Intrinsics: introduce llvm_any_ty aka ValueType Any
[oota-llvm.git] / utils / TableGen / CodeGenTarget.cpp
1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends.  This makes it easier to access the data and
12 // provides a single place that needs to check it for validity.  All of these
13 // classes abort on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CodeGenTarget.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include <algorithm>
26 using namespace llvm;
27
28 static cl::opt<unsigned>
29 AsmParserNum("asmparsernum", cl::init(0),
30              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
31
32 static cl::opt<unsigned>
33 AsmWriterNum("asmwriternum", cl::init(0),
34              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
35
36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
37 /// record corresponds to.
38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
39   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
40 }
41
42 std::string llvm::getName(MVT::SimpleValueType T) {
43   switch (T) {
44   case MVT::Other:   return "UNKNOWN";
45   case MVT::iPTR:    return "TLI.getPointerTy()";
46   case MVT::iPTRAny: return "TLI.getPointerTy()";
47   default: return getEnumName(T);
48   }
49 }
50
51 std::string llvm::getEnumName(MVT::SimpleValueType T) {
52   switch (T) {
53   case MVT::Other:    return "MVT::Other";
54   case MVT::i1:       return "MVT::i1";
55   case MVT::i8:       return "MVT::i8";
56   case MVT::i16:      return "MVT::i16";
57   case MVT::i32:      return "MVT::i32";
58   case MVT::i64:      return "MVT::i64";
59   case MVT::i128:     return "MVT::i128";
60   case MVT::Any:      return "MVT::Any";
61   case MVT::iAny:     return "MVT::iAny";
62   case MVT::fAny:     return "MVT::fAny";
63   case MVT::vAny:     return "MVT::vAny";
64   case MVT::f16:      return "MVT::f16";
65   case MVT::f32:      return "MVT::f32";
66   case MVT::f64:      return "MVT::f64";
67   case MVT::f80:      return "MVT::f80";
68   case MVT::f128:     return "MVT::f128";
69   case MVT::ppcf128:  return "MVT::ppcf128";
70   case MVT::x86mmx:   return "MVT::x86mmx";
71   case MVT::Glue:     return "MVT::Glue";
72   case MVT::isVoid:   return "MVT::isVoid";
73   case MVT::v2i1:     return "MVT::v2i1";
74   case MVT::v4i1:     return "MVT::v4i1";
75   case MVT::v8i1:     return "MVT::v8i1";
76   case MVT::v16i1:    return "MVT::v16i1";
77   case MVT::v32i1:    return "MVT::v32i1";
78   case MVT::v64i1:    return "MVT::v64i1";
79   case MVT::v1i8:     return "MVT::v1i8";
80   case MVT::v2i8:     return "MVT::v2i8";
81   case MVT::v4i8:     return "MVT::v4i8";
82   case MVT::v8i8:     return "MVT::v8i8";
83   case MVT::v16i8:    return "MVT::v16i8";
84   case MVT::v32i8:    return "MVT::v32i8";
85   case MVT::v64i8:    return "MVT::v64i8";
86   case MVT::v1i16:    return "MVT::v1i16";
87   case MVT::v2i16:    return "MVT::v2i16";
88   case MVT::v4i16:    return "MVT::v4i16";
89   case MVT::v8i16:    return "MVT::v8i16";
90   case MVT::v16i16:   return "MVT::v16i16";
91   case MVT::v32i16:   return "MVT::v32i16";
92   case MVT::v1i32:    return "MVT::v1i32";
93   case MVT::v2i32:    return "MVT::v2i32";
94   case MVT::v4i32:    return "MVT::v4i32";
95   case MVT::v8i32:    return "MVT::v8i32";
96   case MVT::v16i32:   return "MVT::v16i32";
97   case MVT::v1i64:    return "MVT::v1i64";
98   case MVT::v2i64:    return "MVT::v2i64";
99   case MVT::v4i64:    return "MVT::v4i64";
100   case MVT::v8i64:    return "MVT::v8i64";
101   case MVT::v16i64:   return "MVT::v16i64";
102   case MVT::v2f16:    return "MVT::v2f16";
103   case MVT::v4f16:    return "MVT::v4f16";
104   case MVT::v8f16:    return "MVT::v8f16";
105   case MVT::v1f32:    return "MVT::v1f32";
106   case MVT::v2f32:    return "MVT::v2f32";
107   case MVT::v4f32:    return "MVT::v4f32";
108   case MVT::v8f32:    return "MVT::v8f32";
109   case MVT::v16f32:   return "MVT::v16f32";
110   case MVT::v1f64:    return "MVT::v1f64";
111   case MVT::v2f64:    return "MVT::v2f64";
112   case MVT::v4f64:    return "MVT::v4f64";
113   case MVT::v8f64:    return "MVT::v8f64";
114   case MVT::Metadata: return "MVT::Metadata";
115   case MVT::iPTR:     return "MVT::iPTR";
116   case MVT::iPTRAny:  return "MVT::iPTRAny";
117   case MVT::Untyped:  return "MVT::Untyped";
118   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
119   }
120 }
121
122 /// getQualifiedName - Return the name of the specified record, with a
123 /// namespace qualifier if the record contains one.
124 ///
125 std::string llvm::getQualifiedName(const Record *R) {
126   std::string Namespace;
127   if (R->getValue("Namespace"))
128      Namespace = R->getValueAsString("Namespace");
129   if (Namespace.empty()) return R->getName();
130   return Namespace + "::" + R->getName();
131 }
132
133
134 /// getTarget - Return the current instance of the Target class.
135 ///
136 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
137   : Records(records) {
138   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
139   if (Targets.size() == 0)
140     PrintFatalError("ERROR: No 'Target' subclasses defined!");
141   if (Targets.size() != 1)
142     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
143   TargetRec = Targets[0];
144 }
145
146 CodeGenTarget::~CodeGenTarget() {
147 }
148
149 const std::string &CodeGenTarget::getName() const {
150   return TargetRec->getName();
151 }
152
153 std::string CodeGenTarget::getInstNamespace() const {
154   for (const CodeGenInstruction *Inst : instructions()) {
155     // Make sure not to pick up "TargetOpcode" by accidentally getting
156     // the namespace off the PHI instruction or something.
157     if (Inst->Namespace != "TargetOpcode")
158       return Inst->Namespace;
159   }
160
161   return "";
162 }
163
164 Record *CodeGenTarget::getInstructionSet() const {
165   return TargetRec->getValueAsDef("InstructionSet");
166 }
167
168
169 /// getAsmParser - Return the AssemblyParser definition for this target.
170 ///
171 Record *CodeGenTarget::getAsmParser() const {
172   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
173   if (AsmParserNum >= LI.size())
174     PrintFatalError("Target does not have an AsmParser #" +
175                     Twine(AsmParserNum) + "!");
176   return LI[AsmParserNum];
177 }
178
179 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
180 /// this target.
181 ///
182 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
183   std::vector<Record*> LI =
184     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
185   if (i >= LI.size())
186     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
187                     "!");
188   return LI[i];
189 }
190
191 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
192 /// available for this target.
193 ///
194 unsigned CodeGenTarget::getAsmParserVariantCount() const {
195   std::vector<Record*> LI =
196     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
197   return LI.size();
198 }
199
200 /// getAsmWriter - Return the AssemblyWriter definition for this target.
201 ///
202 Record *CodeGenTarget::getAsmWriter() const {
203   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
204   if (AsmWriterNum >= LI.size())
205     PrintFatalError("Target does not have an AsmWriter #" +
206                     Twine(AsmWriterNum) + "!");
207   return LI[AsmWriterNum];
208 }
209
210 CodeGenRegBank &CodeGenTarget::getRegBank() const {
211   if (!RegBank)
212     RegBank = llvm::make_unique<CodeGenRegBank>(Records);
213   return *RegBank;
214 }
215
216 void CodeGenTarget::ReadRegAltNameIndices() const {
217   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
218   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
219 }
220
221 /// getRegisterByName - If there is a register with the specific AsmName,
222 /// return it.
223 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
224   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
225   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
226   if (I == Regs.end())
227     return nullptr;
228   return I->second;
229 }
230
231 std::vector<MVT::SimpleValueType> CodeGenTarget::
232 getRegisterVTs(Record *R) const {
233   const CodeGenRegister *Reg = getRegBank().getReg(R);
234   std::vector<MVT::SimpleValueType> Result;
235   for (const auto &RC : getRegBank().getRegClasses()) {
236     if (RC.contains(Reg)) {
237       ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
238       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
239     }
240   }
241
242   // Remove duplicates.
243   array_pod_sort(Result.begin(), Result.end());
244   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
245   return Result;
246 }
247
248
249 void CodeGenTarget::ReadLegalValueTypes() const {
250   for (const auto &RC : getRegBank().getRegClasses())
251     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
252
253   // Remove duplicates.
254   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
255   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
256                                     LegalValueTypes.end()),
257                         LegalValueTypes.end());
258 }
259
260 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
261   if (!SchedModels)
262     SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
263   return *SchedModels;
264 }
265
266 void CodeGenTarget::ReadInstructions() const {
267   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
268   if (Insts.size() <= 2)
269     PrintFatalError("No 'Instruction' subclasses defined!");
270
271   // Parse the instructions defined in the .td file.
272   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
273     Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
274 }
275
276 static const CodeGenInstruction *
277 GetInstByName(const char *Name,
278               const DenseMap<const Record*,
279                              std::unique_ptr<CodeGenInstruction>> &Insts,
280               RecordKeeper &Records) {
281   const Record *Rec = Records.getDef(Name);
282
283   const auto I = Insts.find(Rec);
284   if (!Rec || I == Insts.end())
285     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
286   return I->second.get();
287 }
288
289 /// \brief Return all of the instructions defined by the target, ordered by
290 /// their enum value.
291 void CodeGenTarget::ComputeInstrsByEnum() const {
292   // The ordering here must match the ordering in TargetOpcodes.h.
293   static const char *const FixedInstrs[] = {
294       "PHI",          "INLINEASM",     "CFI_INSTRUCTION",  "EH_LABEL",
295       "GC_LABEL",     "KILL",          "EXTRACT_SUBREG",   "INSERT_SUBREG",
296       "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE",
297       "REG_SEQUENCE", "COPY",          "BUNDLE",           "LIFETIME_START",
298       "LIFETIME_END", "STACKMAP",      "PATCHPOINT",       "LOAD_STACK_GUARD",
299       "STATEPOINT",   "FRAME_ALLOC",
300       nullptr};
301   const auto &Insts = getInstructions();
302   for (const char *const *p = FixedInstrs; *p; ++p) {
303     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
304     assert(Instr && "Missing target independent instruction");
305     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
306     InstrsByEnum.push_back(Instr);
307   }
308   unsigned EndOfPredefines = InstrsByEnum.size();
309
310   for (const auto &I : Insts) {
311     const CodeGenInstruction *CGI = I.second.get();
312     if (CGI->Namespace != "TargetOpcode")
313       InstrsByEnum.push_back(CGI);
314   }
315
316   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
317
318   // All of the instructions are now in random order based on the map iteration.
319   // Sort them by name.
320   std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
321             [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
322     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
323   });
324 }
325
326
327 /// isLittleEndianEncoding - Return whether this target encodes its instruction
328 /// in little-endian format, i.e. bits laid out in the order [0..n]
329 ///
330 bool CodeGenTarget::isLittleEndianEncoding() const {
331   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
332 }
333
334 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
335 /// encodings, reverse the bit order of all instructions.
336 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
337   if (!isLittleEndianEncoding())
338     return;
339
340   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
341   for (Record *R : Insts) {
342     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
343         R->getValueAsBit("isPseudo"))
344       continue;
345
346     BitsInit *BI = R->getValueAsBitsInit("Inst");
347
348     unsigned numBits = BI->getNumBits();
349  
350     SmallVector<Init *, 16> NewBits(numBits);
351  
352     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
353       unsigned bitSwapIdx = numBits - bit - 1;
354       Init *OrigBit = BI->getBit(bit);
355       Init *BitSwap = BI->getBit(bitSwapIdx);
356       NewBits[bit]        = BitSwap;
357       NewBits[bitSwapIdx] = OrigBit;
358     }
359     if (numBits % 2) {
360       unsigned middle = (numBits + 1) / 2;
361       NewBits[middle] = BI->getBit(middle);
362     }
363
364     BitsInit *NewBI = BitsInit::get(NewBits);
365
366     // Update the bits in reversed order so that emitInstrOpBits will get the
367     // correct endianness.
368     R->getValue("Inst")->setValue(NewBI);
369   }
370 }
371
372 /// guessInstructionProperties - Return true if it's OK to guess instruction
373 /// properties instead of raising an error.
374 ///
375 /// This is configurable as a temporary migration aid. It will eventually be
376 /// permanently false.
377 bool CodeGenTarget::guessInstructionProperties() const {
378   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
379 }
380
381 //===----------------------------------------------------------------------===//
382 // ComplexPattern implementation
383 //
384 ComplexPattern::ComplexPattern(Record *R) {
385   Ty          = ::getValueType(R->getValueAsDef("Ty"));
386   NumOperands = R->getValueAsInt("NumOperands");
387   SelectFunc  = R->getValueAsString("SelectFunc");
388   RootNodes   = R->getValueAsListOfDefs("RootNodes");
389
390   // Parse the properties.
391   Properties = 0;
392   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
393   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
394     if (PropList[i]->getName() == "SDNPHasChain") {
395       Properties |= 1 << SDNPHasChain;
396     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
397       Properties |= 1 << SDNPOptInGlue;
398     } else if (PropList[i]->getName() == "SDNPMayStore") {
399       Properties |= 1 << SDNPMayStore;
400     } else if (PropList[i]->getName() == "SDNPMayLoad") {
401       Properties |= 1 << SDNPMayLoad;
402     } else if (PropList[i]->getName() == "SDNPSideEffect") {
403       Properties |= 1 << SDNPSideEffect;
404     } else if (PropList[i]->getName() == "SDNPMemOperand") {
405       Properties |= 1 << SDNPMemOperand;
406     } else if (PropList[i]->getName() == "SDNPVariadic") {
407       Properties |= 1 << SDNPVariadic;
408     } else if (PropList[i]->getName() == "SDNPWantRoot") {
409       Properties |= 1 << SDNPWantRoot;
410     } else if (PropList[i]->getName() == "SDNPWantParent") {
411       Properties |= 1 << SDNPWantParent;
412     } else {
413       errs() << "Unsupported SD Node property '" << PropList[i]->getName()
414              << "' on ComplexPattern '" << R->getName() << "'!\n";
415       exit(1);
416     }
417 }
418
419 //===----------------------------------------------------------------------===//
420 // CodeGenIntrinsic Implementation
421 //===----------------------------------------------------------------------===//
422
423 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
424                                                    bool TargetOnly) {
425   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
426
427   std::vector<CodeGenIntrinsic> Result;
428
429   for (unsigned i = 0, e = I.size(); i != e; ++i) {
430     bool isTarget = I[i]->getValueAsBit("isTarget");
431     if (isTarget == TargetOnly)
432       Result.push_back(CodeGenIntrinsic(I[i]));
433   }
434   return Result;
435 }
436
437 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
438   TheDef = R;
439   std::string DefName = R->getName();
440   ModRef = ReadWriteMem;
441   isOverloaded = false;
442   isCommutative = false;
443   canThrow = false;
444   isNoReturn = false;
445   isNoDuplicate = false;
446
447   if (DefName.size() <= 4 ||
448       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
449     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
450
451   EnumName = std::string(DefName.begin()+4, DefName.end());
452
453   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
454     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
455   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
456     MSBuiltinName = R->getValueAsString("MSBuiltinName");
457
458   TargetPrefix = R->getValueAsString("TargetPrefix");
459   Name = R->getValueAsString("LLVMName");
460
461   if (Name == "") {
462     // If an explicit name isn't specified, derive one from the DefName.
463     Name = "llvm.";
464
465     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
466       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
467   } else {
468     // Verify it starts with "llvm.".
469     if (Name.size() <= 5 ||
470         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
471       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
472   }
473
474   // If TargetPrefix is specified, make sure that Name starts with
475   // "llvm.<targetprefix>.".
476   if (!TargetPrefix.empty()) {
477     if (Name.size() < 6+TargetPrefix.size() ||
478         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
479         != (TargetPrefix + "."))
480       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
481         TargetPrefix + ".'!");
482   }
483
484   // Parse the list of return types.
485   std::vector<MVT::SimpleValueType> OverloadedVTs;
486   ListInit *TypeList = R->getValueAsListInit("RetTypes");
487   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
488     Record *TyEl = TypeList->getElementAsRecord(i);
489     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
490     MVT::SimpleValueType VT;
491     if (TyEl->isSubClassOf("LLVMMatchType")) {
492       unsigned MatchTy = TyEl->getValueAsInt("Number");
493       assert(MatchTy < OverloadedVTs.size() &&
494              "Invalid matching number!");
495       VT = OverloadedVTs[MatchTy];
496       // It only makes sense to use the extended and truncated vector element
497       // variants with iAny types; otherwise, if the intrinsic is not
498       // overloaded, all the types can be specified directly.
499       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
500                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
501               VT == MVT::iAny || VT == MVT::vAny) &&
502              "Expected iAny or vAny type");
503     } else {
504       VT = getValueType(TyEl->getValueAsDef("VT"));
505     }
506     if (MVT(VT).isOverloaded()) {
507       OverloadedVTs.push_back(VT);
508       isOverloaded = true;
509     }
510
511     // Reject invalid types.
512     if (VT == MVT::isVoid)
513       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
514
515     IS.RetVTs.push_back(VT);
516     IS.RetTypeDefs.push_back(TyEl);
517   }
518
519   // Parse the list of parameter types.
520   TypeList = R->getValueAsListInit("ParamTypes");
521   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
522     Record *TyEl = TypeList->getElementAsRecord(i);
523     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
524     MVT::SimpleValueType VT;
525     if (TyEl->isSubClassOf("LLVMMatchType")) {
526       unsigned MatchTy = TyEl->getValueAsInt("Number");
527       assert(MatchTy < OverloadedVTs.size() &&
528              "Invalid matching number!");
529       VT = OverloadedVTs[MatchTy];
530       // It only makes sense to use the extended and truncated vector element
531       // variants with iAny types; otherwise, if the intrinsic is not
532       // overloaded, all the types can be specified directly.
533       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
534                !TyEl->isSubClassOf("LLVMTruncatedType") &&
535                !TyEl->isSubClassOf("LLVMVectorSameWidth") &&
536                !TyEl->isSubClassOf("LLVMPointerToElt")) ||
537               VT == MVT::iAny || VT == MVT::vAny) &&
538              "Expected iAny or vAny type");
539     } else
540       VT = getValueType(TyEl->getValueAsDef("VT"));
541
542     if (MVT(VT).isOverloaded()) {
543       OverloadedVTs.push_back(VT);
544       isOverloaded = true;
545     }
546
547     // Reject invalid types.
548     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
549       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
550
551     IS.ParamVTs.push_back(VT);
552     IS.ParamTypeDefs.push_back(TyEl);
553   }
554
555   // Parse the intrinsic properties.
556   ListInit *PropList = R->getValueAsListInit("Properties");
557   for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
558     Record *Property = PropList->getElementAsRecord(i);
559     assert(Property->isSubClassOf("IntrinsicProperty") &&
560            "Expected a property!");
561
562     if (Property->getName() == "IntrNoMem")
563       ModRef = NoMem;
564     else if (Property->getName() == "IntrReadArgMem")
565       ModRef = ReadArgMem;
566     else if (Property->getName() == "IntrReadMem")
567       ModRef = ReadMem;
568     else if (Property->getName() == "IntrReadWriteArgMem")
569       ModRef = ReadWriteArgMem;
570     else if (Property->getName() == "Commutative")
571       isCommutative = true;
572     else if (Property->getName() == "Throws")
573       canThrow = true;
574     else if (Property->getName() == "IntrNoDuplicate")
575       isNoDuplicate = true;
576     else if (Property->getName() == "IntrNoReturn")
577       isNoReturn = true;
578     else if (Property->isSubClassOf("NoCapture")) {
579       unsigned ArgNo = Property->getValueAsInt("ArgNo");
580       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
581     } else if (Property->isSubClassOf("ReadOnly")) {
582       unsigned ArgNo = Property->getValueAsInt("ArgNo");
583       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
584     } else if (Property->isSubClassOf("ReadNone")) {
585       unsigned ArgNo = Property->getValueAsInt("ArgNo");
586       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
587     } else
588       llvm_unreachable("Unknown property!");
589   }
590
591   // Sort the argument attributes for later benefit.
592   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
593 }