TableGen: strengthen assert
[oota-llvm.git] / utils / TableGen / X86RecognizableInstr.cpp
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of a single recognizable instruction.
12 // Documentation for the disassembler emitter in general can be found in
13 //  X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86RecognizableInstr.h"
18 #include "X86DisassemblerShared.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include <string>
22
23 using namespace llvm;
24
25 #define MRM_MAPPING     \
26   MAP(C0, 32)           \
27   MAP(C1, 33)           \
28   MAP(C2, 34)           \
29   MAP(C3, 35)           \
30   MAP(C4, 36)           \
31   MAP(C8, 37)           \
32   MAP(C9, 38)           \
33   MAP(CA, 39)           \
34   MAP(CB, 40)           \
35   MAP(D0, 41)           \
36   MAP(D1, 42)           \
37   MAP(D4, 43)           \
38   MAP(D5, 44)           \
39   MAP(D6, 45)           \
40   MAP(D8, 46)           \
41   MAP(D9, 47)           \
42   MAP(DA, 48)           \
43   MAP(DB, 49)           \
44   MAP(DC, 50)           \
45   MAP(DD, 51)           \
46   MAP(DE, 52)           \
47   MAP(DF, 53)           \
48   MAP(E0, 54)           \
49   MAP(E1, 55)           \
50   MAP(E2, 56)           \
51   MAP(E3, 57)           \
52   MAP(E4, 58)           \
53   MAP(E5, 59)           \
54   MAP(E8, 60)           \
55   MAP(E9, 61)           \
56   MAP(EA, 62)           \
57   MAP(EB, 63)           \
58   MAP(EC, 64)           \
59   MAP(ED, 65)           \
60   MAP(EE, 66)           \
61   MAP(F0, 67)           \
62   MAP(F1, 68)           \
63   MAP(F2, 69)           \
64   MAP(F3, 70)           \
65   MAP(F4, 71)           \
66   MAP(F5, 72)           \
67   MAP(F6, 73)           \
68   MAP(F7, 74)           \
69   MAP(F8, 75)           \
70   MAP(F9, 76)           \
71   MAP(FA, 77)           \
72   MAP(FB, 78)           \
73   MAP(FC, 79)           \
74   MAP(FD, 80)           \
75   MAP(FE, 81)           \
76   MAP(FF, 82)
77
78 // A clone of X86 since we can't depend on something that is generated.
79 namespace X86Local {
80   enum {
81     Pseudo      = 0,
82     RawFrm      = 1,
83     AddRegFrm   = 2,
84     MRMDestReg  = 3,
85     MRMDestMem  = 4,
86     MRMSrcReg   = 5,
87     MRMSrcMem   = 6,
88     RawFrmMemOffs = 7,
89     RawFrmSrc   = 8,
90     RawFrmDst   = 9,
91     RawFrmDstSrc = 10,
92     RawFrmImm8  = 11,
93     RawFrmImm16 = 12,
94     MRMXr = 14, MRMXm = 15,
95     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
96     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
97     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
98     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
99 #define MAP(from, to) MRM_##from = to,
100     MRM_MAPPING
101 #undef MAP
102     lastMRM
103   };
104
105   enum {
106     OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6
107   };
108
109   enum {
110     PS = 1, PD = 2, XS = 3, XD = 4
111   };
112
113   enum {
114     VEX = 1, XOP = 2, EVEX = 3
115   };
116
117   enum {
118     OpSize16 = 1, OpSize32 = 2
119   };
120 }
121
122 using namespace X86Disassembler;
123
124 /// isRegFormat - Indicates whether a particular form requires the Mod field of
125 ///   the ModR/M byte to be 0b11.
126 ///
127 /// @param form - The form of the instruction.
128 /// @return     - true if the form implies that Mod must be 0b11, false
129 ///               otherwise.
130 static bool isRegFormat(uint8_t form) {
131   return (form == X86Local::MRMDestReg ||
132           form == X86Local::MRMSrcReg  ||
133           form == X86Local::MRMXr ||
134           (form >= X86Local::MRM0r && form <= X86Local::MRM7r));
135 }
136
137 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
138 ///   Useful for switch statements and the like.
139 ///
140 /// @param init - A reference to the BitsInit to be decoded.
141 /// @return     - The field, with the first bit in the BitsInit as the lowest
142 ///               order bit.
143 static uint8_t byteFromBitsInit(BitsInit &init) {
144   int width = init.getNumBits();
145
146   assert(width <= 8 && "Field is too large for uint8_t!");
147
148   int     index;
149   uint8_t mask = 0x01;
150
151   uint8_t ret = 0;
152
153   for (index = 0; index < width; index++) {
154     if (static_cast<BitInit*>(init.getBit(index))->getValue())
155       ret |= mask;
156
157     mask <<= 1;
158   }
159
160   return ret;
161 }
162
163 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
164 ///   name of the field.
165 ///
166 /// @param rec  - The record from which to extract the value.
167 /// @param name - The name of the field in the record.
168 /// @return     - The field, as translated by byteFromBitsInit().
169 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
170   BitsInit* bits = rec->getValueAsBitsInit(name);
171   return byteFromBitsInit(*bits);
172 }
173
174 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
175                                      const CodeGenInstruction &insn,
176                                      InstrUID uid) {
177   UID = uid;
178
179   Rec = insn.TheDef;
180   Name = Rec->getName();
181   Spec = &tables.specForUID(UID);
182
183   if (!Rec->isSubClassOf("X86Inst")) {
184     ShouldBeEmitted = false;
185     return;
186   }
187
188   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
189   OpMap    = byteFromRec(Rec, "OpMapBits");
190   Opcode   = byteFromRec(Rec, "Opcode");
191   Form     = byteFromRec(Rec, "FormBits");
192   Encoding = byteFromRec(Rec, "OpEncBits");
193
194   OpSize           = byteFromRec(Rec, "OpSizeBits");
195   HasAdSizePrefix  = Rec->getValueAsBit("hasAdSizePrefix");
196   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
197   HasVEX_4V        = Rec->getValueAsBit("hasVEX_4V");
198   HasVEX_4VOp3     = Rec->getValueAsBit("hasVEX_4VOp3");
199   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
200   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
201   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
202   HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
203   HasEVEX_K        = Rec->getValueAsBit("hasEVEX_K");
204   HasEVEX_KZ       = Rec->getValueAsBit("hasEVEX_Z");
205   HasEVEX_B        = Rec->getValueAsBit("hasEVEX_B");
206   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
207   ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
208
209   Name      = Rec->getName();
210   AsmString = Rec->getValueAsString("AsmString");
211
212   Operands = &insn.Operands.OperandList;
213
214   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
215
216   // Check for 64-bit inst which does not require REX
217   Is32Bit = false;
218   Is64Bit = false;
219   // FIXME: Is there some better way to check for In64BitMode?
220   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
221   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
222     if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
223         Predicates[i]->getName().find("In32Bit") != Name.npos) {
224       Is32Bit = true;
225       break;
226     }
227     if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
228       Is64Bit = true;
229       break;
230     }
231   }
232
233   if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
234     ShouldBeEmitted = false;
235     return;
236   }
237
238   // Special case since there is no attribute class for 64-bit and VEX
239   if (Name == "VMASKMOVDQU64") {
240     ShouldBeEmitted = false;
241     return;
242   }
243
244   ShouldBeEmitted  = true;
245 }
246
247 void RecognizableInstr::processInstr(DisassemblerTables &tables,
248                                      const CodeGenInstruction &insn,
249                                      InstrUID uid)
250 {
251   // Ignore "asm parser only" instructions.
252   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
253     return;
254
255   RecognizableInstr recogInstr(tables, insn, uid);
256
257   if (recogInstr.shouldBeEmitted()) {
258     recogInstr.emitInstructionSpecifier();
259     recogInstr.emitDecodePath(tables);
260   }
261 }
262
263 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
264                     (HasEVEX_K && HasEVEX_B ? n##_K_B : \
265                     (HasEVEX_KZ ? n##_KZ : \
266                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
267
268 InstructionContext RecognizableInstr::insnContext() const {
269   InstructionContext insnContext;
270
271   if (Encoding == X86Local::EVEX) {
272     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
273       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
274       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
275     }
276     // VEX_L & VEX_W
277     if (HasVEX_LPrefix && HasVEX_WPrefix) {
278       if (OpPrefix == X86Local::PD)
279         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
280       else if (OpPrefix == X86Local::XS)
281         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
282       else if (OpPrefix == X86Local::XD)
283         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
284       else if (OpPrefix == X86Local::PS)
285         insnContext = EVEX_KB(IC_EVEX_L_W);
286       else {
287         errs() << "Instruction does not use a prefix: " << Name << "\n";
288         llvm_unreachable("Invalid prefix");
289       }
290     } else if (HasVEX_LPrefix) {
291       // VEX_L
292       if (OpPrefix == X86Local::PD)
293         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
294       else if (OpPrefix == X86Local::XS)
295         insnContext = EVEX_KB(IC_EVEX_L_XS);
296       else if (OpPrefix == X86Local::XD)
297         insnContext = EVEX_KB(IC_EVEX_L_XD);
298       else if (OpPrefix == X86Local::PS)
299         insnContext = EVEX_KB(IC_EVEX_L);
300       else {
301         errs() << "Instruction does not use a prefix: " << Name << "\n";
302         llvm_unreachable("Invalid prefix");
303       }
304     }
305     else if (HasEVEX_L2Prefix && HasVEX_WPrefix) {
306       // EVEX_L2 & VEX_W
307       if (OpPrefix == X86Local::PD)
308         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
309       else if (OpPrefix == X86Local::XS)
310         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
311       else if (OpPrefix == X86Local::XD)
312         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
313       else if (OpPrefix == X86Local::PS)
314         insnContext = EVEX_KB(IC_EVEX_L2_W);
315       else {
316         errs() << "Instruction does not use a prefix: " << Name << "\n";
317         llvm_unreachable("Invalid prefix");
318       }
319     } else if (HasEVEX_L2Prefix) {
320       // EVEX_L2
321       if (OpPrefix == X86Local::PD)
322         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
323       else if (OpPrefix == X86Local::XD)
324         insnContext = EVEX_KB(IC_EVEX_L2_XD);
325       else if (OpPrefix == X86Local::XS)
326         insnContext = EVEX_KB(IC_EVEX_L2_XS);
327       else if (OpPrefix == X86Local::PS)
328         insnContext = EVEX_KB(IC_EVEX_L2);
329       else {
330         errs() << "Instruction does not use a prefix: " << Name << "\n";
331         llvm_unreachable("Invalid prefix");
332       }
333     }
334     else if (HasVEX_WPrefix) {
335       // VEX_W
336       if (OpPrefix == X86Local::PD)
337         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
338       else if (OpPrefix == X86Local::XS)
339         insnContext = EVEX_KB(IC_EVEX_W_XS);
340       else if (OpPrefix == X86Local::XD)
341         insnContext = EVEX_KB(IC_EVEX_W_XD);
342       else if (OpPrefix == X86Local::PS)
343         insnContext = EVEX_KB(IC_EVEX_W);
344       else {
345         errs() << "Instruction does not use a prefix: " << Name << "\n";
346         llvm_unreachable("Invalid prefix");
347       }
348     }
349     // No L, no W
350     else if (OpPrefix == X86Local::PD)
351       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
352     else if (OpPrefix == X86Local::XD)
353       insnContext = EVEX_KB(IC_EVEX_XD);
354     else if (OpPrefix == X86Local::XS)
355       insnContext = EVEX_KB(IC_EVEX_XS);
356     else
357       insnContext = EVEX_KB(IC_EVEX);
358     /// eof EVEX
359   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
360     if (HasVEX_LPrefix && HasVEX_WPrefix) {
361       if (OpPrefix == X86Local::PD)
362         insnContext = IC_VEX_L_W_OPSIZE;
363       else if (OpPrefix == X86Local::XS)
364         insnContext = IC_VEX_L_W_XS;
365       else if (OpPrefix == X86Local::XD)
366         insnContext = IC_VEX_L_W_XD;
367       else if (OpPrefix == X86Local::PS)
368         insnContext = IC_VEX_L_W;
369       else {
370         errs() << "Instruction does not use a prefix: " << Name << "\n";
371         llvm_unreachable("Invalid prefix");
372       }
373     } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
374       insnContext = IC_VEX_L_OPSIZE;
375     else if (OpPrefix == X86Local::PD && HasVEX_WPrefix)
376       insnContext = IC_VEX_W_OPSIZE;
377     else if (OpPrefix == X86Local::PD)
378       insnContext = IC_VEX_OPSIZE;
379     else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
380       insnContext = IC_VEX_L_XS;
381     else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
382       insnContext = IC_VEX_L_XD;
383     else if (HasVEX_WPrefix && OpPrefix == X86Local::XS)
384       insnContext = IC_VEX_W_XS;
385     else if (HasVEX_WPrefix && OpPrefix == X86Local::XD)
386       insnContext = IC_VEX_W_XD;
387     else if (HasVEX_WPrefix && OpPrefix == X86Local::PS)
388       insnContext = IC_VEX_W;
389     else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
390       insnContext = IC_VEX_L;
391     else if (OpPrefix == X86Local::XD)
392       insnContext = IC_VEX_XD;
393     else if (OpPrefix == X86Local::XS)
394       insnContext = IC_VEX_XS;
395     else if (OpPrefix == X86Local::PS)
396       insnContext = IC_VEX;
397     else {
398       errs() << "Instruction does not use a prefix: " << Name << "\n";
399       llvm_unreachable("Invalid prefix");
400     }
401   } else if (Is64Bit || HasREX_WPrefix) {
402     if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
403       insnContext = IC_64BIT_REXW_OPSIZE;
404     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
405       insnContext = IC_64BIT_XD_OPSIZE;
406     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
407       insnContext = IC_64BIT_XS_OPSIZE;
408     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
409       insnContext = IC_64BIT_OPSIZE;
410     else if (HasAdSizePrefix)
411       insnContext = IC_64BIT_ADSIZE;
412     else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
413       insnContext = IC_64BIT_REXW_XS;
414     else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
415       insnContext = IC_64BIT_REXW_XD;
416     else if (OpPrefix == X86Local::XD)
417       insnContext = IC_64BIT_XD;
418     else if (OpPrefix == X86Local::XS)
419       insnContext = IC_64BIT_XS;
420     else if (HasREX_WPrefix)
421       insnContext = IC_64BIT_REXW;
422     else
423       insnContext = IC_64BIT;
424   } else {
425     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
426       insnContext = IC_XD_OPSIZE;
427     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
428       insnContext = IC_XS_OPSIZE;
429     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
430       insnContext = IC_OPSIZE;
431     else if (HasAdSizePrefix)
432       insnContext = IC_ADSIZE;
433     else if (OpPrefix == X86Local::XD)
434       insnContext = IC_XD;
435     else if (OpPrefix == X86Local::XS)
436       insnContext = IC_XS;
437     else
438       insnContext = IC;
439   }
440
441   return insnContext;
442 }
443
444 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
445                                       unsigned &physicalOperandIndex,
446                                       unsigned &numPhysicalOperands,
447                                       const unsigned *operandMapping,
448                                       OperandEncoding (*encodingFromString)
449                                         (const std::string&,
450                                          uint8_t OpSize)) {
451   if (optional) {
452     if (physicalOperandIndex >= numPhysicalOperands)
453       return;
454   } else {
455     assert(physicalOperandIndex < numPhysicalOperands);
456   }
457
458   while (operandMapping[operandIndex] != operandIndex) {
459     Spec->operands[operandIndex].encoding = ENCODING_DUP;
460     Spec->operands[operandIndex].type =
461       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
462     ++operandIndex;
463   }
464
465   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
466
467   Spec->operands[operandIndex].encoding = encodingFromString(typeName,
468                                                               OpSize);
469   Spec->operands[operandIndex].type = typeFromString(typeName,
470                                                      HasREX_WPrefix, OpSize);
471
472   ++operandIndex;
473   ++physicalOperandIndex;
474 }
475
476 void RecognizableInstr::emitInstructionSpecifier() {
477   Spec->name       = Name;
478
479   Spec->insnContext = insnContext();
480
481   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
482
483   unsigned numOperands = OperandList.size();
484   unsigned numPhysicalOperands = 0;
485
486   // operandMapping maps from operands in OperandList to their originals.
487   // If operandMapping[i] != i, then the entry is a duplicate.
488   unsigned operandMapping[X86_MAX_OPERANDS];
489   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
490
491   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
492     if (OperandList[operandIndex].Constraints.size()) {
493       const CGIOperandList::ConstraintInfo &Constraint =
494         OperandList[operandIndex].Constraints[0];
495       if (Constraint.isTied()) {
496         operandMapping[operandIndex] = operandIndex;
497         operandMapping[Constraint.getTiedOperand()] = operandIndex;
498       } else {
499         ++numPhysicalOperands;
500         operandMapping[operandIndex] = operandIndex;
501       }
502     } else {
503       ++numPhysicalOperands;
504       operandMapping[operandIndex] = operandIndex;
505     }
506   }
507
508 #define HANDLE_OPERAND(class)               \
509   handleOperand(false,                      \
510                 operandIndex,               \
511                 physicalOperandIndex,       \
512                 numPhysicalOperands,        \
513                 operandMapping,             \
514                 class##EncodingFromString);
515
516 #define HANDLE_OPTIONAL(class)              \
517   handleOperand(true,                       \
518                 operandIndex,               \
519                 physicalOperandIndex,       \
520                 numPhysicalOperands,        \
521                 operandMapping,             \
522                 class##EncodingFromString);
523
524   // operandIndex should always be < numOperands
525   unsigned operandIndex = 0;
526   // physicalOperandIndex should always be < numPhysicalOperands
527   unsigned physicalOperandIndex = 0;
528
529   switch (Form) {
530   default: llvm_unreachable("Unhandled form");
531   case X86Local::RawFrmSrc:
532     HANDLE_OPERAND(relocation);
533     return;
534   case X86Local::RawFrmDst:
535     HANDLE_OPERAND(relocation);
536     return;
537   case X86Local::RawFrmDstSrc:
538     HANDLE_OPERAND(relocation);
539     HANDLE_OPERAND(relocation);
540     return;
541   case X86Local::RawFrm:
542     // Operand 1 (optional) is an address or immediate.
543     // Operand 2 (optional) is an immediate.
544     assert(numPhysicalOperands <= 2 &&
545            "Unexpected number of operands for RawFrm");
546     HANDLE_OPTIONAL(relocation)
547     HANDLE_OPTIONAL(immediate)
548     break;
549   case X86Local::RawFrmMemOffs:
550     // Operand 1 is an address.
551     HANDLE_OPERAND(relocation);
552     break;
553   case X86Local::AddRegFrm:
554     // Operand 1 is added to the opcode.
555     // Operand 2 (optional) is an address.
556     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
557            "Unexpected number of operands for AddRegFrm");
558     HANDLE_OPERAND(opcodeModifier)
559     HANDLE_OPTIONAL(relocation)
560     break;
561   case X86Local::MRMDestReg:
562     // Operand 1 is a register operand in the R/M field.
563     // Operand 2 is a register operand in the Reg/Opcode field.
564     // - In AVX, there is a register operand in the VEX.vvvv field here -
565     // Operand 3 (optional) is an immediate.
566     if (HasVEX_4V)
567       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
568              "Unexpected number of operands for MRMDestRegFrm with VEX_4V");
569     else
570       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
571              "Unexpected number of operands for MRMDestRegFrm");
572
573     HANDLE_OPERAND(rmRegister)
574
575     if (HasVEX_4V)
576       // FIXME: In AVX, the register below becomes the one encoded
577       // in ModRMVEX and the one above the one in the VEX.VVVV field
578       HANDLE_OPERAND(vvvvRegister)
579
580     HANDLE_OPERAND(roRegister)
581     HANDLE_OPTIONAL(immediate)
582     break;
583   case X86Local::MRMDestMem:
584     // Operand 1 is a memory operand (possibly SIB-extended)
585     // Operand 2 is a register operand in the Reg/Opcode field.
586     // - In AVX, there is a register operand in the VEX.vvvv field here -
587     // Operand 3 (optional) is an immediate.
588     if (HasVEX_4V)
589       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
590              "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
591     else
592       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
593              "Unexpected number of operands for MRMDestMemFrm");
594     HANDLE_OPERAND(memory)
595
596     if (HasEVEX_K)
597       HANDLE_OPERAND(writemaskRegister)
598
599     if (HasVEX_4V)
600       // FIXME: In AVX, the register below becomes the one encoded
601       // in ModRMVEX and the one above the one in the VEX.VVVV field
602       HANDLE_OPERAND(vvvvRegister)
603
604     HANDLE_OPERAND(roRegister)
605     HANDLE_OPTIONAL(immediate)
606     break;
607   case X86Local::MRMSrcReg:
608     // Operand 1 is a register operand in the Reg/Opcode field.
609     // Operand 2 is a register operand in the R/M field.
610     // - In AVX, there is a register operand in the VEX.vvvv field here -
611     // Operand 3 (optional) is an immediate.
612     // Operand 4 (optional) is an immediate.
613
614     if (HasVEX_4V || HasVEX_4VOp3)
615       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
616              "Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
617     else
618       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 &&
619              "Unexpected number of operands for MRMSrcRegFrm");
620
621     HANDLE_OPERAND(roRegister)
622
623     if (HasEVEX_K)
624       HANDLE_OPERAND(writemaskRegister)
625
626     if (HasVEX_4V)
627       // FIXME: In AVX, the register below becomes the one encoded
628       // in ModRMVEX and the one above the one in the VEX.VVVV field
629       HANDLE_OPERAND(vvvvRegister)
630
631     if (HasMemOp4Prefix)
632       HANDLE_OPERAND(immediate)
633
634     HANDLE_OPERAND(rmRegister)
635
636     if (HasVEX_4VOp3)
637       HANDLE_OPERAND(vvvvRegister)
638
639     if (!HasMemOp4Prefix)
640       HANDLE_OPTIONAL(immediate)
641     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
642     HANDLE_OPTIONAL(immediate)
643     break;
644   case X86Local::MRMSrcMem:
645     // Operand 1 is a register operand in the Reg/Opcode field.
646     // Operand 2 is a memory operand (possibly SIB-extended)
647     // - In AVX, there is a register operand in the VEX.vvvv field here -
648     // Operand 3 (optional) is an immediate.
649
650     if (HasVEX_4V || HasVEX_4VOp3)
651       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
652              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
653     else
654       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
655              "Unexpected number of operands for MRMSrcMemFrm");
656
657     HANDLE_OPERAND(roRegister)
658
659     if (HasEVEX_K)
660       HANDLE_OPERAND(writemaskRegister)
661
662     if (HasVEX_4V)
663       // FIXME: In AVX, the register below becomes the one encoded
664       // in ModRMVEX and the one above the one in the VEX.VVVV field
665       HANDLE_OPERAND(vvvvRegister)
666
667     if (HasMemOp4Prefix)
668       HANDLE_OPERAND(immediate)
669
670     HANDLE_OPERAND(memory)
671
672     if (HasVEX_4VOp3)
673       HANDLE_OPERAND(vvvvRegister)
674
675     if (!HasMemOp4Prefix)
676       HANDLE_OPTIONAL(immediate)
677     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
678     break;
679   case X86Local::MRMXr:
680   case X86Local::MRM0r:
681   case X86Local::MRM1r:
682   case X86Local::MRM2r:
683   case X86Local::MRM3r:
684   case X86Local::MRM4r:
685   case X86Local::MRM5r:
686   case X86Local::MRM6r:
687   case X86Local::MRM7r:
688     {
689       // Operand 1 is a register operand in the R/M field.
690       // Operand 2 (optional) is an immediate or relocation.
691       // Operand 3 (optional) is an immediate.
692       unsigned kOp = (HasEVEX_K) ? 1:0;
693       unsigned Op4v = (HasVEX_4V) ? 1:0;
694       if (numPhysicalOperands > 3 + kOp + Op4v)
695         llvm_unreachable("Unexpected number of operands for MRMnr");
696     }
697     if (HasVEX_4V)
698       HANDLE_OPERAND(vvvvRegister)
699
700     if (HasEVEX_K)
701       HANDLE_OPERAND(writemaskRegister)
702     HANDLE_OPTIONAL(rmRegister)
703     HANDLE_OPTIONAL(relocation)
704     HANDLE_OPTIONAL(immediate)
705     break;
706   case X86Local::MRMXm:
707   case X86Local::MRM0m:
708   case X86Local::MRM1m:
709   case X86Local::MRM2m:
710   case X86Local::MRM3m:
711   case X86Local::MRM4m:
712   case X86Local::MRM5m:
713   case X86Local::MRM6m:
714   case X86Local::MRM7m:
715     {
716       // Operand 1 is a memory operand (possibly SIB-extended)
717       // Operand 2 (optional) is an immediate or relocation.
718       unsigned kOp = (HasEVEX_K) ? 1:0;
719       unsigned Op4v = (HasVEX_4V) ? 1:0;
720       if (numPhysicalOperands < 1 + kOp + Op4v ||
721           numPhysicalOperands > 2 + kOp + Op4v)
722         llvm_unreachable("Unexpected number of operands for MRMnm");
723     }
724     if (HasVEX_4V)
725       HANDLE_OPERAND(vvvvRegister)
726     if (HasEVEX_K)
727       HANDLE_OPERAND(writemaskRegister)
728     HANDLE_OPERAND(memory)
729     HANDLE_OPTIONAL(relocation)
730     break;
731   case X86Local::RawFrmImm8:
732     // operand 1 is a 16-bit immediate
733     // operand 2 is an 8-bit immediate
734     assert(numPhysicalOperands == 2 &&
735            "Unexpected number of operands for X86Local::RawFrmImm8");
736     HANDLE_OPERAND(immediate)
737     HANDLE_OPERAND(immediate)
738     break;
739   case X86Local::RawFrmImm16:
740     // operand 1 is a 16-bit immediate
741     // operand 2 is a 16-bit immediate
742     HANDLE_OPERAND(immediate)
743     HANDLE_OPERAND(immediate)
744     break;
745   case X86Local::MRM_F8:
746     if (Opcode == 0xc6) {
747       assert(numPhysicalOperands == 1 &&
748              "Unexpected number of operands for X86Local::MRM_F8");
749       HANDLE_OPERAND(immediate)
750     } else if (Opcode == 0xc7) {
751       assert(numPhysicalOperands == 1 &&
752              "Unexpected number of operands for X86Local::MRM_F8");
753       HANDLE_OPERAND(relocation)
754     }
755     break;
756   case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2:
757   case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8:
758   case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB:
759   case X86Local::MRM_D0: case X86Local::MRM_D1: case X86Local::MRM_D4:
760   case X86Local::MRM_D5: case X86Local::MRM_D6: case X86Local::MRM_D8:
761   case X86Local::MRM_D9: case X86Local::MRM_DA: case X86Local::MRM_DB:
762   case X86Local::MRM_DC: case X86Local::MRM_DD: case X86Local::MRM_DE:
763   case X86Local::MRM_DF: case X86Local::MRM_E0: case X86Local::MRM_E1:
764   case X86Local::MRM_E2: case X86Local::MRM_E3: case X86Local::MRM_E4:
765   case X86Local::MRM_E5: case X86Local::MRM_E8: case X86Local::MRM_E9:
766   case X86Local::MRM_EA: case X86Local::MRM_EB: case X86Local::MRM_EC:
767   case X86Local::MRM_ED: case X86Local::MRM_EE: case X86Local::MRM_F0:
768   case X86Local::MRM_F1: case X86Local::MRM_F2: case X86Local::MRM_F3:
769   case X86Local::MRM_F4: case X86Local::MRM_F5: case X86Local::MRM_F6:
770   case X86Local::MRM_F7: case X86Local::MRM_F9: case X86Local::MRM_FA:
771   case X86Local::MRM_FB: case X86Local::MRM_FC: case X86Local::MRM_FD:
772   case X86Local::MRM_FE: case X86Local::MRM_FF:
773     // Ignored.
774     break;
775   }
776
777   #undef HANDLE_OPERAND
778   #undef HANDLE_OPTIONAL
779 }
780
781 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
782   // Special cases where the LLVM tables are not complete
783
784 #define MAP(from, to)                     \
785   case X86Local::MRM_##from:              \
786     filter = new ExactFilter(0x##from);   \
787     break;
788
789   OpcodeType    opcodeType  = (OpcodeType)-1;
790
791   ModRMFilter*  filter      = nullptr;
792   uint8_t       opcodeToSet = 0;
793
794   switch (OpMap) {
795   default: llvm_unreachable("Invalid map!");
796   case X86Local::OB:
797   case X86Local::TB:
798   case X86Local::T8:
799   case X86Local::TA:
800   case X86Local::XOP8:
801   case X86Local::XOP9:
802   case X86Local::XOPA:
803     switch (OpMap) {
804     default: llvm_unreachable("Unexpected map!");
805     case X86Local::OB:   opcodeType = ONEBYTE;      break;
806     case X86Local::TB:   opcodeType = TWOBYTE;      break;
807     case X86Local::T8:   opcodeType = THREEBYTE_38; break;
808     case X86Local::TA:   opcodeType = THREEBYTE_3A; break;
809     case X86Local::XOP8: opcodeType = XOP8_MAP;     break;
810     case X86Local::XOP9: opcodeType = XOP9_MAP;     break;
811     case X86Local::XOPA: opcodeType = XOPA_MAP;     break;
812     }
813
814     switch (Form) {
815     default:
816       filter = new DumbFilter();
817       break;
818     case X86Local::MRMDestReg: case X86Local::MRMDestMem:
819     case X86Local::MRMSrcReg:  case X86Local::MRMSrcMem:
820     case X86Local::MRMXr:      case X86Local::MRMXm:
821       filter = new ModFilter(isRegFormat(Form));
822       break;
823     case X86Local::MRM0r:      case X86Local::MRM1r:
824     case X86Local::MRM2r:      case X86Local::MRM3r:
825     case X86Local::MRM4r:      case X86Local::MRM5r:
826     case X86Local::MRM6r:      case X86Local::MRM7r:
827       filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
828       break;
829     case X86Local::MRM0m:      case X86Local::MRM1m:
830     case X86Local::MRM2m:      case X86Local::MRM3m:
831     case X86Local::MRM4m:      case X86Local::MRM5m:
832     case X86Local::MRM6m:      case X86Local::MRM7m:
833       filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
834       break;
835     MRM_MAPPING
836     } // switch (Form)
837
838     opcodeToSet = Opcode;
839     break;
840   } // switch (OpMap)
841
842   assert(opcodeType != (OpcodeType)-1 &&
843          "Opcode type not set");
844   assert(filter && "Filter not set");
845
846   if (Form == X86Local::AddRegFrm) {
847     assert(((opcodeToSet & 7) == 0) &&
848            "ADDREG_FRM opcode not aligned");
849
850     uint8_t currentOpcode;
851
852     for (currentOpcode = opcodeToSet;
853          currentOpcode < opcodeToSet + 8;
854          ++currentOpcode)
855       tables.setTableFields(opcodeType,
856                             insnContext(),
857                             currentOpcode,
858                             *filter,
859                             UID, Is32Bit, IgnoresVEX_L);
860   } else {
861     tables.setTableFields(opcodeType,
862                           insnContext(),
863                           opcodeToSet,
864                           *filter,
865                           UID, Is32Bit, IgnoresVEX_L);
866   }
867
868   delete filter;
869
870 #undef MAP
871 }
872
873 #define TYPE(str, type) if (s == str) return type;
874 OperandType RecognizableInstr::typeFromString(const std::string &s,
875                                               bool hasREX_WPrefix,
876                                               uint8_t OpSize) {
877   if(hasREX_WPrefix) {
878     // For instructions with a REX_W prefix, a declared 32-bit register encoding
879     // is special.
880     TYPE("GR32",              TYPE_R32)
881   }
882   if(OpSize == X86Local::OpSize16) {
883     // For OpSize16 instructions, a declared 16-bit register or
884     // immediate encoding is special.
885     TYPE("GR16",              TYPE_Rv)
886     TYPE("i16imm",            TYPE_IMMv)
887   } else if(OpSize == X86Local::OpSize32) {
888     // For OpSize32 instructions, a declared 32-bit register or
889     // immediate encoding is special.
890     TYPE("GR32",              TYPE_Rv)
891   }
892   TYPE("i16mem",              TYPE_Mv)
893   TYPE("i16imm",              TYPE_IMM16)
894   TYPE("i16i8imm",            TYPE_IMMv)
895   TYPE("GR16",                TYPE_R16)
896   TYPE("i32mem",              TYPE_Mv)
897   TYPE("i32imm",              TYPE_IMMv)
898   TYPE("i32i8imm",            TYPE_IMM32)
899   TYPE("u32u8imm",            TYPE_IMM32)
900   TYPE("GR32",                TYPE_R32)
901   TYPE("GR32orGR64",          TYPE_R32)
902   TYPE("i64mem",              TYPE_Mv)
903   TYPE("i64i32imm",           TYPE_IMM64)
904   TYPE("i64i8imm",            TYPE_IMM64)
905   TYPE("GR64",                TYPE_R64)
906   TYPE("i8mem",               TYPE_M8)
907   TYPE("i8imm",               TYPE_IMM8)
908   TYPE("GR8",                 TYPE_R8)
909   TYPE("VR128",               TYPE_XMM128)
910   TYPE("VR128X",              TYPE_XMM128)
911   TYPE("f128mem",             TYPE_M128)
912   TYPE("f256mem",             TYPE_M256)
913   TYPE("f512mem",             TYPE_M512)
914   TYPE("FR64",                TYPE_XMM64)
915   TYPE("FR64X",               TYPE_XMM64)
916   TYPE("f64mem",              TYPE_M64FP)
917   TYPE("sdmem",               TYPE_M64FP)
918   TYPE("FR32",                TYPE_XMM32)
919   TYPE("FR32X",               TYPE_XMM32)
920   TYPE("f32mem",              TYPE_M32FP)
921   TYPE("ssmem",               TYPE_M32FP)
922   TYPE("RST",                 TYPE_ST)
923   TYPE("i128mem",             TYPE_M128)
924   TYPE("i256mem",             TYPE_M256)
925   TYPE("i512mem",             TYPE_M512)
926   TYPE("i64i32imm_pcrel",     TYPE_REL64)
927   TYPE("i16imm_pcrel",        TYPE_REL16)
928   TYPE("i32imm_pcrel",        TYPE_REL32)
929   TYPE("SSECC",               TYPE_IMM3)
930   TYPE("AVXCC",               TYPE_IMM5)
931   TYPE("AVX512RC",            TYPE_IMM32)
932   TYPE("brtarget",            TYPE_RELv)
933   TYPE("uncondbrtarget",      TYPE_RELv)
934   TYPE("brtarget8",           TYPE_REL8)
935   TYPE("f80mem",              TYPE_M80FP)
936   TYPE("lea32mem",            TYPE_LEA)
937   TYPE("lea64_32mem",         TYPE_LEA)
938   TYPE("lea64mem",            TYPE_LEA)
939   TYPE("VR64",                TYPE_MM64)
940   TYPE("i64imm",              TYPE_IMMv)
941   TYPE("opaque32mem",         TYPE_M1616)
942   TYPE("opaque48mem",         TYPE_M1632)
943   TYPE("opaque80mem",         TYPE_M1664)
944   TYPE("opaque512mem",        TYPE_M512)
945   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
946   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
947   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
948   TYPE("srcidx8",             TYPE_SRCIDX8)
949   TYPE("srcidx16",            TYPE_SRCIDX16)
950   TYPE("srcidx32",            TYPE_SRCIDX32)
951   TYPE("srcidx64",            TYPE_SRCIDX64)
952   TYPE("dstidx8",             TYPE_DSTIDX8)
953   TYPE("dstidx16",            TYPE_DSTIDX16)
954   TYPE("dstidx32",            TYPE_DSTIDX32)
955   TYPE("dstidx64",            TYPE_DSTIDX64)
956   TYPE("offset8",             TYPE_MOFFS8)
957   TYPE("offset16",            TYPE_MOFFS16)
958   TYPE("offset32",            TYPE_MOFFS32)
959   TYPE("offset64",            TYPE_MOFFS64)
960   TYPE("VR256",               TYPE_XMM256)
961   TYPE("VR256X",              TYPE_XMM256)
962   TYPE("VR512",               TYPE_XMM512)
963   TYPE("VK1",                 TYPE_VK1)
964   TYPE("VK1WM",               TYPE_VK1)
965   TYPE("VK8",                 TYPE_VK8)
966   TYPE("VK8WM",               TYPE_VK8)
967   TYPE("VK16",                TYPE_VK16)
968   TYPE("VK16WM",              TYPE_VK16)
969   TYPE("GR16_NOAX",           TYPE_Rv)
970   TYPE("GR32_NOAX",           TYPE_Rv)
971   TYPE("GR64_NOAX",           TYPE_R64)
972   TYPE("vx32mem",             TYPE_M32)
973   TYPE("vy32mem",             TYPE_M32)
974   TYPE("vz32mem",             TYPE_M32)
975   TYPE("vx64mem",             TYPE_M64)
976   TYPE("vy64mem",             TYPE_M64)
977   TYPE("vy64xmem",            TYPE_M64)
978   TYPE("vz64mem",             TYPE_M64)
979   errs() << "Unhandled type string " << s << "\n";
980   llvm_unreachable("Unhandled type string");
981 }
982 #undef TYPE
983
984 #define ENCODING(str, encoding) if (s == str) return encoding;
985 OperandEncoding
986 RecognizableInstr::immediateEncodingFromString(const std::string &s,
987                                                uint8_t OpSize) {
988   if(OpSize != X86Local::OpSize16) {
989     // For instructions without an OpSize prefix, a declared 16-bit register or
990     // immediate encoding is special.
991     ENCODING("i16imm",        ENCODING_IW)
992   }
993   ENCODING("i32i8imm",        ENCODING_IB)
994   ENCODING("u32u8imm",        ENCODING_IB)
995   ENCODING("SSECC",           ENCODING_IB)
996   ENCODING("AVXCC",           ENCODING_IB)
997   ENCODING("AVX512RC",        ENCODING_IB)
998   ENCODING("i16imm",          ENCODING_Iv)
999   ENCODING("i16i8imm",        ENCODING_IB)
1000   ENCODING("i32imm",          ENCODING_Iv)
1001   ENCODING("i64i32imm",       ENCODING_ID)
1002   ENCODING("i64i8imm",        ENCODING_IB)
1003   ENCODING("i8imm",           ENCODING_IB)
1004   // This is not a typo.  Instructions like BLENDVPD put
1005   // register IDs in 8-bit immediates nowadays.
1006   ENCODING("FR32",            ENCODING_IB)
1007   ENCODING("FR64",            ENCODING_IB)
1008   ENCODING("VR128",           ENCODING_IB)
1009   ENCODING("VR256",           ENCODING_IB)
1010   ENCODING("FR32X",           ENCODING_IB)
1011   ENCODING("FR64X",           ENCODING_IB)
1012   ENCODING("VR128X",          ENCODING_IB)
1013   ENCODING("VR256X",          ENCODING_IB)
1014   ENCODING("VR512",           ENCODING_IB)
1015   errs() << "Unhandled immediate encoding " << s << "\n";
1016   llvm_unreachable("Unhandled immediate encoding");
1017 }
1018
1019 OperandEncoding
1020 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1021                                                 uint8_t OpSize) {
1022   ENCODING("RST",             ENCODING_FP)
1023   ENCODING("GR16",            ENCODING_RM)
1024   ENCODING("GR32",            ENCODING_RM)
1025   ENCODING("GR32orGR64",      ENCODING_RM)
1026   ENCODING("GR64",            ENCODING_RM)
1027   ENCODING("GR8",             ENCODING_RM)
1028   ENCODING("VR128",           ENCODING_RM)
1029   ENCODING("VR128X",          ENCODING_RM)
1030   ENCODING("FR64",            ENCODING_RM)
1031   ENCODING("FR32",            ENCODING_RM)
1032   ENCODING("FR64X",           ENCODING_RM)
1033   ENCODING("FR32X",           ENCODING_RM)
1034   ENCODING("VR64",            ENCODING_RM)
1035   ENCODING("VR256",           ENCODING_RM)
1036   ENCODING("VR256X",          ENCODING_RM)
1037   ENCODING("VR512",           ENCODING_RM)
1038   ENCODING("VK1",             ENCODING_RM)
1039   ENCODING("VK8",             ENCODING_RM)
1040   ENCODING("VK16",            ENCODING_RM)
1041   errs() << "Unhandled R/M register encoding " << s << "\n";
1042   llvm_unreachable("Unhandled R/M register encoding");
1043 }
1044
1045 OperandEncoding
1046 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1047                                                 uint8_t OpSize) {
1048   ENCODING("GR16",            ENCODING_REG)
1049   ENCODING("GR32",            ENCODING_REG)
1050   ENCODING("GR32orGR64",      ENCODING_REG)
1051   ENCODING("GR64",            ENCODING_REG)
1052   ENCODING("GR8",             ENCODING_REG)
1053   ENCODING("VR128",           ENCODING_REG)
1054   ENCODING("FR64",            ENCODING_REG)
1055   ENCODING("FR32",            ENCODING_REG)
1056   ENCODING("VR64",            ENCODING_REG)
1057   ENCODING("SEGMENT_REG",     ENCODING_REG)
1058   ENCODING("DEBUG_REG",       ENCODING_REG)
1059   ENCODING("CONTROL_REG",     ENCODING_REG)
1060   ENCODING("VR256",           ENCODING_REG)
1061   ENCODING("VR256X",          ENCODING_REG)
1062   ENCODING("VR128X",          ENCODING_REG)
1063   ENCODING("FR64X",           ENCODING_REG)
1064   ENCODING("FR32X",           ENCODING_REG)
1065   ENCODING("VR512",           ENCODING_REG)
1066   ENCODING("VK1",             ENCODING_REG)
1067   ENCODING("VK8",             ENCODING_REG)
1068   ENCODING("VK16",            ENCODING_REG)
1069   ENCODING("VK1WM",           ENCODING_REG)
1070   ENCODING("VK8WM",           ENCODING_REG)
1071   ENCODING("VK16WM",          ENCODING_REG)
1072   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1073   llvm_unreachable("Unhandled reg/opcode register encoding");
1074 }
1075
1076 OperandEncoding
1077 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1078                                                   uint8_t OpSize) {
1079   ENCODING("GR32",            ENCODING_VVVV)
1080   ENCODING("GR64",            ENCODING_VVVV)
1081   ENCODING("FR32",            ENCODING_VVVV)
1082   ENCODING("FR64",            ENCODING_VVVV)
1083   ENCODING("VR128",           ENCODING_VVVV)
1084   ENCODING("VR256",           ENCODING_VVVV)
1085   ENCODING("FR32X",           ENCODING_VVVV)
1086   ENCODING("FR64X",           ENCODING_VVVV)
1087   ENCODING("VR128X",          ENCODING_VVVV)
1088   ENCODING("VR256X",          ENCODING_VVVV)
1089   ENCODING("VR512",           ENCODING_VVVV)
1090   ENCODING("VK1",             ENCODING_VVVV)
1091   ENCODING("VK8",             ENCODING_VVVV)
1092   ENCODING("VK16",            ENCODING_VVVV)
1093   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1094   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1095 }
1096
1097 OperandEncoding
1098 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1099                                                        uint8_t OpSize) {
1100   ENCODING("VK1WM",           ENCODING_WRITEMASK)
1101   ENCODING("VK8WM",           ENCODING_WRITEMASK)
1102   ENCODING("VK16WM",          ENCODING_WRITEMASK)
1103   errs() << "Unhandled mask register encoding " << s << "\n";
1104   llvm_unreachable("Unhandled mask register encoding");
1105 }
1106
1107 OperandEncoding
1108 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1109                                             uint8_t OpSize) {
1110   ENCODING("i16mem",          ENCODING_RM)
1111   ENCODING("i32mem",          ENCODING_RM)
1112   ENCODING("i64mem",          ENCODING_RM)
1113   ENCODING("i8mem",           ENCODING_RM)
1114   ENCODING("ssmem",           ENCODING_RM)
1115   ENCODING("sdmem",           ENCODING_RM)
1116   ENCODING("f128mem",         ENCODING_RM)
1117   ENCODING("f256mem",         ENCODING_RM)
1118   ENCODING("f512mem",         ENCODING_RM)
1119   ENCODING("f64mem",          ENCODING_RM)
1120   ENCODING("f32mem",          ENCODING_RM)
1121   ENCODING("i128mem",         ENCODING_RM)
1122   ENCODING("i256mem",         ENCODING_RM)
1123   ENCODING("i512mem",         ENCODING_RM)
1124   ENCODING("f80mem",          ENCODING_RM)
1125   ENCODING("lea32mem",        ENCODING_RM)
1126   ENCODING("lea64_32mem",     ENCODING_RM)
1127   ENCODING("lea64mem",        ENCODING_RM)
1128   ENCODING("opaque32mem",     ENCODING_RM)
1129   ENCODING("opaque48mem",     ENCODING_RM)
1130   ENCODING("opaque80mem",     ENCODING_RM)
1131   ENCODING("opaque512mem",    ENCODING_RM)
1132   ENCODING("vx32mem",         ENCODING_RM)
1133   ENCODING("vy32mem",         ENCODING_RM)
1134   ENCODING("vz32mem",         ENCODING_RM)
1135   ENCODING("vx64mem",         ENCODING_RM)
1136   ENCODING("vy64mem",         ENCODING_RM)
1137   ENCODING("vy64xmem",        ENCODING_RM)
1138   ENCODING("vz64mem",         ENCODING_RM)
1139   errs() << "Unhandled memory encoding " << s << "\n";
1140   llvm_unreachable("Unhandled memory encoding");
1141 }
1142
1143 OperandEncoding
1144 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1145                                                 uint8_t OpSize) {
1146   if(OpSize != X86Local::OpSize16) {
1147     // For instructions without an OpSize prefix, a declared 16-bit register or
1148     // immediate encoding is special.
1149     ENCODING("i16imm",        ENCODING_IW)
1150   }
1151   ENCODING("i16imm",          ENCODING_Iv)
1152   ENCODING("i16i8imm",        ENCODING_IB)
1153   ENCODING("i32imm",          ENCODING_Iv)
1154   ENCODING("i32i8imm",        ENCODING_IB)
1155   ENCODING("i64i32imm",       ENCODING_ID)
1156   ENCODING("i64i8imm",        ENCODING_IB)
1157   ENCODING("i8imm",           ENCODING_IB)
1158   ENCODING("i64i32imm_pcrel", ENCODING_ID)
1159   ENCODING("i16imm_pcrel",    ENCODING_IW)
1160   ENCODING("i32imm_pcrel",    ENCODING_ID)
1161   ENCODING("brtarget",        ENCODING_Iv)
1162   ENCODING("brtarget8",       ENCODING_IB)
1163   ENCODING("i64imm",          ENCODING_IO)
1164   ENCODING("offset8",         ENCODING_Ia)
1165   ENCODING("offset16",        ENCODING_Ia)
1166   ENCODING("offset32",        ENCODING_Ia)
1167   ENCODING("offset64",        ENCODING_Ia)
1168   ENCODING("srcidx8",         ENCODING_SI)
1169   ENCODING("srcidx16",        ENCODING_SI)
1170   ENCODING("srcidx32",        ENCODING_SI)
1171   ENCODING("srcidx64",        ENCODING_SI)
1172   ENCODING("dstidx8",         ENCODING_DI)
1173   ENCODING("dstidx16",        ENCODING_DI)
1174   ENCODING("dstidx32",        ENCODING_DI)
1175   ENCODING("dstidx64",        ENCODING_DI)
1176   errs() << "Unhandled relocation encoding " << s << "\n";
1177   llvm_unreachable("Unhandled relocation encoding");
1178 }
1179
1180 OperandEncoding
1181 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1182                                                     uint8_t OpSize) {
1183   ENCODING("GR32",            ENCODING_Rv)
1184   ENCODING("GR64",            ENCODING_RO)
1185   ENCODING("GR16",            ENCODING_Rv)
1186   ENCODING("GR8",             ENCODING_RB)
1187   ENCODING("GR16_NOAX",       ENCODING_Rv)
1188   ENCODING("GR32_NOAX",       ENCODING_Rv)
1189   ENCODING("GR64_NOAX",       ENCODING_RO)
1190   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1191   llvm_unreachable("Unhandled opcode modifier encoding");
1192 }
1193 #undef ENCODING