Extend 'readonly' and 'readnone' to work on function arguments as well as
[oota-llvm.git] / utils / TableGen / CodeGenTarget.cpp
1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends.  This makes it easier to access the data and
12 // provides a single place that needs to check it for validity.  All of these
13 // classes abort on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CodeGenTarget.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include <algorithm>
26 using namespace llvm;
27
28 static cl::opt<unsigned>
29 AsmParserNum("asmparsernum", cl::init(0),
30              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
31
32 static cl::opt<unsigned>
33 AsmWriterNum("asmwriternum", cl::init(0),
34              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
35
36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
37 /// record corresponds to.
38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
39   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
40 }
41
42 std::string llvm::getName(MVT::SimpleValueType T) {
43   switch (T) {
44   case MVT::Other:   return "UNKNOWN";
45   case MVT::iPTR:    return "TLI.getPointerTy()";
46   case MVT::iPTRAny: return "TLI.getPointerTy()";
47   default: return getEnumName(T);
48   }
49 }
50
51 std::string llvm::getEnumName(MVT::SimpleValueType T) {
52   switch (T) {
53   case MVT::Other:    return "MVT::Other";
54   case MVT::i1:       return "MVT::i1";
55   case MVT::i8:       return "MVT::i8";
56   case MVT::i16:      return "MVT::i16";
57   case MVT::i32:      return "MVT::i32";
58   case MVT::i64:      return "MVT::i64";
59   case MVT::i128:     return "MVT::i128";
60   case MVT::iAny:     return "MVT::iAny";
61   case MVT::fAny:     return "MVT::fAny";
62   case MVT::vAny:     return "MVT::vAny";
63   case MVT::f16:      return "MVT::f16";
64   case MVT::f32:      return "MVT::f32";
65   case MVT::f64:      return "MVT::f64";
66   case MVT::f80:      return "MVT::f80";
67   case MVT::f128:     return "MVT::f128";
68   case MVT::ppcf128:  return "MVT::ppcf128";
69   case MVT::x86mmx:   return "MVT::x86mmx";
70   case MVT::Glue:     return "MVT::Glue";
71   case MVT::isVoid:   return "MVT::isVoid";
72   case MVT::v2i1:     return "MVT::v2i1";
73   case MVT::v4i1:     return "MVT::v4i1";
74   case MVT::v8i1:     return "MVT::v8i1";
75   case MVT::v16i1:    return "MVT::v16i1";
76   case MVT::v32i1:    return "MVT::v32i1";
77   case MVT::v64i1:    return "MVT::v64i1";
78   case MVT::v2i8:     return "MVT::v2i8";
79   case MVT::v4i8:     return "MVT::v4i8";
80   case MVT::v8i8:     return "MVT::v8i8";
81   case MVT::v16i8:    return "MVT::v16i8";
82   case MVT::v32i8:    return "MVT::v32i8";
83   case MVT::v64i8:    return "MVT::v64i8";
84   case MVT::v1i16:    return "MVT::v1i16";
85   case MVT::v2i16:    return "MVT::v2i16";
86   case MVT::v4i16:    return "MVT::v4i16";
87   case MVT::v8i16:    return "MVT::v8i16";
88   case MVT::v16i16:   return "MVT::v16i16";
89   case MVT::v32i16:   return "MVT::v32i16";
90   case MVT::v1i32:    return "MVT::v1i32";
91   case MVT::v2i32:    return "MVT::v2i32";
92   case MVT::v4i32:    return "MVT::v4i32";
93   case MVT::v8i32:    return "MVT::v8i32";
94   case MVT::v16i32:   return "MVT::v16i32";
95   case MVT::v1i64:    return "MVT::v1i64";
96   case MVT::v2i64:    return "MVT::v2i64";
97   case MVT::v4i64:    return "MVT::v4i64";
98   case MVT::v8i64:    return "MVT::v8i64";
99   case MVT::v16i64:   return "MVT::v16i64";
100   case MVT::v2f16:    return "MVT::v2f16";
101   case MVT::v2f32:    return "MVT::v2f32";
102   case MVT::v4f32:    return "MVT::v4f32";
103   case MVT::v8f32:    return "MVT::v8f32";
104   case MVT::v16f32:   return "MVT::v16f32";
105   case MVT::v2f64:    return "MVT::v2f64";
106   case MVT::v4f64:    return "MVT::v4f64";
107   case MVT::v8f64:    return "MVT::v8f64";
108   case MVT::Metadata: return "MVT::Metadata";
109   case MVT::iPTR:     return "MVT::iPTR";
110   case MVT::iPTRAny:  return "MVT::iPTRAny";
111   case MVT::Untyped:  return "MVT::Untyped";
112   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
113   }
114 }
115
116 /// getQualifiedName - Return the name of the specified record, with a
117 /// namespace qualifier if the record contains one.
118 ///
119 std::string llvm::getQualifiedName(const Record *R) {
120   std::string Namespace;
121   if (R->getValue("Namespace"))
122      Namespace = R->getValueAsString("Namespace");
123   if (Namespace.empty()) return R->getName();
124   return Namespace + "::" + R->getName();
125 }
126
127
128 /// getTarget - Return the current instance of the Target class.
129 ///
130 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
131   : Records(records), RegBank(0), SchedModels(0) {
132   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
133   if (Targets.size() == 0)
134     PrintFatalError("ERROR: No 'Target' subclasses defined!");
135   if (Targets.size() != 1)
136     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
137   TargetRec = Targets[0];
138 }
139
140 CodeGenTarget::~CodeGenTarget() {
141   delete RegBank;
142   delete SchedModels;
143 }
144
145 const std::string &CodeGenTarget::getName() const {
146   return TargetRec->getName();
147 }
148
149 std::string CodeGenTarget::getInstNamespace() const {
150   for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
151     // Make sure not to pick up "TargetOpcode" by accidentally getting
152     // the namespace off the PHI instruction or something.
153     if ((*i)->Namespace != "TargetOpcode")
154       return (*i)->Namespace;
155   }
156
157   return "";
158 }
159
160 Record *CodeGenTarget::getInstructionSet() const {
161   return TargetRec->getValueAsDef("InstructionSet");
162 }
163
164
165 /// getAsmParser - Return the AssemblyParser definition for this target.
166 ///
167 Record *CodeGenTarget::getAsmParser() const {
168   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
169   if (AsmParserNum >= LI.size())
170     PrintFatalError("Target does not have an AsmParser #" + utostr(AsmParserNum) + "!");
171   return LI[AsmParserNum];
172 }
173
174 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
175 /// this target.
176 ///
177 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
178   std::vector<Record*> LI =
179     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
180   if (i >= LI.size())
181     PrintFatalError("Target does not have an AsmParserVariant #" + utostr(i) + "!");
182   return LI[i];
183 }
184
185 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
186 /// available for this target.
187 ///
188 unsigned CodeGenTarget::getAsmParserVariantCount() const {
189   std::vector<Record*> LI =
190     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
191   return LI.size();
192 }
193
194 /// getAsmWriter - Return the AssemblyWriter definition for this target.
195 ///
196 Record *CodeGenTarget::getAsmWriter() const {
197   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
198   if (AsmWriterNum >= LI.size())
199     PrintFatalError("Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!");
200   return LI[AsmWriterNum];
201 }
202
203 CodeGenRegBank &CodeGenTarget::getRegBank() const {
204   if (!RegBank)
205     RegBank = new CodeGenRegBank(Records);
206   return *RegBank;
207 }
208
209 void CodeGenTarget::ReadRegAltNameIndices() const {
210   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
211   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
212 }
213
214 /// getRegisterByName - If there is a register with the specific AsmName,
215 /// return it.
216 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
217   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
218   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
219   if (I == Regs.end())
220     return 0;
221   return I->second;
222 }
223
224 std::vector<MVT::SimpleValueType> CodeGenTarget::
225 getRegisterVTs(Record *R) const {
226   const CodeGenRegister *Reg = getRegBank().getReg(R);
227   std::vector<MVT::SimpleValueType> Result;
228   ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
229   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
230     const CodeGenRegisterClass &RC = *RCs[i];
231     if (RC.contains(Reg)) {
232       ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
233       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
234     }
235   }
236
237   // Remove duplicates.
238   array_pod_sort(Result.begin(), Result.end());
239   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
240   return Result;
241 }
242
243
244 void CodeGenTarget::ReadLegalValueTypes() const {
245   ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
246   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
247     for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
248       LegalValueTypes.push_back(RCs[i]->VTs[ri]);
249
250   // Remove duplicates.
251   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
252   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
253                                     LegalValueTypes.end()),
254                         LegalValueTypes.end());
255 }
256
257 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
258   if (!SchedModels)
259     SchedModels = new CodeGenSchedModels(Records, *this);
260   return *SchedModels;
261 }
262
263 void CodeGenTarget::ReadInstructions() const {
264   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
265   if (Insts.size() <= 2)
266     PrintFatalError("No 'Instruction' subclasses defined!");
267
268   // Parse the instructions defined in the .td file.
269   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
270     Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
271 }
272
273 static const CodeGenInstruction *
274 GetInstByName(const char *Name,
275               const DenseMap<const Record*, CodeGenInstruction*> &Insts,
276               RecordKeeper &Records) {
277   const Record *Rec = Records.getDef(Name);
278
279   DenseMap<const Record*, CodeGenInstruction*>::const_iterator
280     I = Insts.find(Rec);
281   if (Rec == 0 || I == Insts.end())
282     PrintFatalError(std::string("Could not find '") + Name + "' instruction!");
283   return I->second;
284 }
285
286 namespace {
287 /// SortInstByName - Sorting predicate to sort instructions by name.
288 ///
289 struct SortInstByName {
290   bool operator()(const CodeGenInstruction *Rec1,
291                   const CodeGenInstruction *Rec2) const {
292     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
293   }
294 };
295 }
296
297 /// getInstructionsByEnumValue - Return all of the instructions defined by the
298 /// target, ordered by their enum value.
299 void CodeGenTarget::ComputeInstrsByEnum() const {
300   // The ordering here must match the ordering in TargetOpcodes.h.
301   const char *const FixedInstrs[] = {
302     "PHI",
303     "INLINEASM",
304     "PROLOG_LABEL",
305     "EH_LABEL",
306     "GC_LABEL",
307     "KILL",
308     "EXTRACT_SUBREG",
309     "INSERT_SUBREG",
310     "IMPLICIT_DEF",
311     "SUBREG_TO_REG",
312     "COPY_TO_REGCLASS",
313     "DBG_VALUE",
314     "REG_SEQUENCE",
315     "COPY",
316     "BUNDLE",
317     "LIFETIME_START",
318     "LIFETIME_END",
319     0
320   };
321   const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
322   for (const char *const *p = FixedInstrs; *p; ++p) {
323     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
324     assert(Instr && "Missing target independent instruction");
325     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
326     InstrsByEnum.push_back(Instr);
327   }
328   unsigned EndOfPredefines = InstrsByEnum.size();
329
330   for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
331        I = Insts.begin(), E = Insts.end(); I != E; ++I) {
332     const CodeGenInstruction *CGI = I->second;
333     if (CGI->Namespace != "TargetOpcode")
334       InstrsByEnum.push_back(CGI);
335   }
336
337   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
338
339   // All of the instructions are now in random order based on the map iteration.
340   // Sort them by name.
341   std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
342             SortInstByName());
343 }
344
345
346 /// isLittleEndianEncoding - Return whether this target encodes its instruction
347 /// in little-endian format, i.e. bits laid out in the order [0..n]
348 ///
349 bool CodeGenTarget::isLittleEndianEncoding() const {
350   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
351 }
352
353 /// guessInstructionProperties - Return true if it's OK to guess instruction
354 /// properties instead of raising an error.
355 ///
356 /// This is configurable as a temporary migration aid. It will eventually be
357 /// permanently false.
358 bool CodeGenTarget::guessInstructionProperties() const {
359   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
360 }
361
362 //===----------------------------------------------------------------------===//
363 // ComplexPattern implementation
364 //
365 ComplexPattern::ComplexPattern(Record *R) {
366   Ty          = ::getValueType(R->getValueAsDef("Ty"));
367   NumOperands = R->getValueAsInt("NumOperands");
368   SelectFunc  = R->getValueAsString("SelectFunc");
369   RootNodes   = R->getValueAsListOfDefs("RootNodes");
370
371   // Parse the properties.
372   Properties = 0;
373   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
374   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
375     if (PropList[i]->getName() == "SDNPHasChain") {
376       Properties |= 1 << SDNPHasChain;
377     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
378       Properties |= 1 << SDNPOptInGlue;
379     } else if (PropList[i]->getName() == "SDNPMayStore") {
380       Properties |= 1 << SDNPMayStore;
381     } else if (PropList[i]->getName() == "SDNPMayLoad") {
382       Properties |= 1 << SDNPMayLoad;
383     } else if (PropList[i]->getName() == "SDNPSideEffect") {
384       Properties |= 1 << SDNPSideEffect;
385     } else if (PropList[i]->getName() == "SDNPMemOperand") {
386       Properties |= 1 << SDNPMemOperand;
387     } else if (PropList[i]->getName() == "SDNPVariadic") {
388       Properties |= 1 << SDNPVariadic;
389     } else if (PropList[i]->getName() == "SDNPWantRoot") {
390       Properties |= 1 << SDNPWantRoot;
391     } else if (PropList[i]->getName() == "SDNPWantParent") {
392       Properties |= 1 << SDNPWantParent;
393     } else {
394       errs() << "Unsupported SD Node property '" << PropList[i]->getName()
395              << "' on ComplexPattern '" << R->getName() << "'!\n";
396       exit(1);
397     }
398 }
399
400 //===----------------------------------------------------------------------===//
401 // CodeGenIntrinsic Implementation
402 //===----------------------------------------------------------------------===//
403
404 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
405                                                    bool TargetOnly) {
406   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
407
408   std::vector<CodeGenIntrinsic> Result;
409
410   for (unsigned i = 0, e = I.size(); i != e; ++i) {
411     bool isTarget = I[i]->getValueAsBit("isTarget");
412     if (isTarget == TargetOnly)
413       Result.push_back(CodeGenIntrinsic(I[i]));
414   }
415   return Result;
416 }
417
418 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
419   TheDef = R;
420   std::string DefName = R->getName();
421   ModRef = ReadWriteMem;
422   isOverloaded = false;
423   isCommutative = false;
424   canThrow = false;
425   isNoReturn = false;
426
427   if (DefName.size() <= 4 ||
428       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
429     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
430
431   EnumName = std::string(DefName.begin()+4, DefName.end());
432
433   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
434     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
435
436   TargetPrefix = R->getValueAsString("TargetPrefix");
437   Name = R->getValueAsString("LLVMName");
438
439   if (Name == "") {
440     // If an explicit name isn't specified, derive one from the DefName.
441     Name = "llvm.";
442
443     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
444       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
445   } else {
446     // Verify it starts with "llvm.".
447     if (Name.size() <= 5 ||
448         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
449       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
450   }
451
452   // If TargetPrefix is specified, make sure that Name starts with
453   // "llvm.<targetprefix>.".
454   if (!TargetPrefix.empty()) {
455     if (Name.size() < 6+TargetPrefix.size() ||
456         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
457         != (TargetPrefix + "."))
458       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
459         TargetPrefix + ".'!");
460   }
461
462   // Parse the list of return types.
463   std::vector<MVT::SimpleValueType> OverloadedVTs;
464   ListInit *TypeList = R->getValueAsListInit("RetTypes");
465   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
466     Record *TyEl = TypeList->getElementAsRecord(i);
467     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
468     MVT::SimpleValueType VT;
469     if (TyEl->isSubClassOf("LLVMMatchType")) {
470       unsigned MatchTy = TyEl->getValueAsInt("Number");
471       assert(MatchTy < OverloadedVTs.size() &&
472              "Invalid matching number!");
473       VT = OverloadedVTs[MatchTy];
474       // It only makes sense to use the extended and truncated vector element
475       // variants with iAny types; otherwise, if the intrinsic is not
476       // overloaded, all the types can be specified directly.
477       assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
478                !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
479               VT == MVT::iAny || VT == MVT::vAny) &&
480              "Expected iAny or vAny type");
481     } else {
482       VT = getValueType(TyEl->getValueAsDef("VT"));
483     }
484     if (EVT(VT).isOverloaded()) {
485       OverloadedVTs.push_back(VT);
486       isOverloaded = true;
487     }
488
489     // Reject invalid types.
490     if (VT == MVT::isVoid)
491       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
492
493     IS.RetVTs.push_back(VT);
494     IS.RetTypeDefs.push_back(TyEl);
495   }
496
497   // Parse the list of parameter types.
498   TypeList = R->getValueAsListInit("ParamTypes");
499   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
500     Record *TyEl = TypeList->getElementAsRecord(i);
501     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
502     MVT::SimpleValueType VT;
503     if (TyEl->isSubClassOf("LLVMMatchType")) {
504       unsigned MatchTy = TyEl->getValueAsInt("Number");
505       assert(MatchTy < OverloadedVTs.size() &&
506              "Invalid matching number!");
507       VT = OverloadedVTs[MatchTy];
508       // It only makes sense to use the extended and truncated vector element
509       // variants with iAny types; otherwise, if the intrinsic is not
510       // overloaded, all the types can be specified directly.
511       assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
512                !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
513               VT == MVT::iAny || VT == MVT::vAny) &&
514              "Expected iAny or vAny type");
515     } else
516       VT = getValueType(TyEl->getValueAsDef("VT"));
517
518     if (EVT(VT).isOverloaded()) {
519       OverloadedVTs.push_back(VT);
520       isOverloaded = true;
521     }
522
523     // Reject invalid types.
524     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
525       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
526
527     IS.ParamVTs.push_back(VT);
528     IS.ParamTypeDefs.push_back(TyEl);
529   }
530
531   // Parse the intrinsic properties.
532   ListInit *PropList = R->getValueAsListInit("Properties");
533   for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
534     Record *Property = PropList->getElementAsRecord(i);
535     assert(Property->isSubClassOf("IntrinsicProperty") &&
536            "Expected a property!");
537
538     if (Property->getName() == "IntrNoMem")
539       ModRef = NoMem;
540     else if (Property->getName() == "IntrReadArgMem")
541       ModRef = ReadArgMem;
542     else if (Property->getName() == "IntrReadMem")
543       ModRef = ReadMem;
544     else if (Property->getName() == "IntrReadWriteArgMem")
545       ModRef = ReadWriteArgMem;
546     else if (Property->getName() == "Commutative")
547       isCommutative = true;
548     else if (Property->getName() == "Throws")
549       canThrow = true;
550     else if (Property->getName() == "IntrNoReturn")
551       isNoReturn = true;
552     else if (Property->isSubClassOf("NoCapture")) {
553       unsigned ArgNo = Property->getValueAsInt("ArgNo");
554       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
555     } else if (Property->isSubClassOf("ReadOnly")) {
556       unsigned ArgNo = Property->getValueAsInt("ArgNo");
557       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
558     } else if (Property->isSubClassOf("ReadNone")) {
559       unsigned ArgNo = Property->getValueAsInt("ArgNo");
560       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
561     } else
562       llvm_unreachable("Unknown property!");
563   }
564
565   // Sort the argument attributes for later benefit.
566   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
567 }