Fix a major bug in operand latency computation. The use index must be adjusted
[oota-llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAGSDNodes.cpp
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "SDNodeDbgValue.h"
17 #include "ScheduleDAGSDNodes.h"
18 #include "InstrEmitter.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetLowering.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtarget.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33
34 STATISTIC(LoadsClustered, "Number of loads clustered together");
35
36 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
37   : ScheduleDAG(mf),
38     InstrItins(mf.getTarget().getInstrItineraryData()) {}
39
40 /// Run - perform scheduling.
41 ///
42 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
43                              MachineBasicBlock::iterator insertPos) {
44   DAG = dag;
45   ScheduleDAG::Run(bb, insertPos);
46 }
47
48 /// NewSUnit - Creates a new SUnit and return a ptr to it.
49 ///
50 SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
51 #ifndef NDEBUG
52   const SUnit *Addr = 0;
53   if (!SUnits.empty())
54     Addr = &SUnits[0];
55 #endif
56   SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
57   assert((Addr == 0 || Addr == &SUnits[0]) &&
58          "SUnits std::vector reallocated on the fly!");
59   SUnits.back().OrigNode = &SUnits.back();
60   SUnit *SU = &SUnits.back();
61   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
62   if (!N ||
63       (N->isMachineOpcode() &&
64        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
65     SU->SchedulingPref = Sched::None;
66   else
67     SU->SchedulingPref = TLI.getSchedulingPreference(N);
68   return SU;
69 }
70
71 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
72   SUnit *SU = NewSUnit(Old->getNode());
73   SU->OrigNode = Old->OrigNode;
74   SU->Latency = Old->Latency;
75   SU->isTwoAddress = Old->isTwoAddress;
76   SU->isCommutable = Old->isCommutable;
77   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
78   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
79   SU->SchedulingPref = Old->SchedulingPref;
80   Old->isCloned = true;
81   return SU;
82 }
83
84 /// CheckForPhysRegDependency - Check if the dependency between def and use of
85 /// a specified operand is a physical register dependency. If so, returns the
86 /// register and the cost of copying the register.
87 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
88                                       const TargetRegisterInfo *TRI, 
89                                       const TargetInstrInfo *TII,
90                                       unsigned &PhysReg, int &Cost) {
91   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
92     return;
93
94   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
95   if (TargetRegisterInfo::isVirtualRegister(Reg))
96     return;
97
98   unsigned ResNo = User->getOperand(2).getResNo();
99   if (Def->isMachineOpcode()) {
100     const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
101     if (ResNo >= II.getNumDefs() &&
102         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
103       PhysReg = Reg;
104       const TargetRegisterClass *RC =
105         TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
106       Cost = RC->getCopyCost();
107     }
108   }
109 }
110
111 static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
112                      SelectionDAG *DAG) {
113   SmallVector<EVT, 4> VTs;
114   SDNode *FlagDestNode = Flag.getNode();
115
116   // Don't add a flag from a node to itself.
117   if (FlagDestNode == N) return;
118
119   // Don't add a flag to something which already has a flag.
120   if (N->getValueType(N->getNumValues() - 1) == MVT::Flag) return;
121
122   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
123     VTs.push_back(N->getValueType(I));
124
125   if (AddFlag)
126     VTs.push_back(MVT::Flag);
127
128   SmallVector<SDValue, 4> Ops;
129   for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
130     Ops.push_back(N->getOperand(I));
131
132   if (FlagDestNode)
133     Ops.push_back(Flag);
134
135   SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
136   MachineSDNode::mmo_iterator Begin = 0, End = 0;
137   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
138
139   // Store memory references.
140   if (MN) {
141     Begin = MN->memoperands_begin();
142     End = MN->memoperands_end();
143   }
144
145   DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
146
147   // Reset the memory references
148   if (MN)
149     MN->setMemRefs(Begin, End);
150 }
151
152 /// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
153 /// This function finds loads of the same base and different offsets. If the
154 /// offsets are not far apart (target specific), it add MVT::Flag inputs and
155 /// outputs to ensure they are scheduled together and in order. This
156 /// optimization may benefit some targets by improving cache locality.
157 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
158   SDNode *Chain = 0;
159   unsigned NumOps = Node->getNumOperands();
160   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
161     Chain = Node->getOperand(NumOps-1).getNode();
162   if (!Chain)
163     return;
164
165   // Look for other loads of the same chain. Find loads that are loading from
166   // the same base pointer and different offsets.
167   SmallPtrSet<SDNode*, 16> Visited;
168   SmallVector<int64_t, 4> Offsets;
169   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
170   bool Cluster = false;
171   SDNode *Base = Node;
172   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
173        I != E; ++I) {
174     SDNode *User = *I;
175     if (User == Node || !Visited.insert(User))
176       continue;
177     int64_t Offset1, Offset2;
178     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
179         Offset1 == Offset2)
180       // FIXME: Should be ok if they addresses are identical. But earlier
181       // optimizations really should have eliminated one of the loads.
182       continue;
183     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
184       Offsets.push_back(Offset1);
185     O2SMap.insert(std::make_pair(Offset2, User));
186     Offsets.push_back(Offset2);
187     if (Offset2 < Offset1)
188       Base = User;
189     Cluster = true;
190   }
191
192   if (!Cluster)
193     return;
194
195   // Sort them in increasing order.
196   std::sort(Offsets.begin(), Offsets.end());
197
198   // Check if the loads are close enough.
199   SmallVector<SDNode*, 4> Loads;
200   unsigned NumLoads = 0;
201   int64_t BaseOff = Offsets[0];
202   SDNode *BaseLoad = O2SMap[BaseOff];
203   Loads.push_back(BaseLoad);
204   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
205     int64_t Offset = Offsets[i];
206     SDNode *Load = O2SMap[Offset];
207     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
208       break; // Stop right here. Ignore loads that are further away.
209     Loads.push_back(Load);
210     ++NumLoads;
211   }
212
213   if (NumLoads == 0)
214     return;
215
216   // Cluster loads by adding MVT::Flag outputs and inputs. This also
217   // ensure they are scheduled in order of increasing addresses.
218   SDNode *Lead = Loads[0];
219   AddFlags(Lead, SDValue(0, 0), true, DAG);
220
221   SDValue InFlag = SDValue(Lead, Lead->getNumValues() - 1);
222   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
223     bool OutFlag = I < E - 1;
224     SDNode *Load = Loads[I];
225
226     AddFlags(Load, InFlag, OutFlag, DAG);
227
228     if (OutFlag)
229       InFlag = SDValue(Load, Load->getNumValues() - 1);
230
231     ++LoadsClustered;
232   }
233 }
234
235 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
236 ///
237 void ScheduleDAGSDNodes::ClusterNodes() {
238   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
239        E = DAG->allnodes_end(); NI != E; ++NI) {
240     SDNode *Node = &*NI;
241     if (!Node || !Node->isMachineOpcode())
242       continue;
243
244     unsigned Opc = Node->getMachineOpcode();
245     const TargetInstrDesc &TID = TII->get(Opc);
246     if (TID.mayLoad())
247       // Cluster loads from "near" addresses into combined SUnits.
248       ClusterNeighboringLoads(Node);
249   }
250 }
251
252 void ScheduleDAGSDNodes::BuildSchedUnits() {
253   // During scheduling, the NodeId field of SDNode is used to map SDNodes
254   // to their associated SUnits by holding SUnits table indices. A value
255   // of -1 means the SDNode does not yet have an associated SUnit.
256   unsigned NumNodes = 0;
257   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
258        E = DAG->allnodes_end(); NI != E; ++NI) {
259     NI->setNodeId(-1);
260     ++NumNodes;
261   }
262
263   // Reserve entries in the vector for each of the SUnits we are creating.  This
264   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
265   // invalidated.
266   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
267   // This is a temporary workaround.
268   SUnits.reserve(NumNodes * 2);
269   
270   // Add all nodes in depth first order.
271   SmallVector<SDNode*, 64> Worklist;
272   SmallPtrSet<SDNode*, 64> Visited;
273   Worklist.push_back(DAG->getRoot().getNode());
274   Visited.insert(DAG->getRoot().getNode());
275   
276   while (!Worklist.empty()) {
277     SDNode *NI = Worklist.pop_back_val();
278     
279     // Add all operands to the worklist unless they've already been added.
280     for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
281       if (Visited.insert(NI->getOperand(i).getNode()))
282         Worklist.push_back(NI->getOperand(i).getNode());
283   
284     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
285       continue;
286     
287     // If this node has already been processed, stop now.
288     if (NI->getNodeId() != -1) continue;
289     
290     SUnit *NodeSUnit = NewSUnit(NI);
291     
292     // See if anything is flagged to this node, if so, add them to flagged
293     // nodes.  Nodes can have at most one flag input and one flag output.  Flags
294     // are required to be the last operand and result of a node.
295     
296     // Scan up to find flagged preds.
297     SDNode *N = NI;
298     while (N->getNumOperands() &&
299            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
300       N = N->getOperand(N->getNumOperands()-1).getNode();
301       assert(N->getNodeId() == -1 && "Node already inserted!");
302       N->setNodeId(NodeSUnit->NodeNum);
303     }
304     
305     // Scan down to find any flagged succs.
306     N = NI;
307     while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
308       SDValue FlagVal(N, N->getNumValues()-1);
309       
310       // There are either zero or one users of the Flag result.
311       bool HasFlagUse = false;
312       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
313            UI != E; ++UI)
314         if (FlagVal.isOperandOf(*UI)) {
315           HasFlagUse = true;
316           assert(N->getNodeId() == -1 && "Node already inserted!");
317           N->setNodeId(NodeSUnit->NodeNum);
318           N = *UI;
319           break;
320         }
321       if (!HasFlagUse) break;
322     }
323     
324     // If there are flag operands involved, N is now the bottom-most node
325     // of the sequence of nodes that are flagged together.
326     // Update the SUnit.
327     NodeSUnit->setNode(N);
328     assert(N->getNodeId() == -1 && "Node already inserted!");
329     N->setNodeId(NodeSUnit->NodeNum);
330
331     // Assign the Latency field of NodeSUnit using target-provided information.
332     ComputeLatency(NodeSUnit);
333   }
334 }
335
336 void ScheduleDAGSDNodes::AddSchedEdges() {
337   const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
338
339   // Check to see if the scheduler cares about latencies.
340   bool UnitLatencies = ForceUnitLatencies();
341
342   // Pass 2: add the preds, succs, etc.
343   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
344     SUnit *SU = &SUnits[su];
345     SDNode *MainNode = SU->getNode();
346     
347     if (MainNode->isMachineOpcode()) {
348       unsigned Opc = MainNode->getMachineOpcode();
349       const TargetInstrDesc &TID = TII->get(Opc);
350       for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
351         if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
352           SU->isTwoAddress = true;
353           break;
354         }
355       }
356       if (TID.isCommutable())
357         SU->isCommutable = true;
358     }
359     
360     // Find all predecessors and successors of the group.
361     for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
362       if (N->isMachineOpcode() &&
363           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
364         SU->hasPhysRegClobbers = true;
365         unsigned NumUsed = InstrEmitter::CountResults(N);
366         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
367           --NumUsed;    // Skip over unused values at the end.
368         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
369           SU->hasPhysRegDefs = true;
370       }
371       
372       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
373         SDNode *OpN = N->getOperand(i).getNode();
374         if (isPassiveNode(OpN)) continue;   // Not scheduled.
375         SUnit *OpSU = &SUnits[OpN->getNodeId()];
376         assert(OpSU && "Node has no SUnit!");
377         if (OpSU == SU) continue;           // In the same group.
378
379         EVT OpVT = N->getOperand(i).getValueType();
380         assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
381         bool isChain = OpVT == MVT::Other;
382
383         unsigned PhysReg = 0;
384         int Cost = 1;
385         // Determine if this is a physical register dependency.
386         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
387         assert((PhysReg == 0 || !isChain) &&
388                "Chain dependence via physreg data?");
389         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
390         // emits a copy from the physical register to a virtual register unless
391         // it requires a cross class copy (cost < 0). That means we are only
392         // treating "expensive to copy" register dependency as physical register
393         // dependency. This may change in the future though.
394         if (Cost >= 0)
395           PhysReg = 0;
396
397         // If this is a ctrl dep, latency is 1.
398         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
399         const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
400                                OpLatency, PhysReg);
401         if (!isChain && !UnitLatencies) {
402           ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
403           ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
404         }
405
406         SU->addPred(dep);
407       }
408     }
409   }
410 }
411
412 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
413 /// are input.  This SUnit graph is similar to the SelectionDAG, but
414 /// excludes nodes that aren't interesting to scheduling, and represents
415 /// flagged together nodes with a single SUnit.
416 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
417   // Cluster certain nodes which should be scheduled together.
418   ClusterNodes();
419   // Populate the SUnits array.
420   BuildSchedUnits();
421   // Compute all the scheduling dependencies between nodes.
422   AddSchedEdges();
423 }
424
425 void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
426   // Check to see if the scheduler cares about latencies.
427   if (ForceUnitLatencies()) {
428     SU->Latency = 1;
429     return;
430   }
431
432   if (!InstrItins || InstrItins->isEmpty()) {
433     SU->Latency = 1;
434     return;
435   }
436   
437   // Compute the latency for the node.  We use the sum of the latencies for
438   // all nodes flagged together into this SUnit.
439   SU->Latency = 0;
440   for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
441     if (N->isMachineOpcode()) {
442       SU->Latency += InstrItins->
443         getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
444     }
445 }
446
447 void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
448                                                unsigned OpIdx, SDep& dep) const{
449   // Check to see if the scheduler cares about latencies.
450   if (ForceUnitLatencies())
451     return;
452
453   if (dep.getKind() != SDep::Data)
454     return;
455
456   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
457   if (Use->isMachineOpcode())
458     // Adjust the use operand index by num of defs.
459     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
460   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
461   if (Latency >= 0)
462     dep.setLatency(Latency);
463 }
464
465 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
466   if (!SU->getNode()) {
467     dbgs() << "PHYS REG COPY\n";
468     return;
469   }
470
471   SU->getNode()->dump(DAG);
472   dbgs() << "\n";
473   SmallVector<SDNode *, 4> FlaggedNodes;
474   for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
475     FlaggedNodes.push_back(N);
476   while (!FlaggedNodes.empty()) {
477     dbgs() << "    ";
478     FlaggedNodes.back()->dump(DAG);
479     dbgs() << "\n";
480     FlaggedNodes.pop_back();
481   }
482 }
483
484 namespace {
485   struct OrderSorter {
486     bool operator()(const std::pair<unsigned, MachineInstr*> &A,
487                     const std::pair<unsigned, MachineInstr*> &B) {
488       return A.first < B.first;
489     }
490   };
491 }
492
493 // ProcessSourceNode - Process nodes with source order numbers. These are added
494 // to a vector which EmitSchedule uses to determine how to insert dbg_value
495 // instructions in the right order.
496 static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
497                            InstrEmitter &Emitter,
498                            DenseMap<SDValue, unsigned> &VRBaseMap,
499                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
500                            SmallSet<unsigned, 8> &Seen) {
501   unsigned Order = DAG->GetOrdering(N);
502   if (!Order || !Seen.insert(Order))
503     return;
504
505   MachineBasicBlock *BB = Emitter.getBlock();
506   if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
507     // Did not insert any instruction.
508     Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
509     return;
510   }
511
512   Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
513   if (!N->getHasDebugValue())
514     return;
515   // Opportunistically insert immediate dbg_value uses, i.e. those with source
516   // order number right after the N.
517   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
518   SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
519   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
520     if (DVs[i]->isInvalidated())
521       continue;
522     unsigned DVOrder = DVs[i]->getOrder();
523     if (DVOrder == ++Order) {
524       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
525       if (DbgMI) {
526         Orders.push_back(std::make_pair(DVOrder, DbgMI));
527         BB->insert(InsertPos, DbgMI);
528       }
529       DVs[i]->setIsInvalidated();
530     }
531   }
532 }
533
534
535 /// EmitSchedule - Emit the machine code in scheduled order.
536 MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
537   InstrEmitter Emitter(BB, InsertPos);
538   DenseMap<SDValue, unsigned> VRBaseMap;
539   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
540   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
541   SmallSet<unsigned, 8> Seen;
542   bool HasDbg = DAG->hasDebugValues();
543
544   // If this is the first BB, emit byval parameter dbg_value's.
545   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
546     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
547     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
548     for (; PDI != PDE; ++PDI) {
549       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
550       if (DbgMI)
551         BB->insert(InsertPos, DbgMI);
552     }
553   }
554
555   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
556     SUnit *SU = Sequence[i];
557     if (!SU) {
558       // Null SUnit* is a noop.
559       EmitNoop();
560       continue;
561     }
562
563     // For pre-regalloc scheduling, create instructions corresponding to the
564     // SDNode and any flagged SDNodes and append them to the block.
565     if (!SU->getNode()) {
566       // Emit a copy.
567       EmitPhysRegCopy(SU, CopyVRBaseMap);
568       continue;
569     }
570
571     SmallVector<SDNode *, 4> FlaggedNodes;
572     for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
573          N = N->getFlaggedNode())
574       FlaggedNodes.push_back(N);
575     while (!FlaggedNodes.empty()) {
576       SDNode *N = FlaggedNodes.back();
577       Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
578                        VRBaseMap);
579       // Remember the source order of the inserted instruction.
580       if (HasDbg)
581         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
582       FlaggedNodes.pop_back();
583     }
584     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
585                      VRBaseMap);
586     // Remember the source order of the inserted instruction.
587     if (HasDbg)
588       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
589                         Seen);
590   }
591
592   // Insert all the dbg_values which have not already been inserted in source
593   // order sequence.
594   if (HasDbg) {
595     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
596
597     // Sort the source order instructions and use the order to insert debug
598     // values.
599     std::sort(Orders.begin(), Orders.end(), OrderSorter());
600
601     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
602     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
603     // Now emit the rest according to source order.
604     unsigned LastOrder = 0;
605     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
606       unsigned Order = Orders[i].first;
607       MachineInstr *MI = Orders[i].second;
608       // Insert all SDDbgValue's whose order(s) are before "Order".
609       if (!MI)
610         continue;
611 #ifndef NDEBUG
612       unsigned LastDIOrder = 0;
613 #endif
614       for (; DI != DE &&
615              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
616 #ifndef NDEBUG
617         assert((*DI)->getOrder() >= LastDIOrder &&
618                "SDDbgValue nodes must be in source order!");
619         LastDIOrder = (*DI)->getOrder();
620 #endif
621         if ((*DI)->isInvalidated())
622           continue;
623         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
624         if (DbgMI) {
625           if (!LastOrder)
626             // Insert to start of the BB (after PHIs).
627             BB->insert(BBBegin, DbgMI);
628           else {
629             // Insert at the instruction, which may be in a different
630             // block, if the block was split by a custom inserter.
631             MachineBasicBlock::iterator Pos = MI;
632             MI->getParent()->insert(llvm::next(Pos), DbgMI);
633           }
634         }
635       }
636       LastOrder = Order;
637     }
638     // Add trailing DbgValue's before the terminator. FIXME: May want to add
639     // some of them before one or more conditional branches?
640     while (DI != DE) {
641       MachineBasicBlock *InsertBB = Emitter.getBlock();
642       MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
643       if (!(*DI)->isInvalidated()) {
644         MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
645         if (DbgMI)
646           InsertBB->insert(Pos, DbgMI);
647       }
648       ++DI;
649     }
650   }
651
652   BB = Emitter.getBlock();
653   InsertPos = Emitter.getInsertPos();
654   return BB;
655 }