Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAGSDNodes.cpp
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ScheduleDAGSDNodes.h"
16 #include "InstrEmitter.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/MC/MCInstrItineraries.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetInstrInfo.h"
31 #include "llvm/Target/TargetLowering.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetSubtargetInfo.h"
34 using namespace llvm;
35
36 #define DEBUG_TYPE "pre-RA-sched"
37
38 STATISTIC(LoadsClustered, "Number of loads clustered together");
39
40 // This allows the latency-based scheduler to notice high latency instructions
41 // without a target itinerary. The choice of number here has more to do with
42 // balancing scheduler heuristics than with the actual machine latency.
43 static cl::opt<int> HighLatencyCycles(
44   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45   cl::desc("Roughly estimate the number of cycles that 'long latency'"
46            "instructions take for targets with no itinerary"));
47
48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49     : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
50       InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
51
52 /// Run - perform scheduling.
53 ///
54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55   BB = bb;
56   DAG = dag;
57
58   // Clear the scheduler's SUnit DAG.
59   ScheduleDAG::clearDAG();
60   Sequence.clear();
61
62   // Invoke the target's selection of scheduler.
63   Schedule();
64 }
65
66 /// NewSUnit - Creates a new SUnit and return a ptr to it.
67 ///
68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69 #ifndef NDEBUG
70   const SUnit *Addr = nullptr;
71   if (!SUnits.empty())
72     Addr = &SUnits[0];
73 #endif
74   SUnits.emplace_back(N, (unsigned)SUnits.size());
75   assert((Addr == nullptr || Addr == &SUnits[0]) &&
76          "SUnits std::vector reallocated on the fly!");
77   SUnits.back().OrigNode = &SUnits.back();
78   SUnit *SU = &SUnits.back();
79   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80   if (!N ||
81       (N->isMachineOpcode() &&
82        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83     SU->SchedulingPref = Sched::None;
84   else
85     SU->SchedulingPref = TLI.getSchedulingPreference(N);
86   return SU;
87 }
88
89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90   SUnit *SU = newSUnit(Old->getNode());
91   SU->OrigNode = Old->OrigNode;
92   SU->Latency = Old->Latency;
93   SU->isVRegCycle = Old->isVRegCycle;
94   SU->isCall = Old->isCall;
95   SU->isCallOp = Old->isCallOp;
96   SU->isTwoAddress = Old->isTwoAddress;
97   SU->isCommutable = Old->isCommutable;
98   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100   SU->isScheduleHigh = Old->isScheduleHigh;
101   SU->isScheduleLow = Old->isScheduleLow;
102   SU->SchedulingPref = Old->SchedulingPref;
103   Old->isCloned = true;
104   return SU;
105 }
106
107 /// CheckForPhysRegDependency - Check if the dependency between def and use of
108 /// a specified operand is a physical register dependency. If so, returns the
109 /// register and the cost of copying the register.
110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111                                       const TargetRegisterInfo *TRI,
112                                       const TargetInstrInfo *TII,
113                                       unsigned &PhysReg, int &Cost) {
114   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115     return;
116
117   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118   if (TargetRegisterInfo::isVirtualRegister(Reg))
119     return;
120
121   unsigned ResNo = User->getOperand(2).getResNo();
122   if (Def->getOpcode() == ISD::CopyFromReg &&
123       cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
124     PhysReg = Reg;
125   } else if (Def->isMachineOpcode()) {
126     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
127     if (ResNo >= II.getNumDefs() &&
128         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
129       PhysReg = Reg;
130   }
131
132   if (PhysReg != 0) {
133     const TargetRegisterClass *RC =
134         TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
135     Cost = RC->getCopyCost();
136   }
137 }
138
139 // Helper for AddGlue to clone node operands.
140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
141                                 SDValue ExtraOper = SDValue()) {
142   SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
143   if (ExtraOper.getNode())
144     Ops.push_back(ExtraOper);
145
146   SDVTList VTList = DAG->getVTList(VTs);
147   MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr;
148   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
149
150   // Store memory references.
151   if (MN) {
152     Begin = MN->memoperands_begin();
153     End = MN->memoperands_end();
154   }
155
156   DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
157
158   // Reset the memory references
159   if (MN)
160     MN->setMemRefs(Begin, End);
161 }
162
163 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
164   SDNode *GlueDestNode = Glue.getNode();
165
166   // Don't add glue from a node to itself.
167   if (GlueDestNode == N) return false;
168
169   // Don't add a glue operand to something that already uses glue.
170   if (GlueDestNode &&
171       N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
172     return false;
173   }
174   // Don't add glue to something that already has a glue value.
175   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
176
177   SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end());
178   if (AddGlue)
179     VTs.push_back(MVT::Glue);
180
181   CloneNodeWithValues(N, DAG, VTs, Glue);
182
183   return true;
184 }
185
186 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
187 // node even though simply shrinking the value list is sufficient.
188 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
189   assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
190           !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
191          "expected an unused glue value");
192
193   CloneNodeWithValues(N, DAG,
194                       makeArrayRef(N->value_begin(), N->getNumValues() - 1));
195 }
196
197 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
198 /// This function finds loads of the same base and different offsets. If the
199 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
200 /// outputs to ensure they are scheduled together and in order. This
201 /// optimization may benefit some targets by improving cache locality.
202 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
203   SDNode *Chain = nullptr;
204   unsigned NumOps = Node->getNumOperands();
205   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
206     Chain = Node->getOperand(NumOps-1).getNode();
207   if (!Chain)
208     return;
209
210   // Look for other loads of the same chain. Find loads that are loading from
211   // the same base pointer and different offsets.
212   SmallPtrSet<SDNode*, 16> Visited;
213   SmallVector<int64_t, 4> Offsets;
214   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
215   bool Cluster = false;
216   SDNode *Base = Node;
217   // This algorithm requires a reasonably low use count before finding a match
218   // to avoid uselessly blowing up compile time in large blocks.
219   unsigned UseCount = 0;
220   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
221        I != E && UseCount < 100; ++I, ++UseCount) {
222     SDNode *User = *I;
223     if (User == Node || !Visited.insert(User).second)
224       continue;
225     int64_t Offset1, Offset2;
226     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
227         Offset1 == Offset2)
228       // FIXME: Should be ok if they addresses are identical. But earlier
229       // optimizations really should have eliminated one of the loads.
230       continue;
231     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
232       Offsets.push_back(Offset1);
233     O2SMap.insert(std::make_pair(Offset2, User));
234     Offsets.push_back(Offset2);
235     if (Offset2 < Offset1)
236       Base = User;
237     Cluster = true;
238     // Reset UseCount to allow more matches.
239     UseCount = 0;
240   }
241
242   if (!Cluster)
243     return;
244
245   // Sort them in increasing order.
246   std::sort(Offsets.begin(), Offsets.end());
247
248   // Check if the loads are close enough.
249   SmallVector<SDNode*, 4> Loads;
250   unsigned NumLoads = 0;
251   int64_t BaseOff = Offsets[0];
252   SDNode *BaseLoad = O2SMap[BaseOff];
253   Loads.push_back(BaseLoad);
254   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
255     int64_t Offset = Offsets[i];
256     SDNode *Load = O2SMap[Offset];
257     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
258       break; // Stop right here. Ignore loads that are further away.
259     Loads.push_back(Load);
260     ++NumLoads;
261   }
262
263   if (NumLoads == 0)
264     return;
265
266   // Cluster loads by adding MVT::Glue outputs and inputs. This also
267   // ensure they are scheduled in order of increasing addresses.
268   SDNode *Lead = Loads[0];
269   SDValue InGlue = SDValue(nullptr, 0);
270   if (AddGlue(Lead, InGlue, true, DAG))
271     InGlue = SDValue(Lead, Lead->getNumValues() - 1);
272   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
273     bool OutGlue = I < E - 1;
274     SDNode *Load = Loads[I];
275
276     // If AddGlue fails, we could leave an unsused glue value. This should not
277     // cause any
278     if (AddGlue(Load, InGlue, OutGlue, DAG)) {
279       if (OutGlue)
280         InGlue = SDValue(Load, Load->getNumValues() - 1);
281
282       ++LoadsClustered;
283     }
284     else if (!OutGlue && InGlue.getNode())
285       RemoveUnusedGlue(InGlue.getNode(), DAG);
286   }
287 }
288
289 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
290 ///
291 void ScheduleDAGSDNodes::ClusterNodes() {
292   for (SDNode &NI : DAG->allnodes()) {
293     SDNode *Node = &NI;
294     if (!Node || !Node->isMachineOpcode())
295       continue;
296
297     unsigned Opc = Node->getMachineOpcode();
298     const MCInstrDesc &MCID = TII->get(Opc);
299     if (MCID.mayLoad())
300       // Cluster loads from "near" addresses into combined SUnits.
301       ClusterNeighboringLoads(Node);
302   }
303 }
304
305 void ScheduleDAGSDNodes::BuildSchedUnits() {
306   // During scheduling, the NodeId field of SDNode is used to map SDNodes
307   // to their associated SUnits by holding SUnits table indices. A value
308   // of -1 means the SDNode does not yet have an associated SUnit.
309   unsigned NumNodes = 0;
310   for (SDNode &NI : DAG->allnodes()) {
311     NI.setNodeId(-1);
312     ++NumNodes;
313   }
314
315   // Reserve entries in the vector for each of the SUnits we are creating.  This
316   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
317   // invalidated.
318   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
319   // This is a temporary workaround.
320   SUnits.reserve(NumNodes * 2);
321
322   // Add all nodes in depth first order.
323   SmallVector<SDNode*, 64> Worklist;
324   SmallPtrSet<SDNode*, 64> Visited;
325   Worklist.push_back(DAG->getRoot().getNode());
326   Visited.insert(DAG->getRoot().getNode());
327
328   SmallVector<SUnit*, 8> CallSUnits;
329   while (!Worklist.empty()) {
330     SDNode *NI = Worklist.pop_back_val();
331
332     // Add all operands to the worklist unless they've already been added.
333     for (const SDValue &Op : NI->op_values())
334       if (Visited.insert(Op.getNode()).second)
335         Worklist.push_back(Op.getNode());
336
337     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
338       continue;
339
340     // If this node has already been processed, stop now.
341     if (NI->getNodeId() != -1) continue;
342
343     SUnit *NodeSUnit = newSUnit(NI);
344
345     // See if anything is glued to this node, if so, add them to glued
346     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
347     // is required to be the last operand and result of a node.
348
349     // Scan up to find glued preds.
350     SDNode *N = NI;
351     while (N->getNumOperands() &&
352            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
353       N = N->getOperand(N->getNumOperands()-1).getNode();
354       assert(N->getNodeId() == -1 && "Node already inserted!");
355       N->setNodeId(NodeSUnit->NodeNum);
356       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
357         NodeSUnit->isCall = true;
358     }
359
360     // Scan down to find any glued succs.
361     N = NI;
362     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
363       SDValue GlueVal(N, N->getNumValues()-1);
364
365       // There are either zero or one users of the Glue result.
366       bool HasGlueUse = false;
367       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
368            UI != E; ++UI)
369         if (GlueVal.isOperandOf(*UI)) {
370           HasGlueUse = true;
371           assert(N->getNodeId() == -1 && "Node already inserted!");
372           N->setNodeId(NodeSUnit->NodeNum);
373           N = *UI;
374           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
375             NodeSUnit->isCall = true;
376           break;
377         }
378       if (!HasGlueUse) break;
379     }
380
381     if (NodeSUnit->isCall)
382       CallSUnits.push_back(NodeSUnit);
383
384     // Schedule zero-latency TokenFactor below any nodes that may increase the
385     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
386     // have false stalls.
387     if (NI->getOpcode() == ISD::TokenFactor)
388       NodeSUnit->isScheduleLow = true;
389
390     // If there are glue operands involved, N is now the bottom-most node
391     // of the sequence of nodes that are glued together.
392     // Update the SUnit.
393     NodeSUnit->setNode(N);
394     assert(N->getNodeId() == -1 && "Node already inserted!");
395     N->setNodeId(NodeSUnit->NodeNum);
396
397     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
398     InitNumRegDefsLeft(NodeSUnit);
399
400     // Assign the Latency field of NodeSUnit using target-provided information.
401     computeLatency(NodeSUnit);
402   }
403
404   // Find all call operands.
405   while (!CallSUnits.empty()) {
406     SUnit *SU = CallSUnits.pop_back_val();
407     for (const SDNode *SUNode = SU->getNode(); SUNode;
408          SUNode = SUNode->getGluedNode()) {
409       if (SUNode->getOpcode() != ISD::CopyToReg)
410         continue;
411       SDNode *SrcN = SUNode->getOperand(2).getNode();
412       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
413       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
414       SrcSU->isCallOp = true;
415     }
416   }
417 }
418
419 void ScheduleDAGSDNodes::AddSchedEdges() {
420   const TargetSubtargetInfo &ST = MF.getSubtarget();
421
422   // Check to see if the scheduler cares about latencies.
423   bool UnitLatencies = forceUnitLatencies();
424
425   // Pass 2: add the preds, succs, etc.
426   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
427     SUnit *SU = &SUnits[su];
428     SDNode *MainNode = SU->getNode();
429
430     if (MainNode->isMachineOpcode()) {
431       unsigned Opc = MainNode->getMachineOpcode();
432       const MCInstrDesc &MCID = TII->get(Opc);
433       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
434         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
435           SU->isTwoAddress = true;
436           break;
437         }
438       }
439       if (MCID.isCommutable())
440         SU->isCommutable = true;
441     }
442
443     // Find all predecessors and successors of the group.
444     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
445       if (N->isMachineOpcode() &&
446           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
447         SU->hasPhysRegClobbers = true;
448         unsigned NumUsed = InstrEmitter::CountResults(N);
449         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
450           --NumUsed;    // Skip over unused values at the end.
451         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
452           SU->hasPhysRegDefs = true;
453       }
454
455       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
456         SDNode *OpN = N->getOperand(i).getNode();
457         if (isPassiveNode(OpN)) continue;   // Not scheduled.
458         SUnit *OpSU = &SUnits[OpN->getNodeId()];
459         assert(OpSU && "Node has no SUnit!");
460         if (OpSU == SU) continue;           // In the same group.
461
462         EVT OpVT = N->getOperand(i).getValueType();
463         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
464         bool isChain = OpVT == MVT::Other;
465
466         unsigned PhysReg = 0;
467         int Cost = 1;
468         // Determine if this is a physical register dependency.
469         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
470         assert((PhysReg == 0 || !isChain) &&
471                "Chain dependence via physreg data?");
472         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
473         // emits a copy from the physical register to a virtual register unless
474         // it requires a cross class copy (cost < 0). That means we are only
475         // treating "expensive to copy" register dependency as physical register
476         // dependency. This may change in the future though.
477         if (Cost >= 0 && !StressSched)
478           PhysReg = 0;
479
480         // If this is a ctrl dep, latency is 1.
481         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
482         // Special-case TokenFactor chains as zero-latency.
483         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
484           OpLatency = 0;
485
486         SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
487           : SDep(OpSU, SDep::Data, PhysReg);
488         Dep.setLatency(OpLatency);
489         if (!isChain && !UnitLatencies) {
490           computeOperandLatency(OpN, N, i, Dep);
491           ST.adjustSchedDependency(OpSU, SU, Dep);
492         }
493
494         if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
495           // Multiple register uses are combined in the same SUnit. For example,
496           // we could have a set of glued nodes with all their defs consumed by
497           // another set of glued nodes. Register pressure tracking sees this as
498           // a single use, so to keep pressure balanced we reduce the defs.
499           //
500           // We can't tell (without more book-keeping) if this results from
501           // glued nodes or duplicate operands. As long as we don't reduce
502           // NumRegDefsLeft to zero, we handle the common cases well.
503           --OpSU->NumRegDefsLeft;
504         }
505       }
506     }
507   }
508 }
509
510 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
511 /// are input.  This SUnit graph is similar to the SelectionDAG, but
512 /// excludes nodes that aren't interesting to scheduling, and represents
513 /// glued together nodes with a single SUnit.
514 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
515   // Cluster certain nodes which should be scheduled together.
516   ClusterNodes();
517   // Populate the SUnits array.
518   BuildSchedUnits();
519   // Compute all the scheduling dependencies between nodes.
520   AddSchedEdges();
521 }
522
523 // Initialize NumNodeDefs for the current Node's opcode.
524 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
525   // Check for phys reg copy.
526   if (!Node)
527     return;
528
529   if (!Node->isMachineOpcode()) {
530     if (Node->getOpcode() == ISD::CopyFromReg)
531       NodeNumDefs = 1;
532     else
533       NodeNumDefs = 0;
534     return;
535   }
536   unsigned POpc = Node->getMachineOpcode();
537   if (POpc == TargetOpcode::IMPLICIT_DEF) {
538     // No register need be allocated for this.
539     NodeNumDefs = 0;
540     return;
541   }
542   if (POpc == TargetOpcode::PATCHPOINT &&
543       Node->getValueType(0) == MVT::Other) {
544     // PATCHPOINT is defined to have one result, but it might really have none
545     // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
546     // real definition.
547     NodeNumDefs = 0;
548     return;
549   }
550   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
551   // Some instructions define regs that are not represented in the selection DAG
552   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
553   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
554   DefIdx = 0;
555 }
556
557 // Construct a RegDefIter for this SUnit and find the first valid value.
558 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
559                                            const ScheduleDAGSDNodes *SD)
560   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
561   InitNodeNumDefs();
562   Advance();
563 }
564
565 // Advance to the next valid value defined by the SUnit.
566 void ScheduleDAGSDNodes::RegDefIter::Advance() {
567   for (;Node;) { // Visit all glued nodes.
568     for (;DefIdx < NodeNumDefs; ++DefIdx) {
569       if (!Node->hasAnyUseOfValue(DefIdx))
570         continue;
571       ValueType = Node->getSimpleValueType(DefIdx);
572       ++DefIdx;
573       return; // Found a normal regdef.
574     }
575     Node = Node->getGluedNode();
576     if (!Node) {
577       return; // No values left to visit.
578     }
579     InitNodeNumDefs();
580   }
581 }
582
583 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
584   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
585   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
586     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
587     ++SU->NumRegDefsLeft;
588   }
589 }
590
591 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
592   SDNode *N = SU->getNode();
593
594   // TokenFactor operands are considered zero latency, and some schedulers
595   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
596   // whenever node latency is nonzero.
597   if (N && N->getOpcode() == ISD::TokenFactor) {
598     SU->Latency = 0;
599     return;
600   }
601
602   // Check to see if the scheduler cares about latencies.
603   if (forceUnitLatencies()) {
604     SU->Latency = 1;
605     return;
606   }
607
608   if (!InstrItins || InstrItins->isEmpty()) {
609     if (N && N->isMachineOpcode() &&
610         TII->isHighLatencyDef(N->getMachineOpcode()))
611       SU->Latency = HighLatencyCycles;
612     else
613       SU->Latency = 1;
614     return;
615   }
616
617   // Compute the latency for the node.  We use the sum of the latencies for
618   // all nodes glued together into this SUnit.
619   SU->Latency = 0;
620   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
621     if (N->isMachineOpcode())
622       SU->Latency += TII->getInstrLatency(InstrItins, N);
623 }
624
625 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
626                                                unsigned OpIdx, SDep& dep) const{
627   // Check to see if the scheduler cares about latencies.
628   if (forceUnitLatencies())
629     return;
630
631   if (dep.getKind() != SDep::Data)
632     return;
633
634   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
635   if (Use->isMachineOpcode())
636     // Adjust the use operand index by num of defs.
637     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
638   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
639   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
640       !BB->succ_empty()) {
641     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
642     if (TargetRegisterInfo::isVirtualRegister(Reg))
643       // This copy is a liveout value. It is likely coalesced, so reduce the
644       // latency so not to penalize the def.
645       // FIXME: need target specific adjustment here?
646       Latency = (Latency > 1) ? Latency - 1 : 1;
647   }
648   if (Latency >= 0)
649     dep.setLatency(Latency);
650 }
651
652 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
654   if (!SU->getNode()) {
655     dbgs() << "PHYS REG COPY\n";
656     return;
657   }
658
659   SU->getNode()->dump(DAG);
660   dbgs() << "\n";
661   SmallVector<SDNode *, 4> GluedNodes;
662   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
663     GluedNodes.push_back(N);
664   while (!GluedNodes.empty()) {
665     dbgs() << "    ";
666     GluedNodes.back()->dump(DAG);
667     dbgs() << "\n";
668     GluedNodes.pop_back();
669   }
670 #endif
671 }
672
673 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
674 void ScheduleDAGSDNodes::dumpSchedule() const {
675   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
676     if (SUnit *SU = Sequence[i])
677       SU->dump(this);
678     else
679       dbgs() << "**** NOOP ****\n";
680   }
681 }
682 #endif
683
684 #ifndef NDEBUG
685 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
686 /// their state is consistent with the nodes listed in Sequence.
687 ///
688 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
689   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
690   unsigned Noops = 0;
691   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
692     if (!Sequence[i])
693       ++Noops;
694   assert(Sequence.size() - Noops == ScheduledNodes &&
695          "The number of nodes scheduled doesn't match the expected number!");
696 }
697 #endif // NDEBUG
698
699 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
700 static void
701 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
702                    SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
703                    DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
704   if (!N->getHasDebugValue())
705     return;
706
707   // Opportunistically insert immediate dbg_value uses, i.e. those with source
708   // order number right after the N.
709   MachineBasicBlock *BB = Emitter.getBlock();
710   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
711   ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
712   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
713     if (DVs[i]->isInvalidated())
714       continue;
715     unsigned DVOrder = DVs[i]->getOrder();
716     if (!Order || DVOrder == ++Order) {
717       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
718       if (DbgMI) {
719         Orders.push_back(std::make_pair(DVOrder, DbgMI));
720         BB->insert(InsertPos, DbgMI);
721       }
722       DVs[i]->setIsInvalidated();
723     }
724   }
725 }
726
727 // ProcessSourceNode - Process nodes with source order numbers. These are added
728 // to a vector which EmitSchedule uses to determine how to insert dbg_value
729 // instructions in the right order.
730 static void
731 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
732                   DenseMap<SDValue, unsigned> &VRBaseMap,
733                   SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
734                   SmallSet<unsigned, 8> &Seen) {
735   unsigned Order = N->getIROrder();
736   if (!Order || !Seen.insert(Order).second) {
737     // Process any valid SDDbgValues even if node does not have any order
738     // assigned.
739     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
740     return;
741   }
742
743   MachineBasicBlock *BB = Emitter.getBlock();
744   if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
745       // Fast-isel may have inserted some instructions, in which case the
746       // BB->back().isPHI() test will not fire when we want it to.
747       std::prev(Emitter.getInsertPos())->isPHI()) {
748     // Did not insert any instruction.
749     Orders.push_back(std::make_pair(Order, (MachineInstr*)nullptr));
750     return;
751   }
752
753   Orders.push_back(std::make_pair(Order, std::prev(Emitter.getInsertPos())));
754   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
755 }
756
757 void ScheduleDAGSDNodes::
758 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
759                 MachineBasicBlock::iterator InsertPos) {
760   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
761        I != E; ++I) {
762     if (I->isCtrl()) continue;  // ignore chain preds
763     if (I->getSUnit()->CopyDstRC) {
764       // Copy to physical register.
765       DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
766       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
767       // Find the destination physical register.
768       unsigned Reg = 0;
769       for (SUnit::const_succ_iterator II = SU->Succs.begin(),
770              EE = SU->Succs.end(); II != EE; ++II) {
771         if (II->isCtrl()) continue;  // ignore chain preds
772         if (II->getReg()) {
773           Reg = II->getReg();
774           break;
775         }
776       }
777       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
778         .addReg(VRI->second);
779     } else {
780       // Copy from physical register.
781       assert(I->getReg() && "Unknown physical register!");
782       unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
783       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
784       (void)isNew; // Silence compiler warning.
785       assert(isNew && "Node emitted out of order - early");
786       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
787         .addReg(I->getReg());
788     }
789     break;
790   }
791 }
792
793 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
794 /// InsertPos and MachineBasicBlock that contains this insertion
795 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
796 /// not necessarily refer to returned BB. The emitter may split blocks.
797 MachineBasicBlock *ScheduleDAGSDNodes::
798 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
799   InstrEmitter Emitter(BB, InsertPos);
800   DenseMap<SDValue, unsigned> VRBaseMap;
801   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
802   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
803   SmallSet<unsigned, 8> Seen;
804   bool HasDbg = DAG->hasDebugValues();
805
806   // If this is the first BB, emit byval parameter dbg_value's.
807   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
808     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
809     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
810     for (; PDI != PDE; ++PDI) {
811       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
812       if (DbgMI)
813         BB->insert(InsertPos, DbgMI);
814     }
815   }
816
817   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
818     SUnit *SU = Sequence[i];
819     if (!SU) {
820       // Null SUnit* is a noop.
821       TII->insertNoop(*Emitter.getBlock(), InsertPos);
822       continue;
823     }
824
825     // For pre-regalloc scheduling, create instructions corresponding to the
826     // SDNode and any glued SDNodes and append them to the block.
827     if (!SU->getNode()) {
828       // Emit a copy.
829       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
830       continue;
831     }
832
833     SmallVector<SDNode *, 4> GluedNodes;
834     for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
835       GluedNodes.push_back(N);
836     while (!GluedNodes.empty()) {
837       SDNode *N = GluedNodes.back();
838       Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
839                        VRBaseMap);
840       // Remember the source order of the inserted instruction.
841       if (HasDbg)
842         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
843       GluedNodes.pop_back();
844     }
845     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
846                      VRBaseMap);
847     // Remember the source order of the inserted instruction.
848     if (HasDbg)
849       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
850                         Seen);
851   }
852
853   // Insert all the dbg_values which have not already been inserted in source
854   // order sequence.
855   if (HasDbg) {
856     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
857
858     // Sort the source order instructions and use the order to insert debug
859     // values.
860     std::sort(Orders.begin(), Orders.end(), less_first());
861
862     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
863     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
864     // Now emit the rest according to source order.
865     unsigned LastOrder = 0;
866     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
867       unsigned Order = Orders[i].first;
868       MachineInstr *MI = Orders[i].second;
869       // Insert all SDDbgValue's whose order(s) are before "Order".
870       if (!MI)
871         continue;
872       for (; DI != DE &&
873              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
874         if ((*DI)->isInvalidated())
875           continue;
876         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
877         if (DbgMI) {
878           if (!LastOrder)
879             // Insert to start of the BB (after PHIs).
880             BB->insert(BBBegin, DbgMI);
881           else {
882             // Insert at the instruction, which may be in a different
883             // block, if the block was split by a custom inserter.
884             MachineBasicBlock::iterator Pos = MI;
885             MI->getParent()->insert(Pos, DbgMI);
886           }
887         }
888       }
889       LastOrder = Order;
890     }
891     // Add trailing DbgValue's before the terminator. FIXME: May want to add
892     // some of them before one or more conditional branches?
893     SmallVector<MachineInstr*, 8> DbgMIs;
894     while (DI != DE) {
895       if (!(*DI)->isInvalidated())
896         if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
897           DbgMIs.push_back(DbgMI);
898       ++DI;
899     }
900
901     MachineBasicBlock *InsertBB = Emitter.getBlock();
902     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
903     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
904   }
905
906   InsertPos = Emitter.getInsertPos();
907   return Emitter.getBlock();
908 }
909
910 /// Return the basic block label.
911 std::string ScheduleDAGSDNodes::getDAGName() const {
912   return "sunit-dag." + BB->getFullName();
913 }