Cleanup in preparation for misched: Move DAG visualization logic.
[oota-llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAGSDNodes.cpp
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "SDNodeDbgValue.h"
17 #include "ScheduleDAGSDNodes.h"
18 #include "InstrEmitter.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/Target/TargetMachine.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Target/TargetSubtargetInfo.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 using namespace llvm;
35
36 STATISTIC(LoadsClustered, "Number of loads clustered together");
37
38 // This allows latency based scheduler to notice high latency instructions
39 // without a target itinerary. The choise if number here has more to do with
40 // balancing scheduler heursitics than with the actual machine latency.
41 static cl::opt<int> HighLatencyCycles(
42   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
43   cl::desc("Roughly estimate the number of cycles that 'long latency'"
44            "instructions take for targets with no itinerary"));
45
46 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
47   : ScheduleDAG(mf),
48     InstrItins(mf.getTarget().getInstrItineraryData()) {}
49
50 /// Run - perform scheduling.
51 ///
52 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
53                              MachineBasicBlock::iterator insertPos) {
54   DAG = dag;
55   ScheduleDAG::Run(bb, insertPos);
56 }
57
58 /// NewSUnit - Creates a new SUnit and return a ptr to it.
59 ///
60 SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
61 #ifndef NDEBUG
62   const SUnit *Addr = 0;
63   if (!SUnits.empty())
64     Addr = &SUnits[0];
65 #endif
66   SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
67   assert((Addr == 0 || Addr == &SUnits[0]) &&
68          "SUnits std::vector reallocated on the fly!");
69   SUnits.back().OrigNode = &SUnits.back();
70   SUnit *SU = &SUnits.back();
71   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
72   if (!N ||
73       (N->isMachineOpcode() &&
74        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
75     SU->SchedulingPref = Sched::None;
76   else
77     SU->SchedulingPref = TLI.getSchedulingPreference(N);
78   return SU;
79 }
80
81 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
82   SUnit *SU = NewSUnit(Old->getNode());
83   SU->OrigNode = Old->OrigNode;
84   SU->Latency = Old->Latency;
85   SU->isVRegCycle = Old->isVRegCycle;
86   SU->isCall = Old->isCall;
87   SU->isCallOp = Old->isCallOp;
88   SU->isTwoAddress = Old->isTwoAddress;
89   SU->isCommutable = Old->isCommutable;
90   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
91   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
92   SU->isScheduleHigh = Old->isScheduleHigh;
93   SU->isScheduleLow = Old->isScheduleLow;
94   SU->SchedulingPref = Old->SchedulingPref;
95   Old->isCloned = true;
96   return SU;
97 }
98
99 /// CheckForPhysRegDependency - Check if the dependency between def and use of
100 /// a specified operand is a physical register dependency. If so, returns the
101 /// register and the cost of copying the register.
102 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
103                                       const TargetRegisterInfo *TRI,
104                                       const TargetInstrInfo *TII,
105                                       unsigned &PhysReg, int &Cost) {
106   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
107     return;
108
109   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
110   if (TargetRegisterInfo::isVirtualRegister(Reg))
111     return;
112
113   unsigned ResNo = User->getOperand(2).getResNo();
114   if (Def->isMachineOpcode()) {
115     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
116     if (ResNo >= II.getNumDefs() &&
117         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
118       PhysReg = Reg;
119       const TargetRegisterClass *RC =
120         TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
121       Cost = RC->getCopyCost();
122     }
123   }
124 }
125
126 static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
127   SmallVector<EVT, 4> VTs;
128   SDNode *GlueDestNode = Glue.getNode();
129
130   // Don't add glue from a node to itself.
131   if (GlueDestNode == N) return;
132
133   // Don't add glue to something which already has glue.
134   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
135
136   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
137     VTs.push_back(N->getValueType(I));
138
139   if (AddGlue)
140     VTs.push_back(MVT::Glue);
141
142   SmallVector<SDValue, 4> Ops;
143   for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
144     Ops.push_back(N->getOperand(I));
145
146   if (GlueDestNode)
147     Ops.push_back(Glue);
148
149   SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
150   MachineSDNode::mmo_iterator Begin = 0, End = 0;
151   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
152
153   // Store memory references.
154   if (MN) {
155     Begin = MN->memoperands_begin();
156     End = MN->memoperands_end();
157   }
158
159   DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
160
161   // Reset the memory references
162   if (MN)
163     MN->setMemRefs(Begin, End);
164 }
165
166 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
167 /// This function finds loads of the same base and different offsets. If the
168 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
169 /// outputs to ensure they are scheduled together and in order. This
170 /// optimization may benefit some targets by improving cache locality.
171 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
172   SDNode *Chain = 0;
173   unsigned NumOps = Node->getNumOperands();
174   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
175     Chain = Node->getOperand(NumOps-1).getNode();
176   if (!Chain)
177     return;
178
179   // Look for other loads of the same chain. Find loads that are loading from
180   // the same base pointer and different offsets.
181   SmallPtrSet<SDNode*, 16> Visited;
182   SmallVector<int64_t, 4> Offsets;
183   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
184   bool Cluster = false;
185   SDNode *Base = Node;
186   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
187        I != E; ++I) {
188     SDNode *User = *I;
189     if (User == Node || !Visited.insert(User))
190       continue;
191     int64_t Offset1, Offset2;
192     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
193         Offset1 == Offset2)
194       // FIXME: Should be ok if they addresses are identical. But earlier
195       // optimizations really should have eliminated one of the loads.
196       continue;
197     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
198       Offsets.push_back(Offset1);
199     O2SMap.insert(std::make_pair(Offset2, User));
200     Offsets.push_back(Offset2);
201     if (Offset2 < Offset1)
202       Base = User;
203     Cluster = true;
204   }
205
206   if (!Cluster)
207     return;
208
209   // Sort them in increasing order.
210   std::sort(Offsets.begin(), Offsets.end());
211
212   // Check if the loads are close enough.
213   SmallVector<SDNode*, 4> Loads;
214   unsigned NumLoads = 0;
215   int64_t BaseOff = Offsets[0];
216   SDNode *BaseLoad = O2SMap[BaseOff];
217   Loads.push_back(BaseLoad);
218   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
219     int64_t Offset = Offsets[i];
220     SDNode *Load = O2SMap[Offset];
221     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
222       break; // Stop right here. Ignore loads that are further away.
223     Loads.push_back(Load);
224     ++NumLoads;
225   }
226
227   if (NumLoads == 0)
228     return;
229
230   // Cluster loads by adding MVT::Glue outputs and inputs. This also
231   // ensure they are scheduled in order of increasing addresses.
232   SDNode *Lead = Loads[0];
233   AddGlue(Lead, SDValue(0, 0), true, DAG);
234
235   SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
236   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
237     bool OutGlue = I < E - 1;
238     SDNode *Load = Loads[I];
239
240     AddGlue(Load, InGlue, OutGlue, DAG);
241
242     if (OutGlue)
243       InGlue = SDValue(Load, Load->getNumValues() - 1);
244
245     ++LoadsClustered;
246   }
247 }
248
249 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
250 ///
251 void ScheduleDAGSDNodes::ClusterNodes() {
252   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
253        E = DAG->allnodes_end(); NI != E; ++NI) {
254     SDNode *Node = &*NI;
255     if (!Node || !Node->isMachineOpcode())
256       continue;
257
258     unsigned Opc = Node->getMachineOpcode();
259     const MCInstrDesc &MCID = TII->get(Opc);
260     if (MCID.mayLoad())
261       // Cluster loads from "near" addresses into combined SUnits.
262       ClusterNeighboringLoads(Node);
263   }
264 }
265
266 void ScheduleDAGSDNodes::BuildSchedUnits() {
267   // During scheduling, the NodeId field of SDNode is used to map SDNodes
268   // to their associated SUnits by holding SUnits table indices. A value
269   // of -1 means the SDNode does not yet have an associated SUnit.
270   unsigned NumNodes = 0;
271   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
272        E = DAG->allnodes_end(); NI != E; ++NI) {
273     NI->setNodeId(-1);
274     ++NumNodes;
275   }
276
277   // Reserve entries in the vector for each of the SUnits we are creating.  This
278   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
279   // invalidated.
280   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
281   // This is a temporary workaround.
282   SUnits.reserve(NumNodes * 2);
283
284   // Add all nodes in depth first order.
285   SmallVector<SDNode*, 64> Worklist;
286   SmallPtrSet<SDNode*, 64> Visited;
287   Worklist.push_back(DAG->getRoot().getNode());
288   Visited.insert(DAG->getRoot().getNode());
289
290   SmallVector<SUnit*, 8> CallSUnits;
291   while (!Worklist.empty()) {
292     SDNode *NI = Worklist.pop_back_val();
293
294     // Add all operands to the worklist unless they've already been added.
295     for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
296       if (Visited.insert(NI->getOperand(i).getNode()))
297         Worklist.push_back(NI->getOperand(i).getNode());
298
299     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
300       continue;
301
302     // If this node has already been processed, stop now.
303     if (NI->getNodeId() != -1) continue;
304
305     SUnit *NodeSUnit = NewSUnit(NI);
306
307     // See if anything is glued to this node, if so, add them to glued
308     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
309     // is required to be the last operand and result of a node.
310
311     // Scan up to find glued preds.
312     SDNode *N = NI;
313     while (N->getNumOperands() &&
314            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
315       N = N->getOperand(N->getNumOperands()-1).getNode();
316       assert(N->getNodeId() == -1 && "Node already inserted!");
317       N->setNodeId(NodeSUnit->NodeNum);
318       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
319         NodeSUnit->isCall = true;
320     }
321
322     // Scan down to find any glued succs.
323     N = NI;
324     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
325       SDValue GlueVal(N, N->getNumValues()-1);
326
327       // There are either zero or one users of the Glue result.
328       bool HasGlueUse = false;
329       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
330            UI != E; ++UI)
331         if (GlueVal.isOperandOf(*UI)) {
332           HasGlueUse = true;
333           assert(N->getNodeId() == -1 && "Node already inserted!");
334           N->setNodeId(NodeSUnit->NodeNum);
335           N = *UI;
336           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
337             NodeSUnit->isCall = true;
338           break;
339         }
340       if (!HasGlueUse) break;
341     }
342
343     if (NodeSUnit->isCall)
344       CallSUnits.push_back(NodeSUnit);
345
346     // Schedule zero-latency TokenFactor below any nodes that may increase the
347     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
348     // have false stalls.
349     if (NI->getOpcode() == ISD::TokenFactor)
350       NodeSUnit->isScheduleLow = true;
351
352     // If there are glue operands involved, N is now the bottom-most node
353     // of the sequence of nodes that are glued together.
354     // Update the SUnit.
355     NodeSUnit->setNode(N);
356     assert(N->getNodeId() == -1 && "Node already inserted!");
357     N->setNodeId(NodeSUnit->NodeNum);
358
359     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
360     InitNumRegDefsLeft(NodeSUnit);
361
362     // Assign the Latency field of NodeSUnit using target-provided information.
363     ComputeLatency(NodeSUnit);
364   }
365
366   // Find all call operands.
367   while (!CallSUnits.empty()) {
368     SUnit *SU = CallSUnits.pop_back_val();
369     for (const SDNode *SUNode = SU->getNode(); SUNode;
370          SUNode = SUNode->getGluedNode()) {
371       if (SUNode->getOpcode() != ISD::CopyToReg)
372         continue;
373       SDNode *SrcN = SUNode->getOperand(2).getNode();
374       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
375       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
376       SrcSU->isCallOp = true;
377     }
378   }
379 }
380
381 void ScheduleDAGSDNodes::AddSchedEdges() {
382   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
383
384   // Check to see if the scheduler cares about latencies.
385   bool UnitLatencies = ForceUnitLatencies();
386
387   // Pass 2: add the preds, succs, etc.
388   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
389     SUnit *SU = &SUnits[su];
390     SDNode *MainNode = SU->getNode();
391
392     if (MainNode->isMachineOpcode()) {
393       unsigned Opc = MainNode->getMachineOpcode();
394       const MCInstrDesc &MCID = TII->get(Opc);
395       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
396         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
397           SU->isTwoAddress = true;
398           break;
399         }
400       }
401       if (MCID.isCommutable())
402         SU->isCommutable = true;
403     }
404
405     // Find all predecessors and successors of the group.
406     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
407       if (N->isMachineOpcode() &&
408           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
409         SU->hasPhysRegClobbers = true;
410         unsigned NumUsed = InstrEmitter::CountResults(N);
411         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
412           --NumUsed;    // Skip over unused values at the end.
413         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
414           SU->hasPhysRegDefs = true;
415       }
416
417       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
418         SDNode *OpN = N->getOperand(i).getNode();
419         if (isPassiveNode(OpN)) continue;   // Not scheduled.
420         SUnit *OpSU = &SUnits[OpN->getNodeId()];
421         assert(OpSU && "Node has no SUnit!");
422         if (OpSU == SU) continue;           // In the same group.
423
424         EVT OpVT = N->getOperand(i).getValueType();
425         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
426         bool isChain = OpVT == MVT::Other;
427
428         unsigned PhysReg = 0;
429         int Cost = 1;
430         // Determine if this is a physical register dependency.
431         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
432         assert((PhysReg == 0 || !isChain) &&
433                "Chain dependence via physreg data?");
434         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
435         // emits a copy from the physical register to a virtual register unless
436         // it requires a cross class copy (cost < 0). That means we are only
437         // treating "expensive to copy" register dependency as physical register
438         // dependency. This may change in the future though.
439         if (Cost >= 0 && !StressSched)
440           PhysReg = 0;
441
442         // If this is a ctrl dep, latency is 1.
443         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
444         // Special-case TokenFactor chains as zero-latency.
445         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
446           OpLatency = 0;
447
448         const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
449                                OpLatency, PhysReg);
450         if (!isChain && !UnitLatencies) {
451           ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
452           ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
453         }
454
455         if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
456           // Multiple register uses are combined in the same SUnit. For example,
457           // we could have a set of glued nodes with all their defs consumed by
458           // another set of glued nodes. Register pressure tracking sees this as
459           // a single use, so to keep pressure balanced we reduce the defs.
460           //
461           // We can't tell (without more book-keeping) if this results from
462           // glued nodes or duplicate operands. As long as we don't reduce
463           // NumRegDefsLeft to zero, we handle the common cases well.
464           --OpSU->NumRegDefsLeft;
465         }
466       }
467     }
468   }
469 }
470
471 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
472 /// are input.  This SUnit graph is similar to the SelectionDAG, but
473 /// excludes nodes that aren't interesting to scheduling, and represents
474 /// glued together nodes with a single SUnit.
475 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
476   // Cluster certain nodes which should be scheduled together.
477   ClusterNodes();
478   // Populate the SUnits array.
479   BuildSchedUnits();
480   // Compute all the scheduling dependencies between nodes.
481   AddSchedEdges();
482 }
483
484 // Initialize NumNodeDefs for the current Node's opcode.
485 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
486   // Check for phys reg copy.
487   if (!Node)
488     return;
489
490   if (!Node->isMachineOpcode()) {
491     if (Node->getOpcode() == ISD::CopyFromReg)
492       NodeNumDefs = 1;
493     else
494       NodeNumDefs = 0;
495     return;
496   }
497   unsigned POpc = Node->getMachineOpcode();
498   if (POpc == TargetOpcode::IMPLICIT_DEF) {
499     // No register need be allocated for this.
500     NodeNumDefs = 0;
501     return;
502   }
503   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
504   // Some instructions define regs that are not represented in the selection DAG
505   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
506   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
507   DefIdx = 0;
508 }
509
510 // Construct a RegDefIter for this SUnit and find the first valid value.
511 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
512                                            const ScheduleDAGSDNodes *SD)
513   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
514   InitNodeNumDefs();
515   Advance();
516 }
517
518 // Advance to the next valid value defined by the SUnit.
519 void ScheduleDAGSDNodes::RegDefIter::Advance() {
520   for (;Node;) { // Visit all glued nodes.
521     for (;DefIdx < NodeNumDefs; ++DefIdx) {
522       if (!Node->hasAnyUseOfValue(DefIdx))
523         continue;
524       ValueType = Node->getValueType(DefIdx);
525       ++DefIdx;
526       return; // Found a normal regdef.
527     }
528     Node = Node->getGluedNode();
529     if (Node == NULL) {
530       return; // No values left to visit.
531     }
532     InitNodeNumDefs();
533   }
534 }
535
536 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
537   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
538   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
539     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
540     ++SU->NumRegDefsLeft;
541   }
542 }
543
544 void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
545   SDNode *N = SU->getNode();
546
547   // TokenFactor operands are considered zero latency, and some schedulers
548   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
549   // whenever node latency is nonzero.
550   if (N && N->getOpcode() == ISD::TokenFactor) {
551     SU->Latency = 0;
552     return;
553   }
554
555   // Check to see if the scheduler cares about latencies.
556   if (ForceUnitLatencies()) {
557     SU->Latency = 1;
558     return;
559   }
560
561   if (!InstrItins || InstrItins->isEmpty()) {
562     if (N && N->isMachineOpcode() &&
563         TII->isHighLatencyDef(N->getMachineOpcode()))
564       SU->Latency = HighLatencyCycles;
565     else
566       SU->Latency = 1;
567     return;
568   }
569
570   // Compute the latency for the node.  We use the sum of the latencies for
571   // all nodes glued together into this SUnit.
572   SU->Latency = 0;
573   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
574     if (N->isMachineOpcode())
575       SU->Latency += TII->getInstrLatency(InstrItins, N);
576 }
577
578 void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
579                                                unsigned OpIdx, SDep& dep) const{
580   // Check to see if the scheduler cares about latencies.
581   if (ForceUnitLatencies())
582     return;
583
584   if (dep.getKind() != SDep::Data)
585     return;
586
587   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
588   if (Use->isMachineOpcode())
589     // Adjust the use operand index by num of defs.
590     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
591   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
592   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
593       !BB->succ_empty()) {
594     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
595     if (TargetRegisterInfo::isVirtualRegister(Reg))
596       // This copy is a liveout value. It is likely coalesced, so reduce the
597       // latency so not to penalize the def.
598       // FIXME: need target specific adjustment here?
599       Latency = (Latency > 1) ? Latency - 1 : 1;
600   }
601   if (Latency >= 0)
602     dep.setLatency(Latency);
603 }
604
605 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
606   if (!SU->getNode()) {
607     dbgs() << "PHYS REG COPY\n";
608     return;
609   }
610
611   SU->getNode()->dump(DAG);
612   dbgs() << "\n";
613   SmallVector<SDNode *, 4> GluedNodes;
614   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
615     GluedNodes.push_back(N);
616   while (!GluedNodes.empty()) {
617     dbgs() << "    ";
618     GluedNodes.back()->dump(DAG);
619     dbgs() << "\n";
620     GluedNodes.pop_back();
621   }
622 }
623
624 namespace {
625   struct OrderSorter {
626     bool operator()(const std::pair<unsigned, MachineInstr*> &A,
627                     const std::pair<unsigned, MachineInstr*> &B) {
628       return A.first < B.first;
629     }
630   };
631 }
632
633 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
634 static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
635                                InstrEmitter &Emitter,
636                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
637                             DenseMap<SDValue, unsigned> &VRBaseMap,
638                             unsigned Order) {
639   if (!N->getHasDebugValue())
640     return;
641
642   // Opportunistically insert immediate dbg_value uses, i.e. those with source
643   // order number right after the N.
644   MachineBasicBlock *BB = Emitter.getBlock();
645   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
646   ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
647   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
648     if (DVs[i]->isInvalidated())
649       continue;
650     unsigned DVOrder = DVs[i]->getOrder();
651     if (!Order || DVOrder == ++Order) {
652       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
653       if (DbgMI) {
654         Orders.push_back(std::make_pair(DVOrder, DbgMI));
655         BB->insert(InsertPos, DbgMI);
656       }
657       DVs[i]->setIsInvalidated();
658     }
659   }
660 }
661
662 // ProcessSourceNode - Process nodes with source order numbers. These are added
663 // to a vector which EmitSchedule uses to determine how to insert dbg_value
664 // instructions in the right order.
665 static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
666                            InstrEmitter &Emitter,
667                            DenseMap<SDValue, unsigned> &VRBaseMap,
668                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
669                            SmallSet<unsigned, 8> &Seen) {
670   unsigned Order = DAG->GetOrdering(N);
671   if (!Order || !Seen.insert(Order)) {
672     // Process any valid SDDbgValues even if node does not have any order
673     // assigned.
674     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
675     return;
676   }
677
678   MachineBasicBlock *BB = Emitter.getBlock();
679   if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
680     // Did not insert any instruction.
681     Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
682     return;
683   }
684
685   Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
686   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
687 }
688
689
690 /// EmitSchedule - Emit the machine code in scheduled order.
691 MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
692   InstrEmitter Emitter(BB, InsertPos);
693   DenseMap<SDValue, unsigned> VRBaseMap;
694   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
695   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
696   SmallSet<unsigned, 8> Seen;
697   bool HasDbg = DAG->hasDebugValues();
698
699   // If this is the first BB, emit byval parameter dbg_value's.
700   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
701     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
702     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
703     for (; PDI != PDE; ++PDI) {
704       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
705       if (DbgMI)
706         BB->insert(InsertPos, DbgMI);
707     }
708   }
709
710   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
711     SUnit *SU = Sequence[i];
712     if (!SU) {
713       // Null SUnit* is a noop.
714       EmitNoop();
715       continue;
716     }
717
718     // For pre-regalloc scheduling, create instructions corresponding to the
719     // SDNode and any glued SDNodes and append them to the block.
720     if (!SU->getNode()) {
721       // Emit a copy.
722       EmitPhysRegCopy(SU, CopyVRBaseMap);
723       continue;
724     }
725
726     SmallVector<SDNode *, 4> GluedNodes;
727     for (SDNode *N = SU->getNode()->getGluedNode(); N;
728          N = N->getGluedNode())
729       GluedNodes.push_back(N);
730     while (!GluedNodes.empty()) {
731       SDNode *N = GluedNodes.back();
732       Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
733                        VRBaseMap);
734       // Remember the source order of the inserted instruction.
735       if (HasDbg)
736         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
737       GluedNodes.pop_back();
738     }
739     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
740                      VRBaseMap);
741     // Remember the source order of the inserted instruction.
742     if (HasDbg)
743       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
744                         Seen);
745   }
746
747   // Insert all the dbg_values which have not already been inserted in source
748   // order sequence.
749   if (HasDbg) {
750     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
751
752     // Sort the source order instructions and use the order to insert debug
753     // values.
754     std::sort(Orders.begin(), Orders.end(), OrderSorter());
755
756     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
757     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
758     // Now emit the rest according to source order.
759     unsigned LastOrder = 0;
760     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
761       unsigned Order = Orders[i].first;
762       MachineInstr *MI = Orders[i].second;
763       // Insert all SDDbgValue's whose order(s) are before "Order".
764       if (!MI)
765         continue;
766       for (; DI != DE &&
767              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
768         if ((*DI)->isInvalidated())
769           continue;
770         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
771         if (DbgMI) {
772           if (!LastOrder)
773             // Insert to start of the BB (after PHIs).
774             BB->insert(BBBegin, DbgMI);
775           else {
776             // Insert at the instruction, which may be in a different
777             // block, if the block was split by a custom inserter.
778             MachineBasicBlock::iterator Pos = MI;
779             MI->getParent()->insert(llvm::next(Pos), DbgMI);
780           }
781         }
782       }
783       LastOrder = Order;
784     }
785     // Add trailing DbgValue's before the terminator. FIXME: May want to add
786     // some of them before one or more conditional branches?
787     while (DI != DE) {
788       MachineBasicBlock *InsertBB = Emitter.getBlock();
789       MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
790       if (!(*DI)->isInvalidated()) {
791         MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
792         if (DbgMI)
793           InsertBB->insert(Pos, DbgMI);
794       }
795       ++DI;
796     }
797   }
798
799   BB = Emitter.getBlock();
800   InsertPos = Emitter.getInsertPos();
801   return BB;
802 }
803
804 /// Return the basic block label.
805 std::string ScheduleDAGSDNodes::getDAGName() const {
806   return "sunit-dag." + BB->getFullName();
807 }