEQri:
396     case Hexagon::CMPGTUri:
397     case Hexagon::CMPGTri:
398     case Hexagon::CMPbEQri_V4:
399     case Hexagon::CMPbGTUri_V4:
400     case Hexagon::CMPhEQri_V4:
401     case Hexagon::CMPhGTUri_V4:
402       SrcReg2 = 0;
403       Value = MI->getOperand(2).getImm();
404       return true;
405   }
406
407   return false;
408 }
409
410
411 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
412                                  MachineBasicBlock::iterator I, DebugLoc DL,
413                                  unsigned DestReg, unsigned SrcReg,
414                                  bool KillSrc) const {
415   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
416     BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
417     return;
418   }
419   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
420     BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
421     return;
422   }
423   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
424     // Map Pd = Ps to Pd = or(Ps, Ps).
425     BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
426             DestReg).addReg(SrcReg).addReg(SrcReg);
427     return;
428   }
429   if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
430       Hexagon::IntRegsRegClass.contains(SrcReg)) {
431     // We can have an overlap between single and double reg: r1:0 = r0.
432     if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
433         // r1:0 = r0
434         BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
435                 Hexagon::subreg_hireg))).addImm(0);
436     } else {
437         // r1:0 = r1 or no overlap.
438         BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
439                 Hexagon::subreg_loreg))).addReg(SrcReg);
440         BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
441                 Hexagon::subreg_hireg))).addImm(0);
442     }
443     return;
444   }
445   if (Hexagon::CRRegsRegClass.contains(DestReg) &&
446       Hexagon::IntRegsRegClass.contains(SrcReg)) {
447     BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
448     return;
449   }
450   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
451       Hexagon::IntRegsRegClass.contains(DestReg)) {
452     BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
453       addReg(SrcReg, getKillRegState(KillSrc));
454     return;
455   }
456   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
457       Hexagon::PredRegsRegClass.contains(DestReg)) {
458     BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
459       addReg(SrcReg, getKillRegState(KillSrc));
460     return;
461   }
462
463   llvm_unreachable("Unimplemented");
464 }
465
466
467 void HexagonInstrInfo::
468 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
469                     unsigned SrcReg, bool isKill, int FI,
470                     const TargetRegisterClass *RC,
471                     const TargetRegisterInfo *TRI) const {
472
473   DebugLoc DL = MBB.findDebugLoc(I);
474   MachineFunction &MF = *MBB.getParent();
475   MachineFrameInfo &MFI = *MF.getFrameInfo();
476   unsigned Align = MFI.getObjectAlignment(FI);
477
478   MachineMemOperand *MMO =
479       MF.getMachineMemOperand(
480                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
481                       MachineMemOperand::MOStore,
482                       MFI.getObjectSize(FI),
483                       Align);
484
485   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
486     BuildMI(MBB, I, DL, get(Hexagon::STriw))
487           .addFrameIndex(FI).addImm(0)
488           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
489   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
490     BuildMI(MBB, I, DL, get(Hexagon::STrid))
491           .addFrameIndex(FI).addImm(0)
492           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
493   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
494     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
495           .addFrameIndex(FI).addImm(0)
496           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
497   } else {
498     llvm_unreachable("Unimplemented");
499   }
500 }
501
502
503 void HexagonInstrInfo::storeRegToAddr(
504                                  MachineFunction &MF, unsigned SrcReg,
505                                  bool isKill,
506                                  SmallVectorImpl<MachineOperand> &Addr,
507                                  const TargetRegisterClass *RC,
508                                  SmallVectorImpl<MachineInstr*> &NewMIs) const
509 {
510   llvm_unreachable("Unimplemented");
511 }
512
513
514 void HexagonInstrInfo::
515 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
516                      unsigned DestReg, int FI,
517                      const TargetRegisterClass *RC,
518                      const TargetRegisterInfo *TRI) const {
519   DebugLoc DL = MBB.findDebugLoc(I);
520   MachineFunction &MF = *MBB.getParent();
521   MachineFrameInfo &MFI = *MF.getFrameInfo();
522   unsigned Align = MFI.getObjectAlignment(FI);
523
524   MachineMemOperand *MMO =
525       MF.getMachineMemOperand(
526                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
527                       MachineMemOperand::MOLoad,
528                       MFI.getObjectSize(FI),
529                       Align);
530   if (RC == &Hexagon::IntRegsRegClass) {
531     BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
532           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
533   } else if (RC == &Hexagon::DoubleRegsRegClass) {
534     BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
535           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
536   } else if (RC == &Hexagon::PredRegsRegClass) {
537     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
538           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
539   } else {
540     llvm_unreachable("Can't store this register to stack slot");
541   }
542 }
543
544
545 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
546                                         SmallVectorImpl<MachineOperand> &Addr,
547                                         const TargetRegisterClass *RC,
548                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
549   llvm_unreachable("Unimplemented");
550 }
551
552
553 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
554                                                     MachineInstr* MI,
555                                           const SmallVectorImpl<unsigned> &Ops,
556                                                     int FI) const {
557   // Hexagon_TODO: Implement.
558   return(0);
559 }
560
561 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
562
563   MachineRegisterInfo &RegInfo = MF->getRegInfo();
564   const TargetRegisterClass *TRC;
565   if (VT == MVT::i1) {
566     TRC = &Hexagon::PredRegsRegClass;
567   } else if (VT == MVT::i32 || VT == MVT::f32) {
568     TRC = &Hexagon::IntRegsRegClass;
569   } else if (VT == MVT::i64 || VT == MVT::f64) {
570     TRC = &Hexagon::DoubleRegsRegClass;
571   } else {
572     llvm_unreachable("Cannot handle this register class");
573   }
574
575   unsigned NewReg = RegInfo.createVirtualRegister(TRC);
576   return NewReg;
577 }
578
579 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
580   // Constant extenders are allowed only for V4 and above.
581   if (!Subtarget.hasV4TOps())
582     return false;
583
584   const MCInstrDesc &MID = MI->getDesc();
585   const uint64_t F = MID.TSFlags;
586   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
587     return true;
588
589   // TODO: This is largely obsolete now. Will need to be removed
590   // in consecutive patches.
591   switch(MI->getOpcode()) {
592     // TFR_FI Remains a special case.
593     case Hexagon::TFR_FI:
594       return true;
595     default:
596       return false;
597   }
598   return  false;
599 }
600
601 // This returns true in two cases:
602 // - The OP code itself indicates that this is an extended instruction.
603 // - One of MOs has been marked with HMOTF_ConstExtended flag.
604 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
605   // First check if this is permanently extended op code.
606   const uint64_t F = MI->getDesc().TSFlags;
607   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
608     return true;
609   // Use MO operand flags to determine if one of MI's operands
610   // has HMOTF_ConstExtended flag set.
611   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
612        E = MI->operands_end(); I != E; ++I) {
613     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
614       return true;
615   }
616   return  false;
617 }
618
619 bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
620   return MI->getDesc().isBranch();
621 }
622
623 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
624   if (isNewValueJump(MI))
625     return true;
626
627   if (isNewValueStore(MI))
628     return true;
629
630   return false;
631 }
632
633 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
634   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
635 }
636
637 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
638   bool isPred = MI->getDesc().isPredicable();
639
640   if (!isPred)
641     return false;
642
643   const int Opc = MI->getOpcode();
644
645   switch(Opc) {
646   case Hexagon::TFRI:
647     return isInt<12>(MI->getOperand(1).getImm());
648
649   case Hexagon::STrid:
650   case Hexagon::STrid_indexed:
651     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
652
653   case Hexagon::STriw:
654   case Hexagon::STriw_indexed:
655   case Hexagon::STriw_nv_V4:
656     return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
657
658   case Hexagon::STrih:
659   case Hexagon::STrih_indexed:
660   case Hexagon::STrih_nv_V4:
661     return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
662
663   case Hexagon::STrib:
664   case Hexagon::STrib_indexed:
665   case Hexagon::STrib_nv_V4:
666     return isUInt<6>(MI->getOperand(1).getImm());
667
668   case Hexagon::LDrid:
669   case Hexagon::LDrid_indexed:
670     return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
671
672   case Hexagon::LDriw:
673   case Hexagon::LDriw_indexed:
674     return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
675
676   case Hexagon::LDrih:
677   case Hexagon::LDriuh:
678   case Hexagon::LDrih_indexed:
679   case Hexagon::LDriuh_indexed:
680     return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
681
682   case Hexagon::LDrib:
683   case Hexagon::LDriub:
684   case Hexagon::LDrib_indexed:
685   case Hexagon::LDriub_indexed:
686     return isUInt<6>(MI->getOperand(2).getImm());
687
688   case Hexagon::POST_LDrid:
689     return isShiftedInt<4,3>(MI->getOperand(3).getImm());
690
691   case Hexagon::POST_LDriw:
692     return isShiftedInt<4,2>(MI->getOperand(3).getImm());
693
694   case Hexagon::POST_LDrih:
695   case Hexagon::POST_LDriuh:
696     return isShiftedInt<4,1>(MI->getOperand(3).getImm());
697
698   case Hexagon::POST_LDrib:
699   case Hexagon::POST_LDriub:
700     return isInt<4>(MI->getOperand(3).getImm());
701
702   case Hexagon::STrib_imm_V4:
703   case Hexagon::STrih_imm_V4:
704   case Hexagon::STriw_imm_V4:
705     return (isUInt<6>(MI->getOperand(1).getImm()) &&
706             isInt<6>(MI->getOperand(2).getImm()));
707
708   case Hexagon::ADD_ri:
709     return isInt<8>(MI->getOperand(2).getImm());
710
711   case Hexagon::ASLH:
712   case Hexagon::ASRH:
713   case Hexagon::SXTB:
714   case Hexagon::SXTH:
715   case Hexagon::ZXTB:
716   case Hexagon::ZXTH:
717     return Subtarget.hasV4TOps();
718   }
719
720   return true;
721 }
722
723 // This function performs the following inversiones:
724 //
725 //  cPt    ---> cNotPt
726 //  cNotPt ---> cPt
727 //
728 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
729   int InvPredOpcode;
730   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
731                                         : Hexagon::getTruePredOpcode(Opc);
732   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
733     return InvPredOpcode;
734
735   switch(Opc) {
736     default: llvm_unreachable("Unexpected predicated instruction");
737     case Hexagon::COMBINE_rr_cPt:
738       return Hexagon::COMBINE_rr_cNotPt;
739     case Hexagon::COMBINE_rr_cNotPt:
740       return Hexagon::COMBINE_rr_cPt;
741
742       // Dealloc_return.
743     case Hexagon::DEALLOC_RET_cPt_V4:
744       return Hexagon::DEALLOC_RET_cNotPt_V4;
745     case Hexagon::DEALLOC_RET_cNotPt_V4:
746       return Hexagon::DEALLOC_RET_cPt_V4;
747   }
748 }
749
750 // New Value Store instructions.
751 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
752   const uint64_t F = MI->getDesc().TSFlags;
753
754   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
755 }
756
757 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
758   const uint64_t F = get(Opcode).TSFlags;
759
760   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
761 }
762
763 int HexagonInstrInfo::
764 getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
765   enum Hexagon::PredSense inPredSense;
766   inPredSense = invertPredicate ? Hexagon::PredSense_false :
767                                   Hexagon::PredSense_true;
768   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
769   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
770     return CondOpcode;
771
772   // This switch case will be removed once all the instructions have been
773   // modified to use relation maps.
774   switch(Opc) {
775   case Hexagon::TFRI_f:
776     return !invertPredicate ? Hexagon::TFRI_cPt_f :
777                               Hexagon::TFRI_cNotPt_f;
778   case Hexagon::COMBINE_rr:
779     return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
780                               Hexagon::COMBINE_rr_cNotPt;
781
782   // Word.
783   case Hexagon::STriw_f:
784     return !invertPredicate ? Hexagon::STriw_cPt :
785                               Hexagon::STriw_cNotPt;
786   case Hexagon::STriw_indexed_f:
787     return !invertPredicate ? Hexagon::STriw_indexed_cPt :
788                               Hexagon::STriw_indexed_cNotPt;
789
790   // DEALLOC_RETURN.
791   case Hexagon::DEALLOC_RET_V4:
792     return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
793                               Hexagon::DEALLOC_RET_cNotPt_V4;
794   }
795   llvm_unreachable("Unexpected predicable instruction");
796 }
797
798
799 bool HexagonInstrInfo::
800 PredicateInstruction(MachineInstr *MI,
801                      const SmallVectorImpl<MachineOperand> &Cond) const {
802   int Opc = MI->getOpcode();
803   assert (isPredicable(MI) && "Expected predicable instruction");
804   bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
805                      (Cond[0].getImm() == 0));
806
807   // This will change MI's opcode to its predicate version.
808   // However, its operand list is still the old one, i.e. the
809   // non-predicate one.
810   MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
811
812   int oper = -1;
813   unsigned int GAIdx = 0;
814
815   // Indicates whether the current MI has a GlobalAddress operand
816   bool hasGAOpnd = false;
817   std::vector<MachineOperand> tmpOpnds;
818
819   // Indicates whether we need to shift operands to right.
820   bool needShift = true;
821
822   // The predicate is ALWAYS the FIRST input operand !!!
823   if (MI->getNumOperands() == 0) {
824     // The non-predicate version of MI does not take any operands,
825     // i.e. no outs and no ins. In this condition, the predicate
826     // operand will be directly placed at Operands[0]. No operand
827     // shift is needed.
828     // Example: BARRIER
829     needShift = false;
830     oper = -1;
831   }
832   else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
833            && MI->getOperand(MI->getNumOperands()-1).isDef()
834            && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
835     // The non-predicate version of MI does not have any input operands.
836     // In this condition, we extend the length of Operands[] by one and
837     // copy the original last operand to the newly allocated slot.
838     // At this moment, it is just a place holder. Later, we will put
839     // predicate operand directly into it. No operand shift is needed.
840     // Example: r0=BARRIER (this is a faked insn used here for illustration)
841     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
842     needShift = false;
843     oper = MI->getNumOperands() - 2;
844   }
845   else {
846     // We need to right shift all input operands by one. Duplicate the
847     // last operand into the newly allocated slot.
848     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
849   }
850
851   if (needShift)
852   {
853     // Operands[ MI->getNumOperands() - 2 ] has been copied into
854     // Operands[ MI->getNumOperands() - 1 ], so we start from
855     // Operands[ MI->getNumOperands() - 3 ].
856     // oper is a signed int.
857     // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
858     for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
859     {
860       MachineOperand &MO = MI->getOperand(oper);
861
862       // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
863       // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
864       //               /\~
865       //              /||\~
866       //               ||
867       //        Predicate Operand here
868       if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
869         break;
870       }
871       if (MO.isReg()) {
872         MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
873                                                 MO.isImplicit(), MO.isKill(),
874                                                 MO.isDead(), MO.isUndef(),
875                                                 MO.isDebug());
876       }
877       else if (MO.isImm()) {
878         MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
879       }
880       else if (MO.isGlobal()) {
881         // MI can not have more than one GlobalAddress operand.
882         assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
883
884         // There is no member function called "ChangeToGlobalAddress" in the
885         // MachineOperand class (not like "ChangeToRegister" and
886         // "ChangeToImmediate"). So we have to remove them from Operands[] list
887         // first, and then add them back after we have inserted the predicate
888         // operand. tmpOpnds[] is to remember these operands before we remove
889         // them.
890         tmpOpnds.push_back(MO);
891
892         // Operands[oper] is a GlobalAddress operand;
893         // Operands[oper+1] has been copied into Operands[oper+2];
894         hasGAOpnd = true;
895         GAIdx = oper;
896         continue;
897       }
898       else {
899         assert(false && "Unexpected operand type");
900       }
901     }
902   }
903
904   int regPos = invertJump ? 1 : 0;
905   MachineOperand PredMO = Cond[regPos];
906
907   // [oper] now points to the last explicit Def. Predicate operand must be
908   // located at [oper+1]. See diagram above.
909   // This assumes that the predicate is always the first operand,
910   // i.e. Operands[0+numResults], in the set of inputs
911   // It is better to have an assert here to check this. But I don't know how
912   // to write this assert because findFirstPredOperandIdx() would return -1
913   if (oper < -1) oper = -1;
914
915   MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
916                                           PredMO.isImplicit(), false,
917                                           PredMO.isDead(), PredMO.isUndef(),
918                                           PredMO.isDebug());
919
920   MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
921   RegInfo.clearKillFlags(PredMO.getReg());
922
923   if (hasGAOpnd)
924   {
925     unsigned int i;
926
927     // Operands[GAIdx] is the original GlobalAddress operand, which is
928     // already copied into tmpOpnds[0].
929     // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
930     // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
931     // so we start from [GAIdx+2]
932     for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
933       tmpOpnds.push_back(MI->getOperand(i));
934
935     // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
936     // It is very important that we always remove from the end of Operands[]
937     // MI->getNumOperands() is at least 2 if program goes to here.
938     for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
939       MI->RemoveOperand(i);
940
941     for (i = 0; i < tmpOpnds.size(); ++i)
942       MI->addOperand(tmpOpnds[i]);
943   }
944
945   return true;
946 }
947
948
949 bool
950 HexagonInstrInfo::
951 isProfitableToIfCvt(MachineBasicBlock &MBB,
952                     unsigned NumCycles,
953                     unsigned ExtraPredCycles,
954                     const BranchProbability &Probability) const {
955   return true;
956 }
957
958
959 bool
960 HexagonInstrInfo::
961 isProfitableToIfCvt(MachineBasicBlock &TMBB,
962                     unsigned NumTCycles,
963                     unsigned ExtraTCycles,
964                     MachineBasicBlock &FMBB,
965                     unsigned NumFCycles,
966                     unsigned ExtraFCycles,
967                     const BranchProbability &Probability) const {
968   return true;
969 }
970
971 // Returns true if an instruction is predicated irrespective of the predicate
972 // sense. For example, all of the following will return true.
973 // if (p0) R1 = add(R2, R3)
974 // if (!p0) R1 = add(R2, R3)
975 // if (p0.new) R1 = add(R2, R3)
976 // if (!p0.new) R1 = add(R2, R3)
977 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
978   const uint64_t F = MI->getDesc().TSFlags;
979
980   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
981 }
982
983 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
984   const uint64_t F = get(Opcode).TSFlags;
985
986   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
987 }
988
989 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
990   const uint64_t F = MI->getDesc().TSFlags;
991
992   assert(isPredicated(MI));
993   return (!((F >> HexagonII::PredicatedFalsePos) &
994             HexagonII::PredicatedFalseMask));
995 }
996
997 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
998   const uint64_t F = get(Opcode).TSFlags;
999
1000   // Make sure that the instruction is predicated.
1001   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
1002   return (!((F >> HexagonII::PredicatedFalsePos) &
1003             HexagonII::PredicatedFalseMask));
1004 }
1005
1006 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
1007   const uint64_t F = MI->getDesc().TSFlags;
1008
1009   assert(isPredicated(MI));
1010   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1011 }
1012
1013 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
1014   const uint64_t F = get(Opcode).TSFlags;
1015
1016   assert(isPredicated(Opcode));
1017   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1018 }
1019
1020 // Returns true, if a ST insn can be promoted to a new-value store.
1021 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
1022   const HexagonRegisterInfo& QRI = getRegisterInfo();
1023   const uint64_t F = MI->getDesc().TSFlags;
1024
1025   return ((F >> HexagonII::mayNVStorePos) &
1026            HexagonII::mayNVStoreMask &
1027            QRI.Subtarget.hasV4TOps());
1028 }
1029
1030 bool
1031 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1032                                    std::vector<MachineOperand> &Pred) const {
1033   for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1034     MachineOperand MO = MI->getOperand(oper);
1035     if (MO.isReg() && MO.isDef()) {
1036       const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
1037       if (RC == &Hexagon::PredRegsRegClass) {
1038         Pred.push_back(MO);
1039         return true;
1040       }
1041     }
1042   }
1043   return false;
1044 }
1045
1046
1047 bool
1048 HexagonInstrInfo::
1049 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
1050                   const SmallVectorImpl<MachineOperand> &Pred2) const {
1051   // TODO: Fix this
1052   return false;
1053 }
1054
1055
1056 //
1057 // We indicate that we want to reverse the branch by
1058 // inserting a 0 at the beginning of the Cond vector.
1059 //
1060 bool HexagonInstrInfo::
1061 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1062   if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
1063     Cond.erase(Cond.begin());
1064   } else {
1065     Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
1066   }
1067   return false;
1068 }
1069
1070
1071 bool HexagonInstrInfo::
1072 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
1073                           const BranchProbability &Probability) const {
1074   return (NumInstrs <= 4);
1075 }
1076
1077 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1078   switch (MI->getOpcode()) {
1079   default: return false;
1080   case Hexagon::DEALLOC_RET_V4 :
1081   case Hexagon::DEALLOC_RET_cPt_V4 :
1082   case Hexagon::DEALLOC_RET_cNotPt_V4 :
1083   case Hexagon::DEALLOC_RET_cdnPnt_V4 :
1084   case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
1085   case Hexagon::DEALLOC_RET_cdnPt_V4 :
1086   case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
1087    return true;
1088   }
1089 }
1090
1091
1092 bool HexagonInstrInfo::
1093 isValidOffset(const int Opcode, const int Offset) const {
1094   // This function is to check whether the "Offset" is in the correct range of
1095   // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
1096   // inserted to calculate the final address. Due to this reason, the function
1097   // assumes that the "Offset" has correct alignment.
1098   // We used to assert if the offset was not properly aligned, however,
1099   // there are cases where a misaligned pointer recast can cause this
1100   // problem, and we need to allow for it. The front end warns of such
1101   // misaligns with respect to load size.
1102
1103   switch(Opcode) {
1104
1105   case Hexagon::LDriw:
1106   case Hexagon::LDriw_indexed:
1107   case Hexagon::LDriw_f:
1108   case Hexagon::STriw_indexed:
1109   case Hexagon::STriw:
1110   case Hexagon::STriw_f:
1111     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
1112       (Offset <= Hexagon_MEMW_OFFSET_MAX);
1113
1114   case Hexagon::LDrid:
1115   case Hexagon::LDrid_indexed:
1116   case Hexagon::LDrid_f:
1117   case Hexagon::STrid:
1118   case Hexagon::STrid_indexed:
1119   case Hexagon::STrid_f:
1120     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
1121       (Offset <= Hexagon_MEMD_OFFSET_MAX);
1122
1123   case Hexagon::LDrih:
1124   case Hexagon::LDriuh:
1125   case Hexagon::STrih:
1126     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
1127       (Offset <= Hexagon_MEMH_OFFSET_MAX);
1128
1129   case Hexagon::LDrib:
1130   case Hexagon::STrib:
1131   case Hexagon::LDriub:
1132     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
1133       (Offset <= Hexagon_MEMB_OFFSET_MAX);
1134
1135   case Hexagon::ADD_ri:
1136   case Hexagon::TFR_FI:
1137     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
1138       (Offset <= Hexagon_ADDI_OFFSET_MAX);
1139
1140   case Hexagon::MemOPw_ADDi_V4 :
1141   case Hexagon::MemOPw_SUBi_V4 :
1142   case Hexagon::MemOPw_ADDr_V4 :
1143   case Hexagon::MemOPw_SUBr_V4 :
1144   case Hexagon::MemOPw_ANDr_V4 :
1145   case Hexagon::MemOPw_ORr_V4 :
1146     return (0 <= Offset && Offset <= 255);
1147
1148   case Hexagon::MemOPh_ADDi_V4 :
1149   case Hexagon::MemOPh_SUBi_V4 :
1150   case Hexagon::MemOPh_ADDr_V4 :
1151   case Hexagon::MemOPh_SUBr_V4 :
1152   case Hexagon::MemOPh_ANDr_V4 :
1153   case Hexagon::MemOPh_ORr_V4 :
1154     return (0 <= Offset && Offset <= 127);
1155
1156   case Hexagon::MemOPb_ADDi_V4 :
1157   case Hexagon::MemOPb_SUBi_V4 :
1158   case Hexagon::MemOPb_ADDr_V4 :
1159   case Hexagon::MemOPb_SUBr_V4 :
1160   case Hexagon::MemOPb_ANDr_V4 :
1161   case Hexagon::MemOPb_ORr_V4 :
1162     return (0 <= Offset && Offset <= 63);
1163
1164   // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
1165   // any size. Later pass knows how to handle it.
1166   case Hexagon::STriw_pred:
1167   case Hexagon::LDriw_pred:
1168     return true;
1169
1170   case Hexagon::LOOP0_i:
1171     return isUInt<10>(Offset);
1172
1173   // INLINEASM is very special.
1174   case Hexagon::INLINEASM:
1175     return true;
1176   }
1177
1178   llvm_unreachable("No offset range is defined for this opcode. "
1179                    "Please define it in the above switch statement!");
1180 }
1181
1182
1183 //
1184 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
1185 //
1186 bool HexagonInstrInfo::
1187 isValidAutoIncImm(const EVT VT, const int Offset) const {
1188
1189   if (VT == MVT::i64) {
1190       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
1191               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
1192               (Offset & 0x7) == 0);
1193   }
1194   if (VT == MVT::i32) {
1195       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
1196               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
1197               (Offset & 0x3) == 0);
1198   }
1199   if (VT == MVT::i16) {
1200       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
1201               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
1202               (Offset & 0x1) == 0);
1203   }
1204   if (VT == MVT::i8) {
1205       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
1206               Offset <= Hexagon_MEMB_AUTOINC_MAX);
1207   }
1208   llvm_unreachable("Not an auto-inc opc!");
1209 }
1210
1211
1212 bool HexagonInstrInfo::
1213 isMemOp(const MachineInstr *MI) const {
1214 //  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
1215
1216   switch (MI->getOpcode())
1217   {
1218     default: return false;
1219     case Hexagon::MemOPw_ADDi_V4 :
1220     case Hexagon::MemOPw_SUBi_V4 :
1221     case Hexagon::MemOPw_ADDr_V4 :
1222     case Hexagon::MemOPw_SUBr_V4 :
1223     case Hexagon::MemOPw_ANDr_V4 :
1224     case Hexagon::MemOPw_ORr_V4 :
1225     case Hexagon::MemOPh_ADDi_V4 :
1226     case Hexagon::MemOPh_SUBi_V4 :
1227     case Hexagon::MemOPh_ADDr_V4 :
1228     case Hexagon::MemOPh_SUBr_V4 :
1229     case Hexagon::MemOPh_ANDr_V4 :
1230     case Hexagon::MemOPh_ORr_V4 :
1231     case Hexagon::MemOPb_ADDi_V4 :
1232     case Hexagon::MemOPb_SUBi_V4 :
1233     case Hexagon::MemOPb_ADDr_V4 :
1234     case Hexagon::MemOPb_SUBr_V4 :
1235     case Hexagon::MemOPb_ANDr_V4 :
1236     case Hexagon::MemOPb_ORr_V4 :
1237     case Hexagon::MemOPb_SETBITi_V4:
1238     case Hexagon::MemOPh_SETBITi_V4:
1239     case Hexagon::MemOPw_SETBITi_V4:
1240     case Hexagon::MemOPb_CLRBITi_V4:
1241     case Hexagon::MemOPh_CLRBITi_V4:
1242     case Hexagon::MemOPw_CLRBITi_V4:
1243     return true;
1244   }
1245   return false;
1246 }
1247
1248
1249 bool HexagonInstrInfo::
1250 isSpillPredRegOp(const MachineInstr *MI) const {
1251   switch (MI->getOpcode()) {
1252     default: return false;
1253     case Hexagon::STriw_pred :
1254     case Hexagon::LDriw_pred :
1255       return true;
1256   }
1257 }
1258
1259 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
1260   switch (MI->getOpcode()) {
1261     default: return false;
1262     case Hexagon::CMPEQrr:
1263     case Hexagon::CMPEQri:
1264     case Hexagon::CMPGTrr:
1265     case Hexagon::CMPGTri:
1266     case Hexagon::CMPGTUrr:
1267     case Hexagon::CMPGTUri:
1268       return true;
1269   }
1270 }
1271
1272 bool HexagonInstrInfo::
1273 isConditionalTransfer (const MachineInstr *MI) const {
1274   switch (MI->getOpcode()) {
1275     default: return false;
1276     case Hexagon::TFR_cPt:
1277     case Hexagon::TFR_cNotPt:
1278     case Hexagon::TFRI_cPt:
1279     case Hexagon::TFRI_cNotPt:
1280     case Hexagon::TFR_cdnPt:
1281     case Hexagon::TFR_cdnNotPt:
1282     case Hexagon::TFRI_cdnPt:
1283     case Hexagon::TFRI_cdnNotPt:
1284       return true;
1285   }
1286 }
1287
1288 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
1289   const HexagonRegisterInfo& QRI = getRegisterInfo();
1290   switch (MI->getOpcode())
1291   {
1292     default: return false;
1293     case Hexagon::ADD_ri_cPt:
1294     case Hexagon::ADD_ri_cNotPt:
1295     case Hexagon::ADD_rr_cPt:
1296     case Hexagon::ADD_rr_cNotPt:
1297     case Hexagon::XOR_rr_cPt:
1298     case Hexagon::XOR_rr_cNotPt:
1299     case Hexagon::AND_rr_cPt:
1300     case Hexagon::AND_rr_cNotPt:
1301     case Hexagon::OR_rr_cPt:
1302     case Hexagon::OR_rr_cNotPt:
1303     case Hexagon::SUB_rr_cPt:
1304     case Hexagon::SUB_rr_cNotPt:
1305     case Hexagon::COMBINE_rr_cPt:
1306     case Hexagon::COMBINE_rr_cNotPt:
1307       return true;
1308     case Hexagon::ASLH_cPt_V4:
1309     case Hexagon::ASLH_cNotPt_V4:
1310     case Hexagon::ASRH_cPt_V4:
1311     case Hexagon::ASRH_cNotPt_V4:
1312     case Hexagon::SXTB_cPt_V4:
1313     case Hexagon::SXTB_cNotPt_V4:
1314     case Hexagon::SXTH_cPt_V4:
1315     case Hexagon::SXTH_cNotPt_V4:
1316     case Hexagon::ZXTB_cPt_V4:
1317     case Hexagon::ZXTB_cNotPt_V4:
1318     case Hexagon::ZXTH_cPt_V4:
1319     case Hexagon::ZXTH_cNotPt_V4:
1320       return QRI.Subtarget.hasV4TOps();
1321   }
1322 }
1323
1324 bool HexagonInstrInfo::
1325 isConditionalLoad (const MachineInstr* MI) const {
1326   const HexagonRegisterInfo& QRI = getRegisterInfo();
1327   switch (MI->getOpcode())
1328   {
1329     default: return false;
1330     case Hexagon::LDrid_cPt :
1331     case Hexagon::LDrid_cNotPt :
1332     case Hexagon::LDrid_indexed_cPt :
1333     case Hexagon::LDrid_indexed_cNotPt :
1334     case Hexagon::LDriw_cPt :
1335     case Hexagon::LDriw_cNotPt :
1336     case Hexagon::LDriw_indexed_cPt :
1337     case Hexagon::LDriw_indexed_cNotPt :
1338     case Hexagon::LDrih_cPt :
1339     case Hexagon::LDrih_cNotPt :
1340     case Hexagon::LDrih_indexed_cPt :
1341     case Hexagon::LDrih_indexed_cNotPt :
1342     case Hexagon::LDrib_cPt :
1343     case Hexagon::LDrib_cNotPt :
1344     case Hexagon::LDrib_indexed_cPt :
1345     case Hexagon::LDrib_indexed_cNotPt :
1346     case Hexagon::LDriuh_cPt :
1347     case Hexagon::LDriuh_cNotPt :
1348     case Hexagon::LDriuh_indexed_cPt :
1349     case Hexagon::LDriuh_indexed_cNotPt :
1350     case Hexagon::LDriub_cPt :
1351     case Hexagon::LDriub_cNotPt :
1352     case Hexagon::LDriub_indexed_cPt :
1353     case Hexagon::LDriub_indexed_cNotPt :
1354       return true;
1355     case Hexagon::POST_LDrid_cPt :
1356     case Hexagon::POST_LDrid_cNotPt :
1357     case Hexagon::POST_LDriw_cPt :
1358     case Hexagon::POST_LDriw_cNotPt :
1359     case Hexagon::POST_LDrih_cPt :
1360     case Hexagon::POST_LDrih_cNotPt :
1361     case Hexagon::POST_LDrib_cPt :
1362     case Hexagon::POST_LDrib_cNotPt :
1363     case Hexagon::POST_LDriuh_cPt :
1364     case Hexagon::POST_LDriuh_cNotPt :
1365     case Hexagon::POST_LDriub_cPt :
1366     case Hexagon::POST_LDriub_cNotPt :
1367       return QRI.Subtarget.hasV4TOps();
1368     case Hexagon::LDrid_indexed_shl_cPt_V4 :
1369     case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
1370     case Hexagon::LDrib_indexed_shl_cPt_V4 :
1371     case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
1372     case Hexagon::LDriub_indexed_shl_cPt_V4 :
1373     case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
1374     case Hexagon::LDrih_indexed_shl_cPt_V4 :
1375     case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
1376     case Hexagon::LDriuh_indexed_shl_cPt_V4 :
1377     case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
1378     case Hexagon::LDriw_indexed_shl_cPt_V4 :
1379     case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
1380       return QRI.Subtarget.hasV4TOps();
1381   }
1382 }
1383
1384 // Returns true if an instruction is a conditional store.
1385 //
1386 // Note: It doesn't include conditional new-value stores as they can't be
1387 // converted to .new predicate.
1388 //
1389 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
1390 //                ^           ^
1391 //               /             \ (not OK. it will cause new-value store to be
1392 //              /               X conditional on p0.new while R2 producer is
1393 //             /                 \ on p0)
1394 //            /                   \.
1395 //     p.new store                 p.old NV store
1396 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
1397 //            ^                  ^
1398 //             \                /
1399 //              \              /
1400 //               \            /
1401 //                 p.old store
1402 //             [if (p0)memw(R0+#0)=R2]
1403 //
1404 // The above diagram shows the steps involoved in the conversion of a predicated
1405 // store instruction to its .new predicated new-value form.
1406 //
1407 // The following set of instructions further explains the scenario where
1408 // conditional new-value store becomes invalid when promoted to .new predicate
1409 // form.
1410 //
1411 // { 1) if (p0) r0 = add(r1, r2)
1412 //   2) p0 = cmp.eq(r3, #0) }
1413 //
1414 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
1415 // the first two instructions because in instr 1, r0 is conditional on old value
1416 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
1417 // is not valid for new-value stores.
1418 bool HexagonInstrInfo::
1419 isConditionalStore (const MachineInstr* MI) const {
1420   const HexagonRegisterInfo& QRI = getRegisterInfo();
1421   switch (MI->getOpcode())
1422   {
1423     default: return false;
1424     case Hexagon::STrib_imm_cPt_V4 :
1425     case Hexagon::STrib_imm_cNotPt_V4 :
1426     case Hexagon::STrib_indexed_shl_cPt_V4 :
1427     case Hexagon::STrib_indexed_shl_cNotPt_V4 :
1428     case Hexagon::STrib_cPt :
1429     case Hexagon::STrib_cNotPt :
1430     case Hexagon::POST_STbri_cPt :
1431     case Hexagon::POST_STbri_cNotPt :
1432     case Hexagon::STrid_indexed_cPt :
1433     case Hexagon::STrid_indexed_cNotPt :
1434     case Hexagon::STrid_indexed_shl_cPt_V4 :
1435     case Hexagon::POST_STdri_cPt :
1436     case Hexagon::POST_STdri_cNotPt :
1437     case Hexagon::STrih_cPt :
1438     case Hexagon::STrih_cNotPt :
1439     case Hexagon::STrih_indexed_cPt :
1440     case Hexagon::STrih_indexed_cNotPt :
1441     case Hexagon::STrih_imm_cPt_V4 :
1442     case Hexagon::STrih_imm_cNotPt_V4 :
1443     case Hexagon::STrih_indexed_shl_cPt_V4 :
1444     case Hexagon::STrih_indexed_shl_cNotPt_V4 :
1445     case Hexagon::POST_SThri_cPt :
1446     case Hexagon::POST_SThri_cNotPt :
1447     case Hexagon::STriw_cPt :
1448     case Hexagon::STriw_cNotPt :
1449     case Hexagon::STriw_indexed_cPt :
1450     case Hexagon::STriw_indexed_cNotPt :
1451     case Hexagon::STriw_imm_cPt_V4 :
1452     case Hexagon::STriw_imm_cNotPt_V4 :
1453     case Hexagon::STriw_indexed_shl_cPt_V4 :
1454     case Hexagon::STriw_indexed_shl_cNotPt_V4 :
1455     case Hexagon::POST_STwri_cPt :
1456     case Hexagon::POST_STwri_cNotPt :
1457       return QRI.Subtarget.hasV4TOps();
1458
1459     // V4 global address store before promoting to dot new.
1460     case Hexagon::STd_GP_cPt_V4 :
1461     case Hexagon::STd_GP_cNotPt_V4 :
1462     case Hexagon::STb_GP_cPt_V4 :
1463     case Hexagon::STb_GP_cNotPt_V4 :
1464     case Hexagon::STh_GP_cPt_V4 :
1465     case Hexagon::STh_GP_cNotPt_V4 :
1466     case Hexagon::STw_GP_cPt_V4 :
1467     case Hexagon::STw_GP_cNotPt_V4 :
1468       return QRI.Subtarget.hasV4TOps();
1469
1470     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1471     // from the "Conditional Store" list. Because a predicated new value store
1472     // would NOT be promoted to a double dot new store. See diagram below:
1473     // This function returns yes for those stores that are predicated but not
1474     // yet promoted to predicate dot new instructions.
1475     //
1476     //                          +---------------------+
1477     //                    /-----| if (p0) memw(..)=r0 |---------\~
1478     //                   ||     +---------------------+         ||
1479     //          promote  ||       /\       /\                   ||  promote
1480     //                   ||      /||\     /||\                  ||
1481     //                  \||/    demote     ||                  \||/
1482     //                   \/       ||       ||                   \/
1483     //       +-------------------------+   ||   +-------------------------+
1484     //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
1485     //       +-------------------------+   ||   +-------------------------+
1486     //                        ||           ||         ||
1487     //                        ||         demote      \||/
1488     //                      promote        ||         \/ NOT possible
1489     //                        ||           ||         /\~
1490     //                       \||/          ||        /||\~
1491     //                        \/           ||         ||
1492     //                      +-----------------------------+
1493     //                      | if (p0.new) memw(..)=r0.new |
1494     //                      +-----------------------------+
1495     //                           Double Dot New Store
1496     //
1497   }
1498 }
1499
1500
1501 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
1502   if (isNewValue(MI) && isBranch(MI))
1503     return true;
1504   return false;
1505 }
1506
1507 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
1508   return (getAddrMode(MI) == HexagonII::PostInc);
1509 }
1510
1511 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
1512   const uint64_t F = MI->getDesc().TSFlags;
1513   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
1514 }
1515
1516 // Returns true, if any one of the operands is a dot new
1517 // insn, whether it is predicated dot new or register dot new.
1518 bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
1519   return (isNewValueInst(MI) ||
1520      (isPredicated(MI) && isPredicatedNew(MI)));
1521 }
1522
1523 // Returns the most basic instruction for the .new predicated instructions and
1524 // new-value stores.
1525 // For example, all of the following instructions will be converted back to the
1526 // same instruction:
1527 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
1528 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
1529 // 3) if (p0.new) memw(R0+#0) = R1      --->
1530 //
1531
1532 int HexagonInstrInfo::GetDotOldOp(const int opc) const {
1533   int NewOp = opc;
1534   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
1535     NewOp = Hexagon::getPredOldOpcode(NewOp);
1536     if (NewOp < 0)
1537       assert(0 && "Couldn't change predicate new instruction to its old form.");
1538   }
1539
1540   if (isNewValueStore(NewOp)) { // Convert into non new-value format
1541     NewOp = Hexagon::getNonNVStore(NewOp);
1542     if (NewOp < 0)
1543       assert(0 && "Couldn't change new-value store to its old form.");
1544   }
1545   return NewOp;
1546 }
1547
1548 // Return the new value instruction for a given store.
1549 int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
1550   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
1551   if (NVOpcode >= 0) // Valid new-value store instruction.
1552     return NVOpcode;
1553
1554   switch (MI->getOpcode()) {
1555   default: llvm_unreachable("Unknown .new type");
1556   // store new value byte
1557   case Hexagon::STrib_shl_V4:
1558     return Hexagon::STrib_shl_nv_V4;
1559
1560   case Hexagon::STrih_shl_V4:
1561     return Hexagon::STrih_shl_nv_V4;
1562
1563   case Hexagon::STriw_f:
1564     return Hexagon::STriw_nv_V4;
1565
1566   case Hexagon::STriw_indexed_f:
1567     return Hexagon::STriw_indexed_nv_V4;
1568
1569   case Hexagon::STriw_shl_V4:
1570     return Hexagon::STriw_shl_nv_V4;
1571
1572   }
1573   return 0;
1574 }
1575
1576 // Return .new predicate version for an instruction.
1577 int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
1578                                       const MachineBranchProbabilityInfo
1579                                       *MBPI) const {
1580
1581   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1582   if (NewOpcode >= 0) // Valid predicate new instruction
1583     return NewOpcode;
1584
1585   switch (MI->getOpcode()) {
1586   default: llvm_unreachable("Unknown .new type");
1587   // Condtional Jumps
1588   case Hexagon::JMP_t:
1589   case Hexagon::JMP_f:
1590     return getDotNewPredJumpOp(MI, MBPI);
1591
1592   case Hexagon::JMPR_t:
1593     return Hexagon::JMPR_tnew_tV3;
1594
1595   case Hexagon::JMPR_f:
1596     return Hexagon::JMPR_fnew_tV3;
1597
1598   case Hexagon::JMPret_t:
1599     return Hexagon::JMPret_tnew_tV3;
1600
1601   case Hexagon::JMPret_f:
1602     return Hexagon::JMPret_fnew_tV3;
1603
1604
1605   // Conditional combine
1606   case Hexagon::COMBINE_rr_cPt :
1607     return Hexagon::COMBINE_rr_cdnPt;
1608   case Hexagon::COMBINE_rr_cNotPt :
1609     return Hexagon::COMBINE_rr_cdnNotPt;
1610   }
1611 }
1612
1613
1614 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
1615   const uint64_t F = MI->getDesc().TSFlags;
1616
1617   return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
1618 }
1619
1620 /// immediateExtend - Changes the instruction in place to one using an immediate
1621 /// extender.
1622 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
1623   assert((isExtendable(MI)||isConstExtended(MI)) &&
1624                                "Instruction must be extendable");
1625   // Find which operand is extendable.
1626   short ExtOpNum = getCExtOpNum(MI);
1627   MachineOperand &MO = MI->getOperand(ExtOpNum);
1628   // This needs to be something we understand.
1629   assert((MO.isMBB() || MO.isImm()) &&
1630          "Branch with unknown extendable field type");
1631   // Mark given operand as extended.
1632   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
1633 }
1634
1635 DFAPacketizer *HexagonInstrInfo::
1636 CreateTargetScheduleState(const TargetMachine *TM,
1637                            const ScheduleDAG *DAG) const {
1638   const InstrItineraryData *II = TM->getInstrItineraryData();
1639   return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
1640 }
1641
1642 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1643                                             const MachineBasicBlock *MBB,
1644                                             const MachineFunction &MF) const {
1645   // Debug info is never a scheduling boundary. It's necessary to be explicit
1646   // due to the special treatment of IT instructions below, otherwise a
1647   // dbg_value followed by an IT will result in the IT instruction being
1648   // considered a scheduling hazard, which is wrong. It should be the actual
1649   // instruction preceding the dbg_value instruction(s), just like it is
1650   // when debug info is not present.
1651   if (MI->isDebugValue())
1652     return false;
1653
1654   // Terminators and labels can't be scheduled around.
1655   if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm())
1656     return true;
1657
1658   return false;
1659 }
1660
1661 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
1662
1663   // Constant extenders are allowed only for V4 and above.
1664   if (!Subtarget.hasV4TOps())
1665     return false;
1666
1667   const uint64_t F = MI->getDesc().TSFlags;
1668   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1669   if (isExtended) // Instruction must be extended.
1670     return true;
1671
1672   unsigned isExtendable = (F >> HexagonII::ExtendablePos)
1673                           & HexagonII::ExtendableMask;
1674   if (!isExtendable)
1675     return false;
1676
1677   short ExtOpNum = getCExtOpNum(MI);
1678   const MachineOperand &MO = MI->getOperand(ExtOpNum);
1679   // Use MO operand flags to determine if MO
1680   // has the HMOTF_ConstExtended flag set.
1681   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1682     return true;
1683   // If this is a Machine BB address we are talking about, and it is
1684   // not marked as extended, say so.
1685   if (MO.isMBB())
1686     return false;
1687
1688   // We could be using an instruction with an extendable immediate and shoehorn
1689   // a global address into it. If it is a global address it will be constant
1690   // extended. We do this for COMBINE.
1691   // We currently only handle isGlobal() because it is the only kind of
1692   // object we are going to end up with here for now.
1693   // In the future we probably should add isSymbol(), etc.
1694   if (MO.isGlobal() || MO.isSymbol())
1695     return true;
1696
1697   // If the extendable operand is not 'Immediate' type, the instruction should
1698   // have 'isExtended' flag set.
1699   assert(MO.isImm() && "Extendable operand must be Immediate type");
1700
1701   int MinValue = getMinValue(MI);
1702   int MaxValue = getMaxValue(MI);
1703   int ImmValue = MO.getImm();
1704
1705   return (ImmValue < MinValue || ImmValue > MaxValue);
1706 }
1707
1708 // Returns the opcode to use when converting MI, which is a conditional jump,
1709 // into a conditional instruction which uses the .new value of the predicate.
1710 // We also use branch probabilities to add a hint to the jump.
1711 int
1712 HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
1713                                   const
1714                                   MachineBranchProbabilityInfo *MBPI) const {
1715
1716   // We assume that block can have at most two successors.
1717   bool taken = false;
1718   MachineBasicBlock *Src = MI->getParent();
1719   MachineOperand *BrTarget = &MI->getOperand(1);
1720   MachineBasicBlock *Dst = BrTarget->getMBB();
1721
1722   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
1723   if (Prediction >= BranchProbability(1,2))
1724     taken = true;
1725
1726   switch (MI->getOpcode()) {
1727   case Hexagon::JMP_t:
1728     return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
1729   case Hexagon::JMP_f:
1730     return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
1731
1732   default:
1733     llvm_unreachable("Unexpected jump instruction.");
1734   }
1735 }
1736 // Returns true if a particular operand is extendable for an instruction.
1737 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
1738                                          unsigned short OperandNum) const {
1739   // Constant extenders are allowed only for V4 and above.
1740   if (!Subtarget.hasV4TOps())
1741     return false;
1742
1743   const uint64_t F = MI->getDesc().TSFlags;
1744
1745   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
1746           == OperandNum;
1747 }
1748
1749 // Returns Operand Index for the constant extended instruction.
1750 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
1751   const uint64_t F = MI->getDesc().TSFlags;
1752   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
1753 }
1754
1755 // Returns the min value that doesn't need to be extended.
1756 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
1757   const uint64_t F = MI->getDesc().TSFlags;
1758   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1759                     & HexagonII::ExtentSignedMask;
1760   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1761                     & HexagonII::ExtentBitsMask;
1762
1763   if (isSigned) // if value is signed
1764     return -1 << (bits - 1);
1765   else
1766     return 0;
1767 }
1768
1769 // Returns the max value that doesn't need to be extended.
1770 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
1771   const uint64_t F = MI->getDesc().TSFlags;
1772   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1773                     & HexagonII::ExtentSignedMask;
1774   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1775                     & HexagonII::ExtentBitsMask;
1776
1777   if (isSigned) // if value is signed
1778     return ~(-1 << (bits - 1));
1779   else
1780     return ~(-1 << bits);
1781 }
1782
1783 // Returns true if an instruction can be converted into a non-extended
1784 // equivalent instruction.
1785 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
1786
1787   short NonExtOpcode;
1788   // Check if the instruction has a register form that uses register in place
1789   // of the extended operand, if so return that as the non-extended form.
1790   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
1791     return true;
1792
1793   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1794     // Check addressing mode and retreive non-ext equivalent instruction.
1795
1796     switch (getAddrMode(MI)) {
1797     case HexagonII::Absolute :
1798       // Load/store with absolute addressing mode can be converted into
1799       // base+offset mode.
1800       NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
1801       break;
1802     case HexagonII::BaseImmOffset :
1803       // Load/store with base+offset addressing mode can be converted into
1804       // base+register offset addressing mode. However left shift operand should
1805       // be set to 0.
1806       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
1807       break;
1808     default:
1809       return false;
1810     }
1811     if (NonExtOpcode < 0)
1812       return false;
1813     return true;
1814   }
1815   return false;
1816 }
1817
1818 // Returns opcode of the non-extended equivalent instruction.
1819 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
1820
1821   // Check if the instruction has a register form that uses register in place
1822   // of the extended operand, if so return that as the non-extended form.
1823   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
1824     if (NonExtOpcode >= 0)
1825       return NonExtOpcode;
1826
1827   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1828     // Check addressing mode and retreive non-ext equivalent instruction.
1829     switch (getAddrMode(MI)) {
1830     case HexagonII::Absolute :
1831       return Hexagon::getBasedWithImmOffset(MI->getOpcode());
1832     case HexagonII::BaseImmOffset :
1833       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
1834     default:
1835       return -1;
1836     }
1837   }
1838   return -1;
1839 }
1840
1841 bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
1842   return (Opcode == Hexagon::JMP_t) ||
1843          (Opcode == Hexagon::JMP_f) ||
1844          (Opcode == Hexagon::JMP_tnew_t) ||
1845          (Opcode == Hexagon::JMP_fnew_t) ||
1846          (Opcode == Hexagon::JMP_tnew_nt) ||
1847          (Opcode == Hexagon::JMP_fnew_nt);
1848 }
1849
1850 bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
1851   return (Opcode == Hexagon::JMP_f) ||
1852          (Opcode == Hexagon::JMP_fnew_t) ||
1853          (Opcode == Hexagon::JMP_fnew_nt);
1854 }