[X86] Part 2 to fix x86-64 fp128 calling convention.
[oota-llvm.git] / utils / TableGen / SubtargetEmitter.cpp
1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits subtarget enumerations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTarget.h"
15 #include "CodeGenSchedule.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/MC/MCInstrItineraries.h"
19 #include "llvm/MC/SubtargetFeature.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/TableGen/Error.h"
23 #include "llvm/TableGen/Record.h"
24 #include "llvm/TableGen/TableGenBackend.h"
25 #include <algorithm>
26 #include <map>
27 #include <string>
28 #include <vector>
29
30 using namespace llvm;
31
32 #define DEBUG_TYPE "subtarget-emitter"
33
34 namespace {
35 class SubtargetEmitter {
36   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
37   // The SchedClassDesc table indexes into a global write resource table, write
38   // latency table, and read advance table.
39   struct SchedClassTables {
40     std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses;
41     std::vector<MCWriteProcResEntry> WriteProcResources;
42     std::vector<MCWriteLatencyEntry> WriteLatencies;
43     std::vector<std::string> WriterNames;
44     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
45
46     // Reserve an invalid entry at index 0
47     SchedClassTables() {
48       ProcSchedClasses.resize(1);
49       WriteProcResources.resize(1);
50       WriteLatencies.resize(1);
51       WriterNames.push_back("InvalidWrite");
52       ReadAdvanceEntries.resize(1);
53     }
54   };
55
56   struct LessWriteProcResources {
57     bool operator()(const MCWriteProcResEntry &LHS,
58                     const MCWriteProcResEntry &RHS) {
59       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
60     }
61   };
62
63   RecordKeeper &Records;
64   CodeGenSchedModels &SchedModels;
65   std::string Target;
66
67   void Enumeration(raw_ostream &OS, const char *ClassName);
68   unsigned FeatureKeyValues(raw_ostream &OS);
69   unsigned CPUKeyValues(raw_ostream &OS);
70   void FormItineraryStageString(const std::string &Names,
71                                 Record *ItinData, std::string &ItinString,
72                                 unsigned &NStages);
73   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
74                                        unsigned &NOperandCycles);
75   void FormItineraryBypassString(const std::string &Names,
76                                  Record *ItinData,
77                                  std::string &ItinString, unsigned NOperandCycles);
78   void EmitStageAndOperandCycleData(raw_ostream &OS,
79                                     std::vector<std::vector<InstrItinerary> >
80                                       &ProcItinLists);
81   void EmitItineraries(raw_ostream &OS,
82                        std::vector<std::vector<InstrItinerary> >
83                          &ProcItinLists);
84   void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name,
85                          char Separator);
86   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
87                               raw_ostream &OS);
88   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
89                              const CodeGenProcModel &ProcModel);
90   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
91                           const CodeGenProcModel &ProcModel);
92   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
93                            const CodeGenProcModel &ProcModel);
94   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
95                            SchedClassTables &SchedTables);
96   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
97   void EmitProcessorModels(raw_ostream &OS);
98   void EmitProcessorLookup(raw_ostream &OS);
99   void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS);
100   void EmitSchedModel(raw_ostream &OS);
101   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
102                              unsigned NumProcs);
103
104 public:
105   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT):
106     Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {}
107
108   void run(raw_ostream &o);
109 };
110 } // end anonymous namespace
111
112 //
113 // Enumeration - Emit the specified class as an enumeration.
114 //
115 void SubtargetEmitter::Enumeration(raw_ostream &OS,
116                                    const char *ClassName) {
117   // Get all records of class and sort
118   std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName);
119   std::sort(DefList.begin(), DefList.end(), LessRecord());
120
121   unsigned N = DefList.size();
122   if (N == 0)
123     return;
124   if (N > MAX_SUBTARGET_FEATURES)
125     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
126
127   OS << "namespace " << Target << " {\n";
128
129   // Open enumeration. Use a 64-bit underlying type.
130   OS << "enum : uint64_t {\n";
131
132   // For each record
133   for (unsigned i = 0; i < N;) {
134     // Next record
135     Record *Def = DefList[i];
136
137     // Get and emit name
138     OS << "  " << Def->getName() << " = " << i;
139     if (++i < N) OS << ",";
140
141     OS << "\n";
142   }
143
144   // Close enumeration and namespace
145   OS << "};\n}\n";
146 }
147
148 //
149 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
150 // command line.
151 //
152 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
153   // Gather and sort all the features
154   std::vector<Record*> FeatureList =
155                            Records.getAllDerivedDefinitions("SubtargetFeature");
156
157   if (FeatureList.empty())
158     return 0;
159
160   std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
161
162   // Begin feature table
163   OS << "// Sorted (by key) array of values for CPU features.\n"
164      << "extern const llvm::SubtargetFeatureKV " << Target
165      << "FeatureKV[] = {\n";
166
167   // For each feature
168   unsigned NumFeatures = 0;
169   for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
170     // Next feature
171     Record *Feature = FeatureList[i];
172
173     const std::string &Name = Feature->getName();
174     const std::string &CommandLineName = Feature->getValueAsString("Name");
175     const std::string &Desc = Feature->getValueAsString("Desc");
176
177     if (CommandLineName.empty()) continue;
178
179     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
180     OS << "  { "
181        << "\"" << CommandLineName << "\", "
182        << "\"" << Desc << "\", "
183        << "{ " << Target << "::" << Name << " }, ";
184
185     const std::vector<Record*> &ImpliesList =
186       Feature->getValueAsListOfDefs("Implies");
187
188     if (ImpliesList.empty()) {
189       OS << "{ }";
190     } else {
191       OS << "{ ";
192       for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
193         OS << Target << "::" << ImpliesList[j]->getName();
194         if (++j < M) OS << ", ";
195       }
196       OS << " }";
197     }
198
199     OS << " }";
200     ++NumFeatures;
201
202     // Depending on 'if more in the list' emit comma
203     if ((i + 1) < N) OS << ",";
204
205     OS << "\n";
206   }
207
208   // End feature table
209   OS << "};\n";
210
211   return NumFeatures;
212 }
213
214 //
215 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
216 // line.
217 //
218 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
219   // Gather and sort processor information
220   std::vector<Record*> ProcessorList =
221                           Records.getAllDerivedDefinitions("Processor");
222   std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
223
224   // Begin processor table
225   OS << "// Sorted (by key) array of values for CPU subtype.\n"
226      << "extern const llvm::SubtargetFeatureKV " << Target
227      << "SubTypeKV[] = {\n";
228
229   // For each processor
230   for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
231     // Next processor
232     Record *Processor = ProcessorList[i];
233
234     const std::string &Name = Processor->getValueAsString("Name");
235     const std::vector<Record*> &FeatureList =
236       Processor->getValueAsListOfDefs("Features");
237
238     // Emit as { "cpu", "description", { f1 , f2 , ... fn } },
239     OS << "  { "
240        << "\"" << Name << "\", "
241        << "\"Select the " << Name << " processor\", ";
242
243     if (FeatureList.empty()) {
244       OS << "{ }";
245     } else {
246       OS << "{ ";
247       for (unsigned j = 0, M = FeatureList.size(); j < M;) {
248         OS << Target << "::" << FeatureList[j]->getName();
249         if (++j < M) OS << ", ";
250       }
251       OS << " }";
252     }
253
254     // The { } is for the "implies" section of this data structure.
255     OS << ", { } }";
256
257     // Depending on 'if more in the list' emit comma
258     if (++i < N) OS << ",";
259
260     OS << "\n";
261   }
262
263   // End processor table
264   OS << "};\n";
265
266   return ProcessorList.size();
267 }
268
269 //
270 // FormItineraryStageString - Compose a string containing the stage
271 // data initialization for the specified itinerary.  N is the number
272 // of stages.
273 //
274 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
275                                                 Record *ItinData,
276                                                 std::string &ItinString,
277                                                 unsigned &NStages) {
278   // Get states list
279   const std::vector<Record*> &StageList =
280     ItinData->getValueAsListOfDefs("Stages");
281
282   // For each stage
283   unsigned N = NStages = StageList.size();
284   for (unsigned i = 0; i < N;) {
285     // Next stage
286     const Record *Stage = StageList[i];
287
288     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
289     int Cycles = Stage->getValueAsInt("Cycles");
290     ItinString += "  { " + itostr(Cycles) + ", ";
291
292     // Get unit list
293     const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
294
295     // For each unit
296     for (unsigned j = 0, M = UnitList.size(); j < M;) {
297       // Add name and bitwise or
298       ItinString += Name + "FU::" + UnitList[j]->getName();
299       if (++j < M) ItinString += " | ";
300     }
301
302     int TimeInc = Stage->getValueAsInt("TimeInc");
303     ItinString += ", " + itostr(TimeInc);
304
305     int Kind = Stage->getValueAsInt("Kind");
306     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
307
308     // Close off stage
309     ItinString += " }";
310     if (++i < N) ItinString += ", ";
311   }
312 }
313
314 //
315 // FormItineraryOperandCycleString - Compose a string containing the
316 // operand cycle initialization for the specified itinerary.  N is the
317 // number of operands that has cycles specified.
318 //
319 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
320                          std::string &ItinString, unsigned &NOperandCycles) {
321   // Get operand cycle list
322   const std::vector<int64_t> &OperandCycleList =
323     ItinData->getValueAsListOfInts("OperandCycles");
324
325   // For each operand cycle
326   unsigned N = NOperandCycles = OperandCycleList.size();
327   for (unsigned i = 0; i < N;) {
328     // Next operand cycle
329     const int OCycle = OperandCycleList[i];
330
331     ItinString += "  " + itostr(OCycle);
332     if (++i < N) ItinString += ", ";
333   }
334 }
335
336 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
337                                                  Record *ItinData,
338                                                  std::string &ItinString,
339                                                  unsigned NOperandCycles) {
340   const std::vector<Record*> &BypassList =
341     ItinData->getValueAsListOfDefs("Bypasses");
342   unsigned N = BypassList.size();
343   unsigned i = 0;
344   for (; i < N;) {
345     ItinString += Name + "Bypass::" + BypassList[i]->getName();
346     if (++i < NOperandCycles) ItinString += ", ";
347   }
348   for (; i < NOperandCycles;) {
349     ItinString += " 0";
350     if (++i < NOperandCycles) ItinString += ", ";
351   }
352 }
353
354 //
355 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
356 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
357 // by CodeGenSchedClass::Index.
358 //
359 void SubtargetEmitter::
360 EmitStageAndOperandCycleData(raw_ostream &OS,
361                              std::vector<std::vector<InstrItinerary> >
362                                &ProcItinLists) {
363
364   // Multiple processor models may share an itinerary record. Emit it once.
365   SmallPtrSet<Record*, 8> ItinsDefSet;
366
367   // Emit functional units for all the itineraries.
368   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
369          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
370
371     if (!ItinsDefSet.insert(PI->ItinsDef).second)
372       continue;
373
374     std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU");
375     if (FUs.empty())
376       continue;
377
378     const std::string &Name = PI->ItinsDef->getName();
379     OS << "\n// Functional units for \"" << Name << "\"\n"
380        << "namespace " << Name << "FU {\n";
381
382     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
383       OS << "  const unsigned " << FUs[j]->getName()
384          << " = 1 << " << j << ";\n";
385
386     OS << "}\n";
387
388     std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP");
389     if (!BPs.empty()) {
390       OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
391          << "\"\n" << "namespace " << Name << "Bypass {\n";
392
393       OS << "  const unsigned NoBypass = 0;\n";
394       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
395         OS << "  const unsigned " << BPs[j]->getName()
396            << " = 1 << " << j << ";\n";
397
398       OS << "}\n";
399     }
400   }
401
402   // Begin stages table
403   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
404                            "Stages[] = {\n";
405   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
406
407   // Begin operand cycle table
408   std::string OperandCycleTable = "extern const unsigned " + Target +
409     "OperandCycles[] = {\n";
410   OperandCycleTable += "  0, // No itinerary\n";
411
412   // Begin pipeline bypass table
413   std::string BypassTable = "extern const unsigned " + Target +
414     "ForwardingPaths[] = {\n";
415   BypassTable += " 0, // No itinerary\n";
416
417   // For each Itinerary across all processors, add a unique entry to the stages,
418   // operand cycles, and pipepine bypess tables. Then add the new Itinerary
419   // object with computed offsets to the ProcItinLists result.
420   unsigned StageCount = 1, OperandCycleCount = 1;
421   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
422   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
423          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
424     const CodeGenProcModel &ProcModel = *PI;
425
426     // Add process itinerary to the list.
427     ProcItinLists.resize(ProcItinLists.size()+1);
428
429     // If this processor defines no itineraries, then leave the itinerary list
430     // empty.
431     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
432     if (!ProcModel.hasItineraries())
433       continue;
434
435     const std::string &Name = ProcModel.ItinsDef->getName();
436
437     ItinList.resize(SchedModels.numInstrSchedClasses());
438     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
439
440     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
441          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
442
443       // Next itinerary data
444       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
445
446       // Get string and stage count
447       std::string ItinStageString;
448       unsigned NStages = 0;
449       if (ItinData)
450         FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
451
452       // Get string and operand cycle count
453       std::string ItinOperandCycleString;
454       unsigned NOperandCycles = 0;
455       std::string ItinBypassString;
456       if (ItinData) {
457         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
458                                         NOperandCycles);
459
460         FormItineraryBypassString(Name, ItinData, ItinBypassString,
461                                   NOperandCycles);
462       }
463
464       // Check to see if stage already exists and create if it doesn't
465       unsigned FindStage = 0;
466       if (NStages > 0) {
467         FindStage = ItinStageMap[ItinStageString];
468         if (FindStage == 0) {
469           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
470           StageTable += ItinStageString + ", // " + itostr(StageCount);
471           if (NStages > 1)
472             StageTable += "-" + itostr(StageCount + NStages - 1);
473           StageTable += "\n";
474           // Record Itin class number.
475           ItinStageMap[ItinStageString] = FindStage = StageCount;
476           StageCount += NStages;
477         }
478       }
479
480       // Check to see if operand cycle already exists and create if it doesn't
481       unsigned FindOperandCycle = 0;
482       if (NOperandCycles > 0) {
483         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
484         FindOperandCycle = ItinOperandMap[ItinOperandString];
485         if (FindOperandCycle == 0) {
486           // Emit as  cycle, // index
487           OperandCycleTable += ItinOperandCycleString + ", // ";
488           std::string OperandIdxComment = itostr(OperandCycleCount);
489           if (NOperandCycles > 1)
490             OperandIdxComment += "-"
491               + itostr(OperandCycleCount + NOperandCycles - 1);
492           OperandCycleTable += OperandIdxComment + "\n";
493           // Record Itin class number.
494           ItinOperandMap[ItinOperandCycleString] =
495             FindOperandCycle = OperandCycleCount;
496           // Emit as bypass, // index
497           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
498           OperandCycleCount += NOperandCycles;
499         }
500       }
501
502       // Set up itinerary as location and location + stage count
503       int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
504       InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages,
505                                     FindOperandCycle,
506                                     FindOperandCycle + NOperandCycles};
507
508       // Inject - empty slots will be 0, 0
509       ItinList[SchedClassIdx] = Intinerary;
510     }
511   }
512
513   // Closing stage
514   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
515   StageTable += "};\n";
516
517   // Closing operand cycles
518   OperandCycleTable += "  0 // End operand cycles\n";
519   OperandCycleTable += "};\n";
520
521   BypassTable += " 0 // End bypass tables\n";
522   BypassTable += "};\n";
523
524   // Emit tables.
525   OS << StageTable;
526   OS << OperandCycleTable;
527   OS << BypassTable;
528 }
529
530 //
531 // EmitProcessorData - Generate data for processor itineraries that were
532 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
533 // Itineraries for each processor. The Itinerary lists are indexed on
534 // CodeGenSchedClass::Index.
535 //
536 void SubtargetEmitter::
537 EmitItineraries(raw_ostream &OS,
538                 std::vector<std::vector<InstrItinerary> > &ProcItinLists) {
539
540   // Multiple processor models may share an itinerary record. Emit it once.
541   SmallPtrSet<Record*, 8> ItinsDefSet;
542
543   // For each processor's machine model
544   std::vector<std::vector<InstrItinerary> >::iterator
545       ProcItinListsIter = ProcItinLists.begin();
546   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
547          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
548
549     Record *ItinsDef = PI->ItinsDef;
550     if (!ItinsDefSet.insert(ItinsDef).second)
551       continue;
552
553     // Get processor itinerary name
554     const std::string &Name = ItinsDef->getName();
555
556     // Get the itinerary list for the processor.
557     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
558     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
559
560     // Empty itineraries aren't referenced anywhere in the tablegen output
561     // so don't emit them.
562     if (ItinList.empty())
563       continue;
564
565     OS << "\n";
566     OS << "static const llvm::InstrItinerary ";
567
568     // Begin processor itinerary table
569     OS << Name << "[] = {\n";
570
571     // For each itinerary class in CodeGenSchedClass::Index order.
572     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
573       InstrItinerary &Intinerary = ItinList[j];
574
575       // Emit Itinerary in the form of
576       // { firstStage, lastStage, firstCycle, lastCycle } // index
577       OS << "  { " <<
578         Intinerary.NumMicroOps << ", " <<
579         Intinerary.FirstStage << ", " <<
580         Intinerary.LastStage << ", " <<
581         Intinerary.FirstOperandCycle << ", " <<
582         Intinerary.LastOperandCycle << " }" <<
583         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
584     }
585     // End processor itinerary table
586     OS << "  { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n";
587     OS << "};\n";
588   }
589 }
590
591 // Emit either the value defined in the TableGen Record, or the default
592 // value defined in the C++ header. The Record is null if the processor does not
593 // define a model.
594 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
595                                          const char *Name, char Separator) {
596   OS << "  ";
597   int V = R ? R->getValueAsInt(Name) : -1;
598   if (V >= 0)
599     OS << V << Separator << " // " << Name;
600   else
601     OS << "MCSchedModel::Default" << Name << Separator;
602   OS << '\n';
603 }
604
605 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
606                                               raw_ostream &OS) {
607   char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ',';
608
609   OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n";
610   OS << "static const llvm::MCProcResourceDesc "
611      << ProcModel.ModelName << "ProcResources" << "[] = {\n"
612      << "  {DBGFIELD(\"InvalidUnit\")     0, 0, 0}" << Sep << "\n";
613
614   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
615     Record *PRDef = ProcModel.ProcResourceDefs[i];
616
617     Record *SuperDef = nullptr;
618     unsigned SuperIdx = 0;
619     unsigned NumUnits = 0;
620     int BufferSize = PRDef->getValueAsInt("BufferSize");
621     if (PRDef->isSubClassOf("ProcResGroup")) {
622       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
623       for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end();
624            RUI != RUE; ++RUI) {
625         NumUnits += (*RUI)->getValueAsInt("NumUnits");
626       }
627     }
628     else {
629       // Find the SuperIdx
630       if (PRDef->getValueInit("Super")->isComplete()) {
631         SuperDef = SchedModels.findProcResUnits(
632           PRDef->getValueAsDef("Super"), ProcModel);
633         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
634       }
635       NumUnits = PRDef->getValueAsInt("NumUnits");
636     }
637     // Emit the ProcResourceDesc
638     if (i+1 == e)
639       Sep = ' ';
640     OS << "  {DBGFIELD(\"" << PRDef->getName() << "\") ";
641     if (PRDef->getName().size() < 15)
642       OS.indent(15 - PRDef->getName().size());
643     OS << NumUnits << ", " << SuperIdx << ", "
644        << BufferSize << "}" << Sep << " // #" << i+1;
645     if (SuperDef)
646       OS << ", Super=" << SuperDef->getName();
647     OS << "\n";
648   }
649   OS << "};\n";
650 }
651
652 // Find the WriteRes Record that defines processor resources for this
653 // SchedWrite.
654 Record *SubtargetEmitter::FindWriteResources(
655   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
656
657   // Check if the SchedWrite is already subtarget-specific and directly
658   // specifies a set of processor resources.
659   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
660     return SchedWrite.TheDef;
661
662   Record *AliasDef = nullptr;
663   for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end();
664        AI != AE; ++AI) {
665     const CodeGenSchedRW &AliasRW =
666       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
667     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
668       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
669       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
670         continue;
671     }
672     if (AliasDef)
673       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
674                     "defined for processor " + ProcModel.ModelName +
675                     " Ensure only one SchedAlias exists per RW.");
676     AliasDef = AliasRW.TheDef;
677   }
678   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
679     return AliasDef;
680
681   // Check this processor's list of write resources.
682   Record *ResDef = nullptr;
683   for (RecIter WRI = ProcModel.WriteResDefs.begin(),
684          WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) {
685     if (!(*WRI)->isSubClassOf("WriteRes"))
686       continue;
687     if (AliasDef == (*WRI)->getValueAsDef("WriteType")
688         || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) {
689       if (ResDef) {
690         PrintFatalError((*WRI)->getLoc(), "Resources are defined for both "
691                       "SchedWrite and its alias on processor " +
692                       ProcModel.ModelName);
693       }
694       ResDef = *WRI;
695     }
696   }
697   // TODO: If ProcModel has a base model (previous generation processor),
698   // then call FindWriteResources recursively with that model here.
699   if (!ResDef) {
700     PrintFatalError(ProcModel.ModelDef->getLoc(),
701                   std::string("Processor does not define resources for ")
702                   + SchedWrite.TheDef->getName());
703   }
704   return ResDef;
705 }
706
707 /// Find the ReadAdvance record for the given SchedRead on this processor or
708 /// return NULL.
709 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
710                                           const CodeGenProcModel &ProcModel) {
711   // Check for SchedReads that directly specify a ReadAdvance.
712   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
713     return SchedRead.TheDef;
714
715   // Check this processor's list of aliases for SchedRead.
716   Record *AliasDef = nullptr;
717   for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end();
718        AI != AE; ++AI) {
719     const CodeGenSchedRW &AliasRW =
720       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
721     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
722       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
723       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
724         continue;
725     }
726     if (AliasDef)
727       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
728                     "defined for processor " + ProcModel.ModelName +
729                     " Ensure only one SchedAlias exists per RW.");
730     AliasDef = AliasRW.TheDef;
731   }
732   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
733     return AliasDef;
734
735   // Check this processor's ReadAdvanceList.
736   Record *ResDef = nullptr;
737   for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(),
738          RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) {
739     if (!(*RAI)->isSubClassOf("ReadAdvance"))
740       continue;
741     if (AliasDef == (*RAI)->getValueAsDef("ReadType")
742         || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) {
743       if (ResDef) {
744         PrintFatalError((*RAI)->getLoc(), "Resources are defined for both "
745                       "SchedRead and its alias on processor " +
746                       ProcModel.ModelName);
747       }
748       ResDef = *RAI;
749     }
750   }
751   // TODO: If ProcModel has a base model (previous generation processor),
752   // then call FindReadAdvance recursively with that model here.
753   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
754     PrintFatalError(ProcModel.ModelDef->getLoc(),
755                   std::string("Processor does not define resources for ")
756                   + SchedRead.TheDef->getName());
757   }
758   return ResDef;
759 }
760
761 // Expand an explicit list of processor resources into a full list of implied
762 // resource groups and super resources that cover them.
763 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
764                                            std::vector<int64_t> &Cycles,
765                                            const CodeGenProcModel &PM) {
766   // Default to 1 resource cycle.
767   Cycles.resize(PRVec.size(), 1);
768   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
769     Record *PRDef = PRVec[i];
770     RecVec SubResources;
771     if (PRDef->isSubClassOf("ProcResGroup"))
772       SubResources = PRDef->getValueAsListOfDefs("Resources");
773     else {
774       SubResources.push_back(PRDef);
775       PRDef = SchedModels.findProcResUnits(PRVec[i], PM);
776       for (Record *SubDef = PRDef;
777            SubDef->getValueInit("Super")->isComplete();) {
778         if (SubDef->isSubClassOf("ProcResGroup")) {
779           // Disallow this for simplicitly.
780           PrintFatalError(SubDef->getLoc(), "Processor resource group "
781                           " cannot be a super resources.");
782         }
783         Record *SuperDef =
784           SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM);
785         PRVec.push_back(SuperDef);
786         Cycles.push_back(Cycles[i]);
787         SubDef = SuperDef;
788       }
789     }
790     for (RecIter PRI = PM.ProcResourceDefs.begin(),
791            PRE = PM.ProcResourceDefs.end();
792          PRI != PRE; ++PRI) {
793       if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup"))
794         continue;
795       RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources");
796       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
797       for( ; SubI != SubE; ++SubI) {
798         if (std::find(SuperResources.begin(), SuperResources.end(), *SubI)
799             == SuperResources.end()) {
800           break;
801         }
802       }
803       if (SubI == SubE) {
804         PRVec.push_back(*PRI);
805         Cycles.push_back(Cycles[i]);
806       }
807     }
808   }
809 }
810
811 // Generate the SchedClass table for this processor and update global
812 // tables. Must be called for each processor in order.
813 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
814                                            SchedClassTables &SchedTables) {
815   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
816   if (!ProcModel.hasInstrSchedModel())
817     return;
818
819   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
820   for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
821          SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
822     DEBUG(SCI->dump(&SchedModels));
823
824     SCTab.resize(SCTab.size() + 1);
825     MCSchedClassDesc &SCDesc = SCTab.back();
826     // SCDesc.Name is guarded by NDEBUG
827     SCDesc.NumMicroOps = 0;
828     SCDesc.BeginGroup = false;
829     SCDesc.EndGroup = false;
830     SCDesc.WriteProcResIdx = 0;
831     SCDesc.WriteLatencyIdx = 0;
832     SCDesc.ReadAdvanceIdx = 0;
833
834     // A Variant SchedClass has no resources of its own.
835     bool HasVariants = false;
836     for (std::vector<CodeGenSchedTransition>::const_iterator
837            TI = SCI->Transitions.begin(), TE = SCI->Transitions.end();
838          TI != TE; ++TI) {
839       if (TI->ProcIndices[0] == 0) {
840         HasVariants = true;
841         break;
842       }
843       IdxIter PIPos = std::find(TI->ProcIndices.begin(),
844                                 TI->ProcIndices.end(), ProcModel.Index);
845       if (PIPos != TI->ProcIndices.end()) {
846         HasVariants = true;
847         break;
848       }
849     }
850     if (HasVariants) {
851       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
852       continue;
853     }
854
855     // Determine if the SchedClass is actually reachable on this processor. If
856     // not don't try to locate the processor resources, it will fail.
857     // If ProcIndices contains 0, this class applies to all processors.
858     assert(!SCI->ProcIndices.empty() && "expect at least one procidx");
859     if (SCI->ProcIndices[0] != 0) {
860       IdxIter PIPos = std::find(SCI->ProcIndices.begin(),
861                                 SCI->ProcIndices.end(), ProcModel.Index);
862       if (PIPos == SCI->ProcIndices.end())
863         continue;
864     }
865     IdxVec Writes = SCI->Writes;
866     IdxVec Reads = SCI->Reads;
867     if (!SCI->InstRWs.empty()) {
868       // This class has a default ReadWrite list which can be overriden by
869       // InstRW definitions.
870       Record *RWDef = nullptr;
871       for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end();
872            RWI != RWE; ++RWI) {
873         Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel");
874         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
875           RWDef = *RWI;
876           break;
877         }
878       }
879       if (RWDef) {
880         Writes.clear();
881         Reads.clear();
882         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
883                             Writes, Reads);
884       }
885     }
886     if (Writes.empty()) {
887       // Check this processor's itinerary class resources.
888       for (RecIter II = ProcModel.ItinRWDefs.begin(),
889              IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) {
890         RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
891         if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef)
892             != Matched.end()) {
893           SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"),
894                               Writes, Reads);
895           break;
896         }
897       }
898       if (Writes.empty()) {
899         DEBUG(dbgs() << ProcModel.ModelName
900               << " does not have resources for class " << SCI->Name << '\n');
901       }
902     }
903     // Sum resources across all operand writes.
904     std::vector<MCWriteProcResEntry> WriteProcResources;
905     std::vector<MCWriteLatencyEntry> WriteLatencies;
906     std::vector<std::string> WriterNames;
907     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
908     for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) {
909       IdxVec WriteSeq;
910       SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false,
911                                      ProcModel);
912
913       // For each operand, create a latency entry.
914       MCWriteLatencyEntry WLEntry;
915       WLEntry.Cycles = 0;
916       unsigned WriteID = WriteSeq.back();
917       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
918       // If this Write is not referenced by a ReadAdvance, don't distinguish it
919       // from other WriteLatency entries.
920       if (!SchedModels.hasReadOfWrite(
921             SchedModels.getSchedWrite(WriteID).TheDef)) {
922         WriteID = 0;
923       }
924       WLEntry.WriteResourceID = WriteID;
925
926       for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end();
927            WSI != WSE; ++WSI) {
928
929         Record *WriteRes =
930           FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel);
931
932         // Mark the parent class as invalid for unsupported write types.
933         if (WriteRes->getValueAsBit("Unsupported")) {
934           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
935           break;
936         }
937         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
938         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
939         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
940         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
941
942         // Create an entry for each ProcResource listed in WriteRes.
943         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
944         std::vector<int64_t> Cycles =
945           WriteRes->getValueAsListOfInts("ResourceCycles");
946
947         ExpandProcResources(PRVec, Cycles, ProcModel);
948
949         for (unsigned PRIdx = 0, PREnd = PRVec.size();
950              PRIdx != PREnd; ++PRIdx) {
951           MCWriteProcResEntry WPREntry;
952           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
953           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
954           WPREntry.Cycles = Cycles[PRIdx];
955           // If this resource is already used in this sequence, add the current
956           // entry's cycles so that the same resource appears to be used
957           // serially, rather than multiple parallel uses. This is important for
958           // in-order machine where the resource consumption is a hazard.
959           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
960           for( ; WPRIdx != WPREnd; ++WPRIdx) {
961             if (WriteProcResources[WPRIdx].ProcResourceIdx
962                 == WPREntry.ProcResourceIdx) {
963               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
964               break;
965             }
966           }
967           if (WPRIdx == WPREnd)
968             WriteProcResources.push_back(WPREntry);
969         }
970       }
971       WriteLatencies.push_back(WLEntry);
972     }
973     // Create an entry for each operand Read in this SchedClass.
974     // Entries must be sorted first by UseIdx then by WriteResourceID.
975     for (unsigned UseIdx = 0, EndIdx = Reads.size();
976          UseIdx != EndIdx; ++UseIdx) {
977       Record *ReadAdvance =
978         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
979       if (!ReadAdvance)
980         continue;
981
982       // Mark the parent class as invalid for unsupported write types.
983       if (ReadAdvance->getValueAsBit("Unsupported")) {
984         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
985         break;
986       }
987       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
988       IdxVec WriteIDs;
989       if (ValidWrites.empty())
990         WriteIDs.push_back(0);
991       else {
992         for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end();
993              VWI != VWE; ++VWI) {
994           WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false));
995         }
996       }
997       std::sort(WriteIDs.begin(), WriteIDs.end());
998       for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) {
999         MCReadAdvanceEntry RAEntry;
1000         RAEntry.UseIdx = UseIdx;
1001         RAEntry.WriteResourceID = *WI;
1002         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1003         ReadAdvanceEntries.push_back(RAEntry);
1004       }
1005     }
1006     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1007       WriteProcResources.clear();
1008       WriteLatencies.clear();
1009       ReadAdvanceEntries.clear();
1010     }
1011     // Add the information for this SchedClass to the global tables using basic
1012     // compression.
1013     //
1014     // WritePrecRes entries are sorted by ProcResIdx.
1015     std::sort(WriteProcResources.begin(), WriteProcResources.end(),
1016               LessWriteProcResources());
1017
1018     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1019     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1020       std::search(SchedTables.WriteProcResources.begin(),
1021                   SchedTables.WriteProcResources.end(),
1022                   WriteProcResources.begin(), WriteProcResources.end());
1023     if (WPRPos != SchedTables.WriteProcResources.end())
1024       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1025     else {
1026       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1027       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1028                                             WriteProcResources.end());
1029     }
1030     // Latency entries must remain in operand order.
1031     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1032     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1033       std::search(SchedTables.WriteLatencies.begin(),
1034                   SchedTables.WriteLatencies.end(),
1035                   WriteLatencies.begin(), WriteLatencies.end());
1036     if (WLPos != SchedTables.WriteLatencies.end()) {
1037       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1038       SCDesc.WriteLatencyIdx = idx;
1039       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1040         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1041             std::string::npos) {
1042           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1043         }
1044     }
1045     else {
1046       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1047       SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1048                                         WriteLatencies.begin(),
1049                                         WriteLatencies.end());
1050       SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1051                                      WriterNames.begin(), WriterNames.end());
1052     }
1053     // ReadAdvanceEntries must remain in operand order.
1054     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1055     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1056       std::search(SchedTables.ReadAdvanceEntries.begin(),
1057                   SchedTables.ReadAdvanceEntries.end(),
1058                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1059     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1060       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1061     else {
1062       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1063       SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1064                                             ReadAdvanceEntries.end());
1065     }
1066   }
1067 }
1068
1069 // Emit SchedClass tables for all processors and associated global tables.
1070 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1071                                             raw_ostream &OS) {
1072   // Emit global WriteProcResTable.
1073   OS << "\n// {ProcResourceIdx, Cycles}\n"
1074      << "extern const llvm::MCWriteProcResEntry "
1075      << Target << "WriteProcResTable[] = {\n"
1076      << "  { 0,  0}, // Invalid\n";
1077   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1078        WPRIdx != WPREnd; ++WPRIdx) {
1079     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1080     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1081        << format("%2d", WPREntry.Cycles) << "}";
1082     if (WPRIdx + 1 < WPREnd)
1083       OS << ',';
1084     OS << " // #" << WPRIdx << '\n';
1085   }
1086   OS << "}; // " << Target << "WriteProcResTable\n";
1087
1088   // Emit global WriteLatencyTable.
1089   OS << "\n// {Cycles, WriteResourceID}\n"
1090      << "extern const llvm::MCWriteLatencyEntry "
1091      << Target << "WriteLatencyTable[] = {\n"
1092      << "  { 0,  0}, // Invalid\n";
1093   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1094        WLIdx != WLEnd; ++WLIdx) {
1095     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1096     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1097        << format("%2d", WLEntry.WriteResourceID) << "}";
1098     if (WLIdx + 1 < WLEnd)
1099       OS << ',';
1100     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1101   }
1102   OS << "}; // " << Target << "WriteLatencyTable\n";
1103
1104   // Emit global ReadAdvanceTable.
1105   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1106      << "extern const llvm::MCReadAdvanceEntry "
1107      << Target << "ReadAdvanceTable[] = {\n"
1108      << "  {0,  0,  0}, // Invalid\n";
1109   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1110        RAIdx != RAEnd; ++RAIdx) {
1111     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1112     OS << "  {" << RAEntry.UseIdx << ", "
1113        << format("%2d", RAEntry.WriteResourceID) << ", "
1114        << format("%2d", RAEntry.Cycles) << "}";
1115     if (RAIdx + 1 < RAEnd)
1116       OS << ',';
1117     OS << " // #" << RAIdx << '\n';
1118   }
1119   OS << "}; // " << Target << "ReadAdvanceTable\n";
1120
1121   // Emit a SchedClass table for each processor.
1122   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1123          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1124     if (!PI->hasInstrSchedModel())
1125       continue;
1126
1127     std::vector<MCSchedClassDesc> &SCTab =
1128       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1129
1130     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1131        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1132     OS << "static const llvm::MCSchedClassDesc "
1133        << PI->ModelName << "SchedClasses[] = {\n";
1134
1135     // The first class is always invalid. We no way to distinguish it except by
1136     // name and position.
1137     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1138            && "invalid class not first");
1139     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1140        << MCSchedClassDesc::InvalidNumMicroOps
1141        << ", 0, 0,  0, 0,  0, 0,  0, 0},\n";
1142
1143     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1144       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1145       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1146       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1147       if (SchedClass.Name.size() < 18)
1148         OS.indent(18 - SchedClass.Name.size());
1149       OS << MCDesc.NumMicroOps
1150          << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup
1151          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1152          << ", " << MCDesc.NumWriteProcResEntries
1153          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1154          << ", " << MCDesc.NumWriteLatencyEntries
1155          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1156          << ", " << MCDesc.NumReadAdvanceEntries << "}";
1157       if (SCIdx + 1 < SCEnd)
1158         OS << ',';
1159       OS << " // #" << SCIdx << '\n';
1160     }
1161     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1162   }
1163 }
1164
1165 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1166   // For each processor model.
1167   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1168          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1169     // Emit processor resource table.
1170     if (PI->hasInstrSchedModel())
1171       EmitProcessorResources(*PI, OS);
1172     else if(!PI->ProcResourceDefs.empty())
1173       PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines "
1174                     "ProcResources without defining WriteRes SchedWriteRes");
1175
1176     // Begin processor itinerary properties
1177     OS << "\n";
1178     OS << "static const llvm::MCSchedModel " << PI->ModelName << " = {\n";
1179     EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ',');
1180     EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ',');
1181     EmitProcessorProp(OS, PI->ModelDef, "LoopMicroOpBufferSize", ',');
1182     EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ',');
1183     EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ',');
1184     EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ',');
1185
1186     OS << "  " << (bool)(PI->ModelDef ?
1187                          PI->ModelDef->getValueAsBit("PostRAScheduler") : 0)
1188        << ", // " << "PostRAScheduler\n";
1189
1190     OS << "  " << (bool)(PI->ModelDef ?
1191                          PI->ModelDef->getValueAsBit("CompleteModel") : 0)
1192        << ", // " << "CompleteModel\n";
1193
1194     OS << "  " << PI->Index << ", // Processor ID\n";
1195     if (PI->hasInstrSchedModel())
1196       OS << "  " << PI->ModelName << "ProcResources" << ",\n"
1197          << "  " << PI->ModelName << "SchedClasses" << ",\n"
1198          << "  " << PI->ProcResourceDefs.size()+1 << ",\n"
1199          << "  " << (SchedModels.schedClassEnd()
1200                      - SchedModels.schedClassBegin()) << ",\n";
1201     else
1202       OS << "  nullptr, nullptr, 0, 0,"
1203          << " // No instruction-level machine model.\n";
1204     if (PI->hasItineraries())
1205       OS << "  " << PI->ItinsDef->getName() << "};\n";
1206     else
1207       OS << "  nullptr}; // No Itinerary\n";
1208   }
1209 }
1210
1211 //
1212 // EmitProcessorLookup - generate cpu name to itinerary lookup table.
1213 //
1214 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1215   // Gather and sort processor information
1216   std::vector<Record*> ProcessorList =
1217                           Records.getAllDerivedDefinitions("Processor");
1218   std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
1219
1220   // Begin processor table
1221   OS << "\n";
1222   OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
1223      << "extern const llvm::SubtargetInfoKV "
1224      << Target << "ProcSchedKV[] = {\n";
1225
1226   // For each processor
1227   for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
1228     // Next processor
1229     Record *Processor = ProcessorList[i];
1230
1231     const std::string &Name = Processor->getValueAsString("Name");
1232     const std::string &ProcModelName =
1233       SchedModels.getModelForProc(Processor).ModelName;
1234
1235     // Emit as { "cpu", procinit },
1236     OS << "  { \"" << Name << "\", (const void *)&" << ProcModelName << " }";
1237
1238     // Depending on ''if more in the list'' emit comma
1239     if (++i < N) OS << ",";
1240
1241     OS << "\n";
1242   }
1243
1244   // End processor table
1245   OS << "};\n";
1246 }
1247
1248 //
1249 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1250 //
1251 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1252   OS << "#ifdef DBGFIELD\n"
1253      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1254      << "#endif\n"
1255      << "#ifndef NDEBUG\n"
1256      << "#define DBGFIELD(x) x,\n"
1257      << "#else\n"
1258      << "#define DBGFIELD(x)\n"
1259      << "#endif\n";
1260
1261   if (SchedModels.hasItineraries()) {
1262     std::vector<std::vector<InstrItinerary> > ProcItinLists;
1263     // Emit the stage data
1264     EmitStageAndOperandCycleData(OS, ProcItinLists);
1265     EmitItineraries(OS, ProcItinLists);
1266   }
1267   OS << "\n// ===============================================================\n"
1268      << "// Data tables for the new per-operand machine model.\n";
1269
1270   SchedClassTables SchedTables;
1271   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1272          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1273     GenSchedClassTables(*PI, SchedTables);
1274   }
1275   EmitSchedClassTables(SchedTables, OS);
1276
1277   // Emit the processor machine model
1278   EmitProcessorModels(OS);
1279   // Emit the processor lookup data
1280   EmitProcessorLookup(OS);
1281
1282   OS << "#undef DBGFIELD";
1283 }
1284
1285 void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName,
1286                                              raw_ostream &OS) {
1287   OS << "unsigned " << ClassName
1288      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1289      << " const TargetSchedModel *SchedModel) const {\n";
1290
1291   std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
1292   std::sort(Prologs.begin(), Prologs.end(), LessRecord());
1293   for (std::vector<Record*>::const_iterator
1294          PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) {
1295     OS << (*PI)->getValueAsString("Code") << '\n';
1296   }
1297   IdxVec VariantClasses;
1298   for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
1299          SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
1300     if (SCI->Transitions.empty())
1301       continue;
1302     VariantClasses.push_back(SCI->Index);
1303   }
1304   if (!VariantClasses.empty()) {
1305     OS << "  switch (SchedClass) {\n";
1306     for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end();
1307          VCI != VCE; ++VCI) {
1308       const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI);
1309       OS << "  case " << *VCI << ": // " << SC.Name << '\n';
1310       IdxVec ProcIndices;
1311       for (std::vector<CodeGenSchedTransition>::const_iterator
1312              TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1313            TI != TE; ++TI) {
1314         IdxVec PI;
1315         std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(),
1316                        ProcIndices.begin(), ProcIndices.end(),
1317                        std::back_inserter(PI));
1318         ProcIndices.swap(PI);
1319       }
1320       for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
1321            PI != PE; ++PI) {
1322         OS << "    ";
1323         if (*PI != 0)
1324           OS << "if (SchedModel->getProcessorID() == " << *PI << ") ";
1325         OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName
1326            << '\n';
1327         for (std::vector<CodeGenSchedTransition>::const_iterator
1328                TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1329              TI != TE; ++TI) {
1330           if (*PI != 0 && !std::count(TI->ProcIndices.begin(),
1331                                       TI->ProcIndices.end(), *PI)) {
1332               continue;
1333           }
1334           OS << "      if (";
1335           for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end();
1336                RI != RE; ++RI) {
1337             if (RI != TI->PredTerm.begin())
1338               OS << "\n          && ";
1339             OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
1340           }
1341           OS << ")\n"
1342              << "        return " << TI->ToClassIdx << "; // "
1343              << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n';
1344         }
1345         OS << "    }\n";
1346         if (*PI == 0)
1347           break;
1348       }
1349       if (SC.isInferred())
1350         OS << "    return " << SC.Index << ";\n";
1351       OS << "    break;\n";
1352     }
1353     OS << "  };\n";
1354   }
1355   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n"
1356      << "} // " << ClassName << "::resolveSchedClass\n";
1357 }
1358
1359 //
1360 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1361 // the subtarget features string.
1362 //
1363 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1364                                              unsigned NumFeatures,
1365                                              unsigned NumProcs) {
1366   std::vector<Record*> Features =
1367                        Records.getAllDerivedDefinitions("SubtargetFeature");
1368   std::sort(Features.begin(), Features.end(), LessRecord());
1369
1370   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1371      << "// subtarget options.\n"
1372      << "void llvm::";
1373   OS << Target;
1374   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1375      << "  DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1376      << "  DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1377
1378   if (Features.empty()) {
1379     OS << "}\n";
1380     return;
1381   }
1382
1383   OS << "  InitMCProcessorInfo(CPU, FS);\n"
1384      << "  const FeatureBitset& Bits = getFeatureBits();\n";
1385
1386   for (unsigned i = 0; i < Features.size(); i++) {
1387     // Next record
1388     Record *R = Features[i];
1389     const std::string &Instance = R->getName();
1390     const std::string &Value = R->getValueAsString("Value");
1391     const std::string &Attribute = R->getValueAsString("Attribute");
1392
1393     if (Value=="true" || Value=="false")
1394       OS << "  if (Bits[" << Target << "::"
1395          << Instance << "]) "
1396          << Attribute << " = " << Value << ";\n";
1397     else
1398       OS << "  if (Bits[" << Target << "::"
1399          << Instance << "] && "
1400          << Attribute << " < " << Value << ") "
1401          << Attribute << " = " << Value << ";\n";
1402   }
1403
1404   OS << "}\n";
1405 }
1406
1407 //
1408 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1409 //
1410 void SubtargetEmitter::run(raw_ostream &OS) {
1411   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1412
1413   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1414   OS << "#undef GET_SUBTARGETINFO_ENUM\n";
1415
1416   OS << "namespace llvm {\n";
1417   Enumeration(OS, "SubtargetFeature");
1418   OS << "} // end llvm namespace\n";
1419   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1420
1421   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1422   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n";
1423
1424   OS << "namespace llvm {\n";
1425 #if 0
1426   OS << "namespace {\n";
1427 #endif
1428   unsigned NumFeatures = FeatureKeyValues(OS);
1429   OS << "\n";
1430   unsigned NumProcs = CPUKeyValues(OS);
1431   OS << "\n";
1432   EmitSchedModel(OS);
1433   OS << "\n";
1434 #if 0
1435   OS << "}\n";
1436 #endif
1437
1438   // MCInstrInfo initialization routine.
1439   OS << "static inline MCSubtargetInfo *create" << Target
1440      << "MCSubtargetInfoImpl("
1441      << "const Triple &TT, StringRef CPU, StringRef FS) {\n";
1442   OS << "  return new MCSubtargetInfo(TT, CPU, FS, ";
1443   if (NumFeatures)
1444     OS << Target << "FeatureKV, ";
1445   else
1446     OS << "None, ";
1447   if (NumProcs)
1448     OS << Target << "SubTypeKV, ";
1449   else
1450     OS << "None, ";
1451   OS << '\n'; OS.indent(22);
1452   OS << Target << "ProcSchedKV, "
1453      << Target << "WriteProcResTable, "
1454      << Target << "WriteLatencyTable, "
1455      << Target << "ReadAdvanceTable, ";
1456   if (SchedModels.hasItineraries()) {
1457     OS << '\n'; OS.indent(22);
1458     OS << Target << "Stages, "
1459        << Target << "OperandCycles, "
1460        << Target << "ForwardingPaths";
1461   } else
1462     OS << "0, 0, 0";
1463   OS << ");\n}\n\n";
1464
1465   OS << "} // end llvm namespace\n";
1466
1467   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1468
1469   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1470   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n";
1471
1472   OS << "#include \"llvm/Support/Debug.h\"\n";
1473   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
1474   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1475
1476   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1477
1478   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1479   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1480   OS << "#undef GET_SUBTARGETINFO_HEADER\n";
1481
1482   std::string ClassName = Target + "GenSubtargetInfo";
1483   OS << "namespace llvm {\n";
1484   OS << "class DFAPacketizer;\n";
1485   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1486      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1487      << "StringRef FS);\n"
1488      << "public:\n"
1489      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1490      << " const MachineInstr *DefMI,"
1491      << " const TargetSchedModel *SchedModel) const override;\n"
1492      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1493      << " const;\n"
1494      << "};\n";
1495   OS << "} // end llvm namespace\n";
1496
1497   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1498
1499   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1500   OS << "#undef GET_SUBTARGETINFO_CTOR\n";
1501
1502   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n";
1503   OS << "namespace llvm {\n";
1504   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1505   OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1506   OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1507   OS << "extern const llvm::MCWriteProcResEntry "
1508      << Target << "WriteProcResTable[];\n";
1509   OS << "extern const llvm::MCWriteLatencyEntry "
1510      << Target << "WriteLatencyTable[];\n";
1511   OS << "extern const llvm::MCReadAdvanceEntry "
1512      << Target << "ReadAdvanceTable[];\n";
1513
1514   if (SchedModels.hasItineraries()) {
1515     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1516     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1517     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1518   }
1519
1520   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1521      << "StringRef FS)\n"
1522      << "  : TargetSubtargetInfo(TT, CPU, FS, ";
1523   if (NumFeatures)
1524     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1525   else
1526     OS << "None, ";
1527   if (NumProcs)
1528     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1529   else
1530     OS << "None, ";
1531   OS << '\n'; OS.indent(24);
1532   OS << Target << "ProcSchedKV, "
1533      << Target << "WriteProcResTable, "
1534      << Target << "WriteLatencyTable, "
1535      << Target << "ReadAdvanceTable, ";
1536   OS << '\n'; OS.indent(24);
1537   if (SchedModels.hasItineraries()) {
1538     OS << Target << "Stages, "
1539        << Target << "OperandCycles, "
1540        << Target << "ForwardingPaths";
1541   } else
1542     OS << "0, 0, 0";
1543   OS << ") {}\n\n";
1544
1545   EmitSchedModelHelpers(ClassName, OS);
1546
1547   OS << "} // end llvm namespace\n";
1548
1549   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1550 }
1551
1552 namespace llvm {
1553
1554 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1555   CodeGenTarget CGTarget(RK);
1556   SubtargetEmitter(RK, CGTarget).run(OS);
1557 }
1558
1559 } // end llvm namespace