Add a C++11 ThreadPool implementation in LLVM
[oota-llvm.git] / include / llvm / Support / Allocator.h
1 //===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
12 /// of these conform to an LLVM "Allocator" concept which consists of an
13 /// Allocate method accepting a size and alignment, and a Deallocate accepting
14 /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
15 /// Allocate and Deallocate for setting size and alignment based on the final
16 /// type. These overloads are typically provided by a base class template \c
17 /// AllocatorBase.
18 ///
19 //===----------------------------------------------------------------------===//
20
21 #ifndef LLVM_SUPPORT_ALLOCATOR_H
22 #define LLVM_SUPPORT_ALLOCATOR_H
23
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/AlignOf.h"
26 #include "llvm/Support/DataTypes.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/Memory.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdlib>
33
34 namespace llvm {
35
36 /// \brief CRTP base class providing obvious overloads for the core \c
37 /// Allocate() methods of LLVM-style allocators.
38 ///
39 /// This base class both documents the full public interface exposed by all
40 /// LLVM-style allocators, and redirects all of the overloads to a single core
41 /// set of methods which the derived class must define.
42 template <typename DerivedT> class AllocatorBase {
43 public:
44   /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method
45   /// must be implemented by \c DerivedT.
46   void *Allocate(size_t Size, size_t Alignment) {
47 #ifdef __clang__
48     static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
49                       &AllocatorBase::Allocate) !=
50                       static_cast<void *(DerivedT::*)(size_t, size_t)>(
51                           &DerivedT::Allocate),
52                   "Class derives from AllocatorBase without implementing the "
53                   "core Allocate(size_t, size_t) overload!");
54 #endif
55     return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
56   }
57
58   /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this
59   /// allocator.
60   void Deallocate(const void *Ptr, size_t Size) {
61 #ifdef __clang__
62     static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
63                       &AllocatorBase::Deallocate) !=
64                       static_cast<void (DerivedT::*)(const void *, size_t)>(
65                           &DerivedT::Deallocate),
66                   "Class derives from AllocatorBase without implementing the "
67                   "core Deallocate(void *) overload!");
68 #endif
69     return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
70   }
71
72   // The rest of these methods are helpers that redirect to one of the above
73   // core methods.
74
75   /// \brief Allocate space for a sequence of objects without constructing them.
76   template <typename T> T *Allocate(size_t Num = 1) {
77     return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
78   }
79
80   /// \brief Deallocate space for a sequence of objects without constructing them.
81   template <typename T>
82   typename std::enable_if<
83       !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
84   Deallocate(T *Ptr, size_t Num = 1) {
85     Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
86   }
87 };
88
89 class MallocAllocator : public AllocatorBase<MallocAllocator> {
90 public:
91   void Reset() {}
92
93   LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
94                                                 size_t /*Alignment*/) {
95     return malloc(Size);
96   }
97
98   // Pull in base class overloads.
99   using AllocatorBase<MallocAllocator>::Allocate;
100
101   void Deallocate(const void *Ptr, size_t /*Size*/) {
102     free(const_cast<void *>(Ptr));
103   }
104
105   // Pull in base class overloads.
106   using AllocatorBase<MallocAllocator>::Deallocate;
107
108   void PrintStats() const {}
109 };
110
111 namespace detail {
112
113 // We call out to an external function to actually print the message as the
114 // printing code uses Allocator.h in its implementation.
115 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
116                                 size_t TotalMemory);
117 } // End namespace detail.
118
119 /// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
120 ///
121 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
122 /// memory rather than relying on a boundless contiguous heap. However, it has
123 /// bump-pointer semantics in that it is a monotonically growing pool of memory
124 /// where every allocation is found by merely allocating the next N bytes in
125 /// the slab, or the next N bytes in the next slab.
126 ///
127 /// Note that this also has a threshold for forcing allocations above a certain
128 /// size into their own slab.
129 ///
130 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
131 /// object, which wraps malloc, to allocate memory, but it can be changed to
132 /// use a custom allocator.
133 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
134           size_t SizeThreshold = SlabSize>
135 class BumpPtrAllocatorImpl
136     : public AllocatorBase<
137           BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
138 public:
139   static_assert(SizeThreshold <= SlabSize,
140                 "The SizeThreshold must be at most the SlabSize to ensure "
141                 "that objects larger than a slab go into their own memory "
142                 "allocation.");
143
144   BumpPtrAllocatorImpl()
145       : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {}
146   template <typename T>
147   BumpPtrAllocatorImpl(T &&Allocator)
148       : CurPtr(nullptr), End(nullptr), BytesAllocated(0),
149         Allocator(std::forward<T &&>(Allocator)) {}
150
151   // Manually implement a move constructor as we must clear the old allocator's
152   // slabs as a matter of correctness.
153   BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
154       : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
155         CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
156         BytesAllocated(Old.BytesAllocated),
157         Allocator(std::move(Old.Allocator)) {
158     Old.CurPtr = Old.End = nullptr;
159     Old.BytesAllocated = 0;
160     Old.Slabs.clear();
161     Old.CustomSizedSlabs.clear();
162   }
163
164   ~BumpPtrAllocatorImpl() {
165     DeallocateSlabs(Slabs.begin(), Slabs.end());
166     DeallocateCustomSizedSlabs();
167   }
168
169   BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
170     DeallocateSlabs(Slabs.begin(), Slabs.end());
171     DeallocateCustomSizedSlabs();
172
173     CurPtr = RHS.CurPtr;
174     End = RHS.End;
175     BytesAllocated = RHS.BytesAllocated;
176     Slabs = std::move(RHS.Slabs);
177     CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
178     Allocator = std::move(RHS.Allocator);
179
180     RHS.CurPtr = RHS.End = nullptr;
181     RHS.BytesAllocated = 0;
182     RHS.Slabs.clear();
183     RHS.CustomSizedSlabs.clear();
184     return *this;
185   }
186
187   /// \brief Deallocate all but the current slab and reset the current pointer
188   /// to the beginning of it, freeing all memory allocated so far.
189   void Reset() {
190     DeallocateCustomSizedSlabs();
191     CustomSizedSlabs.clear();
192
193     if (Slabs.empty())
194       return;
195
196     // Reset the state.
197     BytesAllocated = 0;
198     CurPtr = (char *)Slabs.front();
199     End = CurPtr + SlabSize;
200
201     // Deallocate all but the first slab, and deallocate all custom-sized slabs.
202     DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
203     Slabs.erase(std::next(Slabs.begin()), Slabs.end());
204   }
205
206   /// \brief Allocate space at the specified alignment.
207   LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
208   Allocate(size_t Size, size_t Alignment) {
209     assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");
210
211     // Keep track of how many bytes we've allocated.
212     BytesAllocated += Size;
213
214     size_t Adjustment = alignmentAdjustment(CurPtr, Alignment);
215     assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
216
217     // Check if we have enough space.
218     if (Adjustment + Size <= size_t(End - CurPtr)) {
219       char *AlignedPtr = CurPtr + Adjustment;
220       CurPtr = AlignedPtr + Size;
221       // Update the allocation point of this memory block in MemorySanitizer.
222       // Without this, MemorySanitizer messages for values originated from here
223       // will point to the allocation of the entire slab.
224       __msan_allocated_memory(AlignedPtr, Size);
225       // Similarly, tell ASan about this space.
226       __asan_unpoison_memory_region(AlignedPtr, Size);
227       return AlignedPtr;
228     }
229
230     // If Size is really big, allocate a separate slab for it.
231     size_t PaddedSize = Size + Alignment - 1;
232     if (PaddedSize > SizeThreshold) {
233       void *NewSlab = Allocator.Allocate(PaddedSize, 0);
234       // We own the new slab and don't want anyone reading anyting other than
235       // pieces returned from this method.  So poison the whole slab.
236       __asan_poison_memory_region(NewSlab, PaddedSize);
237       CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
238
239       uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
240       assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
241       char *AlignedPtr = (char*)AlignedAddr;
242       __msan_allocated_memory(AlignedPtr, Size);
243       __asan_unpoison_memory_region(AlignedPtr, Size);
244       return AlignedPtr;
245     }
246
247     // Otherwise, start a new slab and try again.
248     StartNewSlab();
249     uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
250     assert(AlignedAddr + Size <= (uintptr_t)End &&
251            "Unable to allocate memory!");
252     char *AlignedPtr = (char*)AlignedAddr;
253     CurPtr = AlignedPtr + Size;
254     __msan_allocated_memory(AlignedPtr, Size);
255     __asan_unpoison_memory_region(AlignedPtr, Size);
256     return AlignedPtr;
257   }
258
259   // Pull in base class overloads.
260   using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
261
262   void Deallocate(const void *Ptr, size_t Size) {
263     __asan_poison_memory_region(Ptr, Size);
264   }
265
266   // Pull in base class overloads.
267   using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
268
269   size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
270
271   size_t getTotalMemory() const {
272     size_t TotalMemory = 0;
273     for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
274       TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
275     for (auto &PtrAndSize : CustomSizedSlabs)
276       TotalMemory += PtrAndSize.second;
277     return TotalMemory;
278   }
279
280   void PrintStats() const {
281     detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
282                                        getTotalMemory());
283   }
284
285 private:
286   /// \brief The current pointer into the current slab.
287   ///
288   /// This points to the next free byte in the slab.
289   char *CurPtr;
290
291   /// \brief The end of the current slab.
292   char *End;
293
294   /// \brief The slabs allocated so far.
295   SmallVector<void *, 4> Slabs;
296
297   /// \brief Custom-sized slabs allocated for too-large allocation requests.
298   SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
299
300   /// \brief How many bytes we've allocated.
301   ///
302   /// Used so that we can compute how much space was wasted.
303   size_t BytesAllocated;
304
305   /// \brief The allocator instance we use to get slabs of memory.
306   AllocatorT Allocator;
307
308   static size_t computeSlabSize(unsigned SlabIdx) {
309     // Scale the actual allocated slab size based on the number of slabs
310     // allocated. Every 128 slabs allocated, we double the allocated size to
311     // reduce allocation frequency, but saturate at multiplying the slab size by
312     // 2^30.
313     return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
314   }
315
316   /// \brief Allocate a new slab and move the bump pointers over into the new
317   /// slab, modifying CurPtr and End.
318   void StartNewSlab() {
319     size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
320
321     void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
322     // We own the new slab and don't want anyone reading anything other than
323     // pieces returned from this method.  So poison the whole slab.
324     __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
325
326     Slabs.push_back(NewSlab);
327     CurPtr = (char *)(NewSlab);
328     End = ((char *)NewSlab) + AllocatedSlabSize;
329   }
330
331   /// \brief Deallocate a sequence of slabs.
332   void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
333                        SmallVectorImpl<void *>::iterator E) {
334     for (; I != E; ++I) {
335       size_t AllocatedSlabSize =
336           computeSlabSize(std::distance(Slabs.begin(), I));
337       Allocator.Deallocate(*I, AllocatedSlabSize);
338     }
339   }
340
341   /// \brief Deallocate all memory for custom sized slabs.
342   void DeallocateCustomSizedSlabs() {
343     for (auto &PtrAndSize : CustomSizedSlabs) {
344       void *Ptr = PtrAndSize.first;
345       size_t Size = PtrAndSize.second;
346       Allocator.Deallocate(Ptr, Size);
347     }
348   }
349
350   template <typename T> friend class SpecificBumpPtrAllocator;
351 };
352
353 /// \brief The standard BumpPtrAllocator which just uses the default template
354 /// paramaters.
355 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
356
357 /// \brief A BumpPtrAllocator that allows only elements of a specific type to be
358 /// allocated.
359 ///
360 /// This allows calling the destructor in DestroyAll() and when the allocator is
361 /// destroyed.
362 template <typename T> class SpecificBumpPtrAllocator {
363   BumpPtrAllocator Allocator;
364
365 public:
366   SpecificBumpPtrAllocator() : Allocator() {}
367   SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
368       : Allocator(std::move(Old.Allocator)) {}
369   ~SpecificBumpPtrAllocator() { DestroyAll(); }
370
371   SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
372     Allocator = std::move(RHS.Allocator);
373     return *this;
374   }
375
376   /// Call the destructor of each allocated object and deallocate all but the
377   /// current slab and reset the current pointer to the beginning of it, freeing
378   /// all memory allocated so far.
379   void DestroyAll() {
380     auto DestroyElements = [](char *Begin, char *End) {
381       assert(Begin == (char*)alignAddr(Begin, alignOf<T>()));
382       for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
383         reinterpret_cast<T *>(Ptr)->~T();
384     };
385
386     for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
387          ++I) {
388       size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
389           std::distance(Allocator.Slabs.begin(), I));
390       char *Begin = (char*)alignAddr(*I, alignOf<T>());
391       char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
392                                                : (char *)*I + AllocatedSlabSize;
393
394       DestroyElements(Begin, End);
395     }
396
397     for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
398       void *Ptr = PtrAndSize.first;
399       size_t Size = PtrAndSize.second;
400       DestroyElements((char*)alignAddr(Ptr, alignOf<T>()), (char *)Ptr + Size);
401     }
402
403     Allocator.Reset();
404   }
405
406   /// \brief Allocate space for an array of objects without constructing them.
407   T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
408 };
409
410 }  // end namespace llvm
411
412 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
413 void *operator new(size_t Size,
414                    llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
415                                               SizeThreshold> &Allocator) {
416   struct S {
417     char c;
418     union {
419       double D;
420       long double LD;
421       long long L;
422       void *P;
423     } x;
424   };
425   return Allocator.Allocate(
426       Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
427 }
428
429 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
430 void operator delete(
431     void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
432 }
433
434 #endif // LLVM_SUPPORT_ALLOCATOR_H