tblgen: Use semantically correct RTTI functions.
[oota-llvm.git] / utils / TableGen / FastISelEmitter.cpp
1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits code for use by the "fast" instruction
11 // selection algorithm. See the comments at the top of
12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
13 //
14 // This file scans through the target's tablegen instruction-info files
15 // and extracts instructions with obvious-looking patterns, and it emits
16 // code to look up these instructions by type and operator.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "CodeGenDAGPatterns.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 using namespace llvm;
28
29
30 /// InstructionMemo - This class holds additional information about an
31 /// instruction needed to emit code for it.
32 ///
33 namespace {
34 struct InstructionMemo {
35   std::string Name;
36   const CodeGenRegisterClass *RC;
37   std::string SubRegNo;
38   std::vector<std::string>* PhysRegs;
39 };
40 } // End anonymous namespace
41
42 /// ImmPredicateSet - This uniques predicates (represented as a string) and
43 /// gives them unique (small) integer ID's that start at 0.
44 namespace {
45 class ImmPredicateSet {
46   DenseMap<TreePattern *, unsigned> ImmIDs;
47   std::vector<TreePredicateFn> PredsByName;
48 public:
49   
50   unsigned getIDFor(TreePredicateFn Pred) {
51     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
52     if (Entry == 0) {
53       PredsByName.push_back(Pred);
54       Entry = PredsByName.size();
55     }
56     return Entry-1;
57   }
58   
59   const TreePredicateFn &getPredicate(unsigned i) {
60     assert(i < PredsByName.size());
61     return PredsByName[i];
62   }
63   
64   typedef std::vector<TreePredicateFn>::const_iterator iterator;
65   iterator begin() const { return PredsByName.begin(); }
66   iterator end() const { return PredsByName.end(); }
67   
68 };
69 } // End anonymous namespace
70
71 /// OperandsSignature - This class holds a description of a list of operand
72 /// types. It has utility methods for emitting text based on the operands.
73 ///
74 namespace {
75 struct OperandsSignature {
76   class OpKind {
77     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
78     char Repr;
79   public:
80     
81     OpKind() : Repr(OK_Invalid) {}
82     
83     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
84     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
85
86     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
87     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
88     static OpKind getImm(unsigned V) {
89       assert((unsigned)OK_Imm+V < 128 &&
90              "Too many integer predicates for the 'Repr' char");
91       OpKind K; K.Repr = OK_Imm+V; return K;
92     }
93     
94     bool isReg() const { return Repr == OK_Reg; }
95     bool isFP() const  { return Repr == OK_FP; }
96     bool isImm() const { return Repr >= OK_Imm; }
97     
98     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
99     
100     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
101                              bool StripImmCodes) const {
102       if (isReg())
103         OS << 'r';
104       else if (isFP())
105         OS << 'f';
106       else {
107         OS << 'i';
108         if (!StripImmCodes)
109           if (unsigned Code = getImmCode())
110             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
111       }
112     }
113   };
114   
115   
116   SmallVector<OpKind, 3> Operands;
117
118   bool operator<(const OperandsSignature &O) const {
119     return Operands < O.Operands;
120   }
121   bool operator==(const OperandsSignature &O) const {
122     return Operands == O.Operands;
123   }
124
125   bool empty() const { return Operands.empty(); }
126
127   bool hasAnyImmediateCodes() const {
128     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
129       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
130         return true;
131     return false;
132   }
133   
134   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
135   /// to zero.
136   OperandsSignature getWithoutImmCodes() const {
137     OperandsSignature Result;
138     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
139       if (!Operands[i].isImm())
140         Result.Operands.push_back(Operands[i]);
141       else
142         Result.Operands.push_back(OpKind::getImm(0));
143     return Result;
144   }
145   
146   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
147     bool EmittedAnything = false;
148     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
149       if (!Operands[i].isImm()) continue;
150       
151       unsigned Code = Operands[i].getImmCode();
152       if (Code == 0) continue;
153       
154       if (EmittedAnything)
155         OS << " &&\n        ";
156       
157       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
158       
159       // Emit the type check.
160       OS << "VT == "
161          << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
162          << " && ";
163       
164       
165       OS << PredFn.getFnName() << "(imm" << i <<')';
166       EmittedAnything = true;
167     }
168   }
169   
170   /// initialize - Examine the given pattern and initialize the contents
171   /// of the Operands array accordingly. Return true if all the operands
172   /// are supported, false otherwise.
173   ///
174   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
175                   MVT::SimpleValueType VT,
176                   ImmPredicateSet &ImmediatePredicates) {
177     if (InstPatNode->isLeaf())
178       return false;
179     
180     if (InstPatNode->getOperator()->getName() == "imm") {
181       Operands.push_back(OpKind::getImm(0));
182       return true;
183     }
184     
185     if (InstPatNode->getOperator()->getName() == "fpimm") {
186       Operands.push_back(OpKind::getFP());
187       return true;
188     }
189
190     const CodeGenRegisterClass *DstRC = 0;
191
192     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
193       TreePatternNode *Op = InstPatNode->getChild(i);
194
195       // Handle imm operands specially.
196       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
197         unsigned PredNo = 0;
198         if (!Op->getPredicateFns().empty()) {
199           TreePredicateFn PredFn = Op->getPredicateFns()[0];
200           // If there is more than one predicate weighing in on this operand
201           // then we don't handle it.  This doesn't typically happen for
202           // immediates anyway.
203           if (Op->getPredicateFns().size() > 1 ||
204               !PredFn.isImmediatePattern())
205             return false;
206           // Ignore any instruction with 'FastIselShouldIgnore', these are
207           // not needed and just bloat the fast instruction selector.  For
208           // example, X86 doesn't need to generate code to match ADD16ri8 since
209           // ADD16ri will do just fine.
210           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
211           if (Rec->getValueAsBit("FastIselShouldIgnore"))
212             return false;
213         
214           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
215         }
216         
217         // Handle unmatched immediate sizes here.
218         //if (Op->getType(0) != VT)
219         //  return false;
220         
221         Operands.push_back(OpKind::getImm(PredNo));
222         continue;
223       }
224
225       
226       // For now, filter out any operand with a predicate.
227       // For now, filter out any operand with multiple values.
228       if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
229         return false;
230
231       if (!Op->isLeaf()) {
232          if (Op->getOperator()->getName() == "fpimm") {
233           Operands.push_back(OpKind::getFP());
234           continue;
235         }
236         // For now, ignore other non-leaf nodes.
237         return false;
238       }
239       
240       assert(Op->hasTypeSet(0) && "Type infererence not done?");
241
242       // For now, all the operands must have the same type (if they aren't
243       // immediates).  Note that this causes us to reject variable sized shifts
244       // on X86.
245       if (Op->getType(0) != VT)
246         return false;
247
248       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
249       if (!OpDI)
250         return false;
251       Record *OpLeafRec = OpDI->getDef();
252       
253       // For now, the only other thing we accept is register operands.
254       const CodeGenRegisterClass *RC = 0;
255       if (OpLeafRec->isSubClassOf("RegisterOperand"))
256         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
257       if (OpLeafRec->isSubClassOf("RegisterClass"))
258         RC = &Target.getRegisterClass(OpLeafRec);
259       else if (OpLeafRec->isSubClassOf("Register"))
260         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
261       else
262         return false;
263
264       // For now, this needs to be a register class of some sort.
265       if (!RC)
266         return false;
267
268       // For now, all the operands must have the same register class or be
269       // a strict subclass of the destination.
270       if (DstRC) {
271         if (DstRC != RC && !DstRC->hasSubClass(RC))
272           return false;
273       } else
274         DstRC = RC;
275       Operands.push_back(OpKind::getReg());
276     }
277     return true;
278   }
279
280   void PrintParameters(raw_ostream &OS) const {
281     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
282       if (Operands[i].isReg()) {
283         OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
284       } else if (Operands[i].isImm()) {
285         OS << "uint64_t imm" << i;
286       } else if (Operands[i].isFP()) {
287         OS << "const ConstantFP *f" << i;
288       } else {
289         llvm_unreachable("Unknown operand kind!");
290       }
291       if (i + 1 != e)
292         OS << ", ";
293     }
294   }
295
296   void PrintArguments(raw_ostream &OS,
297                       const std::vector<std::string> &PR) const {
298     assert(PR.size() == Operands.size());
299     bool PrintedArg = false;
300     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
301       if (PR[i] != "")
302         // Implicit physical register operand.
303         continue;
304
305       if (PrintedArg)
306         OS << ", ";
307       if (Operands[i].isReg()) {
308         OS << "Op" << i << ", Op" << i << "IsKill";
309         PrintedArg = true;
310       } else if (Operands[i].isImm()) {
311         OS << "imm" << i;
312         PrintedArg = true;
313       } else if (Operands[i].isFP()) {
314         OS << "f" << i;
315         PrintedArg = true;
316       } else {
317         llvm_unreachable("Unknown operand kind!");
318       }
319     }
320   }
321
322   void PrintArguments(raw_ostream &OS) const {
323     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
324       if (Operands[i].isReg()) {
325         OS << "Op" << i << ", Op" << i << "IsKill";
326       } else if (Operands[i].isImm()) {
327         OS << "imm" << i;
328       } else if (Operands[i].isFP()) {
329         OS << "f" << i;
330       } else {
331         llvm_unreachable("Unknown operand kind!");
332       }
333       if (i + 1 != e)
334         OS << ", ";
335     }
336   }
337
338
339   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
340                            ImmPredicateSet &ImmPredicates,
341                            bool StripImmCodes = false) const {
342     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
343       if (PR[i] != "")
344         // Implicit physical register operand. e.g. Instruction::Mul expect to
345         // select to a binary op. On x86, mul may take a single operand with
346         // the other operand being implicit. We must emit something that looks
347         // like a binary instruction except for the very inner FastEmitInst_*
348         // call.
349         continue;
350       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
351     }
352   }
353
354   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
355                            bool StripImmCodes = false) const {
356     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
357       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
358   }
359 };
360 } // End anonymous namespace
361
362 namespace {
363 class FastISelMap {
364   typedef std::map<std::string, InstructionMemo> PredMap;
365   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
366   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
367   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
368   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
369             OperandsOpcodeTypeRetPredMap;
370
371   OperandsOpcodeTypeRetPredMap SimplePatterns;
372
373   std::map<OperandsSignature, std::vector<OperandsSignature> >
374     SignaturesWithConstantForms;
375   
376   std::string InstNS;
377   ImmPredicateSet ImmediatePredicates;
378 public:
379   explicit FastISelMap(std::string InstNS);
380
381   void collectPatterns(CodeGenDAGPatterns &CGP);
382   void printImmediatePredicates(raw_ostream &OS);
383   void printFunctionDefinitions(raw_ostream &OS);
384 };
385 } // End anonymous namespace
386
387 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
388   return CGP.getSDNodeInfo(Op).getEnumName();
389 }
390
391 static std::string getLegalCName(std::string OpName) {
392   std::string::size_type pos = OpName.find("::");
393   if (pos != std::string::npos)
394     OpName.replace(pos, 2, "_");
395   return OpName;
396 }
397
398 FastISelMap::FastISelMap(std::string instns)
399   : InstNS(instns) {
400 }
401
402 static std::string PhyRegForNode(TreePatternNode *Op,
403                                  const CodeGenTarget &Target) {
404   std::string PhysReg;
405
406   if (!Op->isLeaf())
407     return PhysReg;
408
409   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
410   if (!OpLeafRec->isSubClassOf("Register"))
411     return PhysReg;
412
413   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
414                ->getValue();
415   PhysReg += "::";
416   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
417   return PhysReg;
418 }
419
420 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
421   const CodeGenTarget &Target = CGP.getTargetInfo();
422
423   // Determine the target's namespace name.
424   InstNS = Target.getInstNamespace() + "::";
425   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
426
427   // Scan through all the patterns and record the simple ones.
428   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
429        E = CGP.ptm_end(); I != E; ++I) {
430     const PatternToMatch &Pattern = *I;
431
432     // For now, just look at Instructions, so that we don't have to worry
433     // about emitting multiple instructions for a pattern.
434     TreePatternNode *Dst = Pattern.getDstPattern();
435     if (Dst->isLeaf()) continue;
436     Record *Op = Dst->getOperator();
437     if (!Op->isSubClassOf("Instruction"))
438       continue;
439     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
440     if (II.Operands.empty())
441       continue;
442
443     // For now, ignore multi-instruction patterns.
444     bool MultiInsts = false;
445     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
446       TreePatternNode *ChildOp = Dst->getChild(i);
447       if (ChildOp->isLeaf())
448         continue;
449       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
450         MultiInsts = true;
451         break;
452       }
453     }
454     if (MultiInsts)
455       continue;
456
457     // For now, ignore instructions where the first operand is not an
458     // output register.
459     const CodeGenRegisterClass *DstRC = 0;
460     std::string SubRegNo;
461     if (Op->getName() != "EXTRACT_SUBREG") {
462       Record *Op0Rec = II.Operands[0].Rec;
463       if (Op0Rec->isSubClassOf("RegisterOperand"))
464         Op0Rec = Op0Rec->getValueAsDef("RegClass");
465       if (!Op0Rec->isSubClassOf("RegisterClass"))
466         continue;
467       DstRC = &Target.getRegisterClass(Op0Rec);
468       if (!DstRC)
469         continue;
470     } else {
471       // If this isn't a leaf, then continue since the register classes are
472       // a bit too complicated for now.
473       if (!Dst->getChild(1)->isLeaf()) continue;
474
475       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
476       if (SR)
477         SubRegNo = getQualifiedName(SR->getDef());
478       else
479         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
480     }
481
482     // Inspect the pattern.
483     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
484     if (!InstPatNode) continue;
485     if (InstPatNode->isLeaf()) continue;
486
487     // Ignore multiple result nodes for now.
488     if (InstPatNode->getNumTypes() > 1) continue;
489
490     Record *InstPatOp = InstPatNode->getOperator();
491     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
492     MVT::SimpleValueType RetVT = MVT::isVoid;
493     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
494     MVT::SimpleValueType VT = RetVT;
495     if (InstPatNode->getNumChildren()) {
496       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
497       VT = InstPatNode->getChild(0)->getType(0);
498     }
499
500     // For now, filter out any instructions with predicates.
501     if (!InstPatNode->getPredicateFns().empty())
502       continue;
503
504     // Check all the operands.
505     OperandsSignature Operands;
506     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates))
507       continue;
508
509     std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
510     if (InstPatNode->getOperator()->getName() == "imm" ||
511         InstPatNode->getOperator()->getName() == "fpimm")
512       PhysRegInputs->push_back("");
513     else {
514       // Compute the PhysRegs used by the given pattern, and check that
515       // the mapping from the src to dst patterns is simple.
516       bool FoundNonSimplePattern = false;
517       unsigned DstIndex = 0;
518       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
519         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
520         if (PhysReg.empty()) {
521           if (DstIndex >= Dst->getNumChildren() ||
522               Dst->getChild(DstIndex)->getName() !=
523               InstPatNode->getChild(i)->getName()) {
524             FoundNonSimplePattern = true;
525             break;
526           }
527           ++DstIndex;
528         }
529
530         PhysRegInputs->push_back(PhysReg);
531       }
532
533       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
534         FoundNonSimplePattern = true;
535
536       if (FoundNonSimplePattern)
537         continue;
538     }
539
540     // Get the predicate that guards this pattern.
541     std::string PredicateCheck = Pattern.getPredicateCheck();
542
543     // Ok, we found a pattern that we can handle. Remember it.
544     InstructionMemo Memo = {
545       Pattern.getDstPattern()->getOperator()->getName(),
546       DstRC,
547       SubRegNo,
548       PhysRegInputs
549     };
550     
551     if (SimplePatterns[Operands][OpcodeName][VT][RetVT].count(PredicateCheck))
552       throw TGError(Pattern.getSrcRecord()->getLoc(),
553                     "Duplicate record in FastISel table!");
554
555     SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo;
556     
557     // If any of the operands were immediates with predicates on them, strip
558     // them down to a signature that doesn't have predicates so that we can
559     // associate them with the stripped predicate version.
560     if (Operands.hasAnyImmediateCodes()) {
561       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
562         .push_back(Operands);
563     }
564   }
565 }
566
567 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
568   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
569     return;
570   
571   OS << "\n// FastEmit Immediate Predicate functions.\n";
572   for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
573        E = ImmediatePredicates.end(); I != E; ++I) {
574     OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
575     OS << I->getImmediatePredicateCode() << "\n}\n";
576   }
577   
578   OS << "\n\n";
579 }
580
581
582 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
583   // Now emit code for all the patterns that we collected.
584   for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
585        OE = SimplePatterns.end(); OI != OE; ++OI) {
586     const OperandsSignature &Operands = OI->first;
587     const OpcodeTypeRetPredMap &OTM = OI->second;
588
589     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
590          I != E; ++I) {
591       const std::string &Opcode = I->first;
592       const TypeRetPredMap &TM = I->second;
593
594       OS << "// FastEmit functions for " << Opcode << ".\n";
595       OS << "\n";
596
597       // Emit one function for each opcode,type pair.
598       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
599            TI != TE; ++TI) {
600         MVT::SimpleValueType VT = TI->first;
601         const RetPredMap &RM = TI->second;
602         if (RM.size() != 1) {
603           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
604                RI != RE; ++RI) {
605             MVT::SimpleValueType RetVT = RI->first;
606             const PredMap &PM = RI->second;
607             bool HasPred = false;
608
609             OS << "unsigned FastEmit_"
610                << getLegalCName(Opcode)
611                << "_" << getLegalCName(getName(VT))
612                << "_" << getLegalCName(getName(RetVT)) << "_";
613             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
614             OS << "(";
615             Operands.PrintParameters(OS);
616             OS << ") {\n";
617
618             // Emit code for each possible instruction. There may be
619             // multiple if there are subtarget concerns.
620             for (PredMap::const_iterator PI = PM.begin(), PE = PM.end();
621                  PI != PE; ++PI) {
622               std::string PredicateCheck = PI->first;
623               const InstructionMemo &Memo = PI->second;
624
625               if (PredicateCheck.empty()) {
626                 assert(!HasPred &&
627                        "Multiple instructions match, at least one has "
628                        "a predicate and at least one doesn't!");
629               } else {
630                 OS << "  if (" + PredicateCheck + ") {\n";
631                 OS << "  ";
632                 HasPred = true;
633               }
634
635               for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
636                 if ((*Memo.PhysRegs)[i] != "")
637                   OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, "
638                      << "TII.get(TargetOpcode::COPY), "
639                      << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
640               }
641
642               OS << "  return FastEmitInst_";
643               if (Memo.SubRegNo.empty()) {
644                 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
645                                              ImmediatePredicates, true);
646                 OS << "(" << InstNS << Memo.Name << ", ";
647                 OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
648                 if (!Operands.empty())
649                   OS << ", ";
650                 Operands.PrintArguments(OS, *Memo.PhysRegs);
651                 OS << ");\n";
652               } else {
653                 OS << "extractsubreg(" << getName(RetVT);
654                 OS << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
655               }
656
657               if (HasPred)
658                 OS << "  }\n";
659
660             }
661             // Return 0 if none of the predicates were satisfied.
662             if (HasPred)
663               OS << "  return 0;\n";
664             OS << "}\n";
665             OS << "\n";
666           }
667
668           // Emit one function for the type that demultiplexes on return type.
669           OS << "unsigned FastEmit_"
670              << getLegalCName(Opcode) << "_"
671              << getLegalCName(getName(VT)) << "_";
672           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
673           OS << "(MVT RetVT";
674           if (!Operands.empty())
675             OS << ", ";
676           Operands.PrintParameters(OS);
677           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
678           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
679                RI != RE; ++RI) {
680             MVT::SimpleValueType RetVT = RI->first;
681             OS << "  case " << getName(RetVT) << ": return FastEmit_"
682                << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
683                << "_" << getLegalCName(getName(RetVT)) << "_";
684             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
685             OS << "(";
686             Operands.PrintArguments(OS);
687             OS << ");\n";
688           }
689           OS << "  default: return 0;\n}\n}\n\n";
690
691         } else {
692           // Non-variadic return type.
693           OS << "unsigned FastEmit_"
694              << getLegalCName(Opcode) << "_"
695              << getLegalCName(getName(VT)) << "_";
696           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
697           OS << "(MVT RetVT";
698           if (!Operands.empty())
699             OS << ", ";
700           Operands.PrintParameters(OS);
701           OS << ") {\n";
702
703           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
704              << ")\n    return 0;\n";
705
706           const PredMap &PM = RM.begin()->second;
707           bool HasPred = false;
708
709           // Emit code for each possible instruction. There may be
710           // multiple if there are subtarget concerns.
711           for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE;
712                ++PI) {
713             std::string PredicateCheck = PI->first;
714             const InstructionMemo &Memo = PI->second;
715
716             if (PredicateCheck.empty()) {
717               assert(!HasPred &&
718                      "Multiple instructions match, at least one has "
719                      "a predicate and at least one doesn't!");
720             } else {
721               OS << "  if (" + PredicateCheck + ") {\n";
722               OS << "  ";
723               HasPred = true;
724             }
725
726             for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
727               if ((*Memo.PhysRegs)[i] != "")
728                 OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, "
729                    << "TII.get(TargetOpcode::COPY), "
730                    << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
731             }
732
733             OS << "  return FastEmitInst_";
734
735             if (Memo.SubRegNo.empty()) {
736               Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
737                                            ImmediatePredicates, true);
738               OS << "(" << InstNS << Memo.Name << ", ";
739               OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
740               if (!Operands.empty())
741                 OS << ", ";
742               Operands.PrintArguments(OS, *Memo.PhysRegs);
743               OS << ");\n";
744             } else {
745               OS << "extractsubreg(RetVT, Op0, Op0IsKill, ";
746               OS << Memo.SubRegNo;
747               OS << ");\n";
748             }
749
750              if (HasPred)
751                OS << "  }\n";
752           }
753
754           // Return 0 if none of the predicates were satisfied.
755           if (HasPred)
756             OS << "  return 0;\n";
757           OS << "}\n";
758           OS << "\n";
759         }
760       }
761
762       // Emit one function for the opcode that demultiplexes based on the type.
763       OS << "unsigned FastEmit_"
764          << getLegalCName(Opcode) << "_";
765       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
766       OS << "(MVT VT, MVT RetVT";
767       if (!Operands.empty())
768         OS << ", ";
769       Operands.PrintParameters(OS);
770       OS << ") {\n";
771       OS << "  switch (VT.SimpleTy) {\n";
772       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
773            TI != TE; ++TI) {
774         MVT::SimpleValueType VT = TI->first;
775         std::string TypeName = getName(VT);
776         OS << "  case " << TypeName << ": return FastEmit_"
777            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
778         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
779         OS << "(RetVT";
780         if (!Operands.empty())
781           OS << ", ";
782         Operands.PrintArguments(OS);
783         OS << ");\n";
784       }
785       OS << "  default: return 0;\n";
786       OS << "  }\n";
787       OS << "}\n";
788       OS << "\n";
789     }
790
791     OS << "// Top-level FastEmit function.\n";
792     OS << "\n";
793
794     // Emit one function for the operand signature that demultiplexes based
795     // on opcode and type.
796     OS << "unsigned FastEmit_";
797     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
798     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
799     if (!Operands.empty())
800       OS << ", ";
801     Operands.PrintParameters(OS);
802     OS << ") {\n";
803     
804     // If there are any forms of this signature available that operand on
805     // constrained forms of the immediate (e.g. 32-bit sext immediate in a
806     // 64-bit operand), check them first.
807     
808     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
809       = SignaturesWithConstantForms.find(Operands);
810     if (MI != SignaturesWithConstantForms.end()) {
811       // Unique any duplicates out of the list.
812       std::sort(MI->second.begin(), MI->second.end());
813       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
814                        MI->second.end());
815       
816       // Check each in order it was seen.  It would be nice to have a good
817       // relative ordering between them, but we're not going for optimality
818       // here.
819       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
820         OS << "  if (";
821         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
822         OS << ")\n    if (unsigned Reg = FastEmit_";
823         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
824         OS << "(VT, RetVT, Opcode";
825         if (!MI->second[i].empty())
826           OS << ", ";
827         MI->second[i].PrintArguments(OS);
828         OS << "))\n      return Reg;\n\n";
829       }
830       
831       // Done with this, remove it.
832       SignaturesWithConstantForms.erase(MI);
833     }
834     
835     OS << "  switch (Opcode) {\n";
836     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
837          I != E; ++I) {
838       const std::string &Opcode = I->first;
839
840       OS << "  case " << Opcode << ": return FastEmit_"
841          << getLegalCName(Opcode) << "_";
842       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
843       OS << "(VT, RetVT";
844       if (!Operands.empty())
845         OS << ", ";
846       Operands.PrintArguments(OS);
847       OS << ");\n";
848     }
849     OS << "  default: return 0;\n";
850     OS << "  }\n";
851     OS << "}\n";
852     OS << "\n";
853   }
854   
855   // TODO: SignaturesWithConstantForms should be empty here.
856 }
857
858 namespace llvm {
859
860 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
861   CodeGenDAGPatterns CGP(RK);
862   const CodeGenTarget &Target = CGP.getTargetInfo();
863   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
864                        Target.getName() + " target", OS);
865
866   // Determine the target's namespace name.
867   std::string InstNS = Target.getInstNamespace() + "::";
868   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
869
870   FastISelMap F(InstNS);
871   F.collectPatterns(CGP);
872   F.printImmediatePredicates(OS);
873   F.printFunctionDefinitions(OS);
874 }
875
876 } // End llvm namespace