[TableGen] Correct Namespace lookup with AltNames in AsmWriterEmitter
[oota-llvm.git] / utils / TableGen / CodeGenRegisters.cpp
1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/IntEqClasses.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/TableGen/Error.h"
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "regalloc-emitter"
28
29 //===----------------------------------------------------------------------===//
30 //                             CodeGenSubRegIndex
31 //===----------------------------------------------------------------------===//
32
33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34   : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35   Name = R->getName();
36   if (R->getValue("Namespace"))
37     Namespace = R->getValueAsString("Namespace");
38   Size = R->getValueAsInt("Size");
39   Offset = R->getValueAsInt("Offset");
40 }
41
42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43                                        unsigned Enum)
44   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45     EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46 }
47
48 std::string CodeGenSubRegIndex::getQualifiedName() const {
49   std::string N = getNamespace();
50   if (!N.empty())
51     N += "::";
52   N += getName();
53   return N;
54 }
55
56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57   if (!TheDef)
58     return;
59
60   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61   if (!Comps.empty()) {
62     if (Comps.size() != 2)
63       PrintFatalError(TheDef->getLoc(),
64                       "ComposedOf must have exactly two entries");
65     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67     CodeGenSubRegIndex *X = A->addComposite(B, this);
68     if (X)
69       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70   }
71
72   std::vector<Record*> Parts =
73     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74   if (!Parts.empty()) {
75     if (Parts.size() < 2)
76       PrintFatalError(TheDef->getLoc(),
77                       "CoveredBySubRegs must have two or more entries");
78     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81     RegBank.addConcatSubRegIndex(IdxParts, this);
82   }
83 }
84
85 unsigned CodeGenSubRegIndex::computeLaneMask() const {
86   // Already computed?
87   if (LaneMask)
88     return LaneMask;
89
90   // Recursion guard, shouldn't be required.
91   LaneMask = ~0u;
92
93   // The lane mask is simply the union of all sub-indices.
94   unsigned M = 0;
95   for (const auto &C : Composed)
96     M |= C.second->computeLaneMask();
97   assert(M && "Missing lane mask, sub-register cycle?");
98   LaneMask = M;
99   return LaneMask;
100 }
101
102 //===----------------------------------------------------------------------===//
103 //                              CodeGenRegister
104 //===----------------------------------------------------------------------===//
105
106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107   : TheDef(R),
108     EnumValue(Enum),
109     CostPerUse(R->getValueAsInt("CostPerUse")),
110     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111     HasDisjunctSubRegs(false),
112     SubRegsComplete(false),
113     SuperRegsComplete(false),
114     TopoSig(~0u)
115 {}
116
117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120
121   if (SRIs.size() != SRs.size())
122     PrintFatalError(TheDef->getLoc(),
123                     "SubRegs and SubRegIndices must have the same size");
124
125   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128   }
129
130   // Also compute leading super-registers. Each register has a list of
131   // covered-by-subregs super-registers where it appears as the first explicit
132   // sub-register.
133   //
134   // This is used by computeSecondarySubRegs() to find candidates.
135   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137
138   // Add ad hoc alias links. This is a symmetric relationship between two
139   // registers, so build a symmetric graph by adding links in both ends.
140   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143     ExplicitAliases.push_back(Reg);
144     Reg->ExplicitAliases.push_back(this);
145   }
146 }
147
148 const std::string &CodeGenRegister::getName() const {
149   assert(TheDef && "no def");
150   return TheDef->getName();
151 }
152
153 namespace {
154 // Iterate over all register units in a set of registers.
155 class RegUnitIterator {
156   CodeGenRegister::Vec::const_iterator RegI, RegE;
157   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
158
159 public:
160   RegUnitIterator(const CodeGenRegister::Vec &Regs):
161     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
162
163     if (RegI != RegE) {
164       UnitI = (*RegI)->getRegUnits().begin();
165       UnitE = (*RegI)->getRegUnits().end();
166       advance();
167     }
168   }
169
170   bool isValid() const { return UnitI != UnitE; }
171
172   unsigned operator* () const { assert(isValid()); return *UnitI; }
173
174   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
175
176   /// Preincrement.  Move to the next unit.
177   void operator++() {
178     assert(isValid() && "Cannot advance beyond the last operand");
179     ++UnitI;
180     advance();
181   }
182
183 protected:
184   void advance() {
185     while (UnitI == UnitE) {
186       if (++RegI == RegE)
187         break;
188       UnitI = (*RegI)->getRegUnits().begin();
189       UnitE = (*RegI)->getRegUnits().end();
190     }
191   }
192 };
193 } // namespace
194
195 // Return true of this unit appears in RegUnits.
196 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
197   return RegUnits.test(Unit);
198 }
199
200 // Inherit register units from subregisters.
201 // Return true if the RegUnits changed.
202 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
203   bool changed = false;
204   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
205        I != E; ++I) {
206     CodeGenRegister *SR = I->second;
207     // Merge the subregister's units into this register's RegUnits.
208     changed |= (RegUnits |= SR->RegUnits);
209   }
210
211   return changed;
212 }
213
214 const CodeGenRegister::SubRegMap &
215 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
216   // Only compute this map once.
217   if (SubRegsComplete)
218     return SubRegs;
219   SubRegsComplete = true;
220
221   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
222
223   // First insert the explicit subregs and make sure they are fully indexed.
224   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
225     CodeGenRegister *SR = ExplicitSubRegs[i];
226     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
227     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
228       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
229                       " appears twice in Register " + getName());
230     // Map explicit sub-registers first, so the names take precedence.
231     // The inherited sub-registers are mapped below.
232     SubReg2Idx.insert(std::make_pair(SR, Idx));
233   }
234
235   // Keep track of inherited subregs and how they can be reached.
236   SmallPtrSet<CodeGenRegister*, 8> Orphans;
237
238   // Clone inherited subregs and place duplicate entries in Orphans.
239   // Here the order is important - earlier subregs take precedence.
240   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
241     CodeGenRegister *SR = ExplicitSubRegs[i];
242     const SubRegMap &Map = SR->computeSubRegs(RegBank);
243     HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
244
245     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
246          ++SI) {
247       if (!SubRegs.insert(*SI).second)
248         Orphans.insert(SI->second);
249     }
250   }
251
252   // Expand any composed subreg indices.
253   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
254   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
255   // expanded subreg indices recursively.
256   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
257   for (unsigned i = 0; i != Indices.size(); ++i) {
258     CodeGenSubRegIndex *Idx = Indices[i];
259     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
260     CodeGenRegister *SR = SubRegs[Idx];
261     const SubRegMap &Map = SR->computeSubRegs(RegBank);
262
263     // Look at the possible compositions of Idx.
264     // They may not all be supported by SR.
265     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
266            E = Comps.end(); I != E; ++I) {
267       SubRegMap::const_iterator SRI = Map.find(I->first);
268       if (SRI == Map.end())
269         continue; // Idx + I->first doesn't exist in SR.
270       // Add I->second as a name for the subreg SRI->second, assuming it is
271       // orphaned, and the name isn't already used for something else.
272       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
273         continue;
274       // We found a new name for the orphaned sub-register.
275       SubRegs.insert(std::make_pair(I->second, SRI->second));
276       Indices.push_back(I->second);
277     }
278   }
279
280   // Now Orphans contains the inherited subregisters without a direct index.
281   // Create inferred indexes for all missing entries.
282   // Work backwards in the Indices vector in order to compose subregs bottom-up.
283   // Consider this subreg sequence:
284   //
285   //   qsub_1 -> dsub_0 -> ssub_0
286   //
287   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
288   // can be reached in two different ways:
289   //
290   //   qsub_1 -> ssub_0
291   //   dsub_2 -> ssub_0
292   //
293   // We pick the latter composition because another register may have [dsub_0,
294   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
295   // dsub_2 -> ssub_0 composition can be shared.
296   while (!Indices.empty() && !Orphans.empty()) {
297     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
298     CodeGenRegister *SR = SubRegs[Idx];
299     const SubRegMap &Map = SR->computeSubRegs(RegBank);
300     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
301          ++SI)
302       if (Orphans.erase(SI->second))
303         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
304   }
305
306   // Compute the inverse SubReg -> Idx map.
307   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
308        SI != SE; ++SI) {
309     if (SI->second == this) {
310       ArrayRef<SMLoc> Loc;
311       if (TheDef)
312         Loc = TheDef->getLoc();
313       PrintFatalError(Loc, "Register " + getName() +
314                       " has itself as a sub-register");
315     }
316
317     // Compute AllSuperRegsCovered.
318     if (!CoveredBySubRegs)
319       SI->first->AllSuperRegsCovered = false;
320
321     // Ensure that every sub-register has a unique name.
322     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
323       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
324     if (Ins->second == SI->first)
325       continue;
326     // Trouble: Two different names for SI->second.
327     ArrayRef<SMLoc> Loc;
328     if (TheDef)
329       Loc = TheDef->getLoc();
330     PrintFatalError(Loc, "Sub-register can't have two names: " +
331                   SI->second->getName() + " available as " +
332                   SI->first->getName() + " and " + Ins->second->getName());
333   }
334
335   // Derive possible names for sub-register concatenations from any explicit
336   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
337   // that getConcatSubRegIndex() won't invent any concatenated indices that the
338   // user already specified.
339   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
340     CodeGenRegister *SR = ExplicitSubRegs[i];
341     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
342       continue;
343
344     // SR is composed of multiple sub-regs. Find their names in this register.
345     SmallVector<CodeGenSubRegIndex*, 8> Parts;
346     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
347       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
348
349     // Offer this as an existing spelling for the concatenation of Parts.
350     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
351   }
352
353   // Initialize RegUnitList. Because getSubRegs is called recursively, this
354   // processes the register hierarchy in postorder.
355   //
356   // Inherit all sub-register units. It is good enough to look at the explicit
357   // sub-registers, the other registers won't contribute any more units.
358   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
359     CodeGenRegister *SR = ExplicitSubRegs[i];
360     RegUnits |= SR->RegUnits;
361   }
362
363   // Absent any ad hoc aliasing, we create one register unit per leaf register.
364   // These units correspond to the maximal cliques in the register overlap
365   // graph which is optimal.
366   //
367   // When there is ad hoc aliasing, we simply create one unit per edge in the
368   // undirected ad hoc aliasing graph. Technically, we could do better by
369   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
370   // are extremely rare anyway (I've never seen one), so we don't bother with
371   // the added complexity.
372   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
373     CodeGenRegister *AR = ExplicitAliases[i];
374     // Only visit each edge once.
375     if (AR->SubRegsComplete)
376       continue;
377     // Create a RegUnit representing this alias edge, and add it to both
378     // registers.
379     unsigned Unit = RegBank.newRegUnit(this, AR);
380     RegUnits.set(Unit);
381     AR->RegUnits.set(Unit);
382   }
383
384   // Finally, create units for leaf registers without ad hoc aliases. Note that
385   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
386   // necessary. This means the aliasing leaf registers can share a single unit.
387   if (RegUnits.empty())
388     RegUnits.set(RegBank.newRegUnit(this));
389
390   // We have now computed the native register units. More may be adopted later
391   // for balancing purposes.
392   NativeRegUnits = RegUnits;
393
394   return SubRegs;
395 }
396
397 // In a register that is covered by its sub-registers, try to find redundant
398 // sub-registers. For example:
399 //
400 //   QQ0 = {Q0, Q1}
401 //   Q0 = {D0, D1}
402 //   Q1 = {D2, D3}
403 //
404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
405 // the register definition.
406 //
407 // The explicitly specified registers form a tree. This function discovers
408 // sub-register relationships that would force a DAG.
409 //
410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
411   // Collect new sub-registers first, add them later.
412   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
413
414   // Look at the leading super-registers of each sub-register. Those are the
415   // candidates for new sub-registers, assuming they are fully contained in
416   // this register.
417   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
418     const CodeGenRegister *SubReg = I->second;
419     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
420     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
421       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
422       // Already got this sub-register?
423       if (Cand == this || getSubRegIndex(Cand))
424         continue;
425       // Check if each component of Cand is already a sub-register.
426       // We know that the first component is I->second, and is present with the
427       // name I->first.
428       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
429       assert(!Cand->ExplicitSubRegs.empty() &&
430              "Super-register has no sub-registers");
431       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
432         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
433           Parts.push_back(Idx);
434         else {
435           // Sub-register doesn't exist.
436           Parts.clear();
437           break;
438         }
439       }
440       // If some Cand sub-register is not part of this register, or if Cand only
441       // has one sub-register, there is nothing to do.
442       if (Parts.size() <= 1)
443         continue;
444
445       // Each part of Cand is a sub-register of this. Make the full Cand also
446       // a sub-register with a concatenated sub-register index.
447       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
448       NewSubRegs.push_back(std::make_pair(Concat, Cand));
449     }
450   }
451
452   // Now add all the new sub-registers.
453   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
454     // Don't add Cand if another sub-register is already using the index.
455     if (!SubRegs.insert(NewSubRegs[i]).second)
456       continue;
457
458     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
459     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
460     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
461   }
462
463   // Create sub-register index composition maps for the synthesized indices.
464   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
466     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
467     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
468            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
469       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
470       if (!SubIdx)
471         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
472                         SI->second->getName() + " in " + getName());
473       NewIdx->addComposite(SI->first, SubIdx);
474     }
475   }
476 }
477
478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
479   // Only visit each register once.
480   if (SuperRegsComplete)
481     return;
482   SuperRegsComplete = true;
483
484   // Make sure all sub-registers have been visited first, so the super-reg
485   // lists will be topologically ordered.
486   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
487        I != E; ++I)
488     I->second->computeSuperRegs(RegBank);
489
490   // Now add this as a super-register on all sub-registers.
491   // Also compute the TopoSigId in post-order.
492   TopoSigId Id;
493   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
494        I != E; ++I) {
495     // Topological signature computed from SubIdx, TopoId(SubReg).
496     // Loops and idempotent indices have TopoSig = ~0u.
497     Id.push_back(I->first->EnumValue);
498     Id.push_back(I->second->TopoSig);
499
500     // Don't add duplicate entries.
501     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
502       continue;
503     I->second->SuperRegs.push_back(this);
504   }
505   TopoSig = RegBank.getTopoSig(Id);
506 }
507
508 void
509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
510                                     CodeGenRegBank &RegBank) const {
511   assert(SubRegsComplete && "Must precompute sub-registers");
512   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
513     CodeGenRegister *SR = ExplicitSubRegs[i];
514     if (OSet.insert(SR))
515       SR->addSubRegsPreOrder(OSet, RegBank);
516   }
517   // Add any secondary sub-registers that weren't part of the explicit tree.
518   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
519        I != E; ++I)
520     OSet.insert(I->second);
521 }
522
523 // Get the sum of this register's unit weights.
524 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
525   unsigned Weight = 0;
526   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
527        I != E; ++I) {
528     Weight += RegBank.getRegUnit(*I).Weight;
529   }
530   return Weight;
531 }
532
533 //===----------------------------------------------------------------------===//
534 //                               RegisterTuples
535 //===----------------------------------------------------------------------===//
536
537 // A RegisterTuples def is used to generate pseudo-registers from lists of
538 // sub-registers. We provide a SetTheory expander class that returns the new
539 // registers.
540 namespace {
541 struct TupleExpander : SetTheory::Expander {
542   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
543     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
544     unsigned Dim = Indices.size();
545     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
546     if (Dim != SubRegs->size())
547       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
548     if (Dim < 2)
549       PrintFatalError(Def->getLoc(),
550                       "Tuples must have at least 2 sub-registers");
551
552     // Evaluate the sub-register lists to be zipped.
553     unsigned Length = ~0u;
554     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
555     for (unsigned i = 0; i != Dim; ++i) {
556       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
557       Length = std::min(Length, unsigned(Lists[i].size()));
558     }
559
560     if (Length == 0)
561       return;
562
563     // Precompute some types.
564     Record *RegisterCl = Def->getRecords().getClass("Register");
565     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
566     StringInit *BlankName = StringInit::get("");
567
568     // Zip them up.
569     for (unsigned n = 0; n != Length; ++n) {
570       std::string Name;
571       Record *Proto = Lists[0][n];
572       std::vector<Init*> Tuple;
573       unsigned CostPerUse = 0;
574       for (unsigned i = 0; i != Dim; ++i) {
575         Record *Reg = Lists[i][n];
576         if (i) Name += '_';
577         Name += Reg->getName();
578         Tuple.push_back(DefInit::get(Reg));
579         CostPerUse = std::max(CostPerUse,
580                               unsigned(Reg->getValueAsInt("CostPerUse")));
581       }
582
583       // Create a new Record representing the synthesized register. This record
584       // is only for consumption by CodeGenRegister, it is not added to the
585       // RecordKeeper.
586       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
587       Elts.insert(NewReg);
588
589       // Copy Proto super-classes.
590       ArrayRef<Record *> Supers = Proto->getSuperClasses();
591       ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
592       for (unsigned i = 0, e = Supers.size(); i != e; ++i)
593         NewReg->addSuperClass(Supers[i], Ranges[i]);
594
595       // Copy Proto fields.
596       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
597         RecordVal RV = Proto->getValues()[i];
598
599         // Skip existing fields, like NAME.
600         if (NewReg->getValue(RV.getNameInit()))
601           continue;
602
603         StringRef Field = RV.getName();
604
605         // Replace the sub-register list with Tuple.
606         if (Field == "SubRegs")
607           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
608
609         // Provide a blank AsmName. MC hacks are required anyway.
610         if (Field == "AsmName")
611           RV.setValue(BlankName);
612
613         // CostPerUse is aggregated from all Tuple members.
614         if (Field == "CostPerUse")
615           RV.setValue(IntInit::get(CostPerUse));
616
617         // Composite registers are always covered by sub-registers.
618         if (Field == "CoveredBySubRegs")
619           RV.setValue(BitInit::get(true));
620
621         // Copy fields from the RegisterTuples def.
622         if (Field == "SubRegIndices" ||
623             Field == "CompositeIndices") {
624           NewReg->addValue(*Def->getValue(Field));
625           continue;
626         }
627
628         // Some fields get their default uninitialized value.
629         if (Field == "DwarfNumbers" ||
630             Field == "DwarfAlias" ||
631             Field == "Aliases") {
632           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
633             NewReg->addValue(*DefRV);
634           continue;
635         }
636
637         // Everything else is copied from Proto.
638         NewReg->addValue(RV);
639       }
640     }
641   }
642 };
643 }
644
645 //===----------------------------------------------------------------------===//
646 //                            CodeGenRegisterClass
647 //===----------------------------------------------------------------------===//
648
649 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
650   std::sort(M.begin(), M.end(), deref<llvm::less>());
651   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
652 }
653
654 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
655   : TheDef(R),
656     Name(R->getName()),
657     TopoSigs(RegBank.getNumTopoSigs()),
658     EnumValue(-1),
659     LaneMask(0) {
660   // Rename anonymous register classes.
661   if (R->getName().size() > 9 && R->getName()[9] == '.') {
662     static unsigned AnonCounter = 0;
663     R->setName("AnonRegClass_" + utostr(AnonCounter++));
664   }
665
666   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
667   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
668     Record *Type = TypeList[i];
669     if (!Type->isSubClassOf("ValueType"))
670       PrintFatalError("RegTypes list member '" + Type->getName() +
671         "' does not derive from the ValueType class!");
672     VTs.push_back(getValueType(Type));
673   }
674   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
675
676   // Allocation order 0 is the full set. AltOrders provides others.
677   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
678   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
679   Orders.resize(1 + AltOrders->size());
680
681   // Default allocation order always contains all registers.
682   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
683     Orders[0].push_back((*Elements)[i]);
684     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
685     Members.push_back(Reg);
686     TopoSigs.set(Reg->getTopoSig());
687   }
688   sortAndUniqueRegisters(Members);
689
690   // Alternative allocation orders may be subsets.
691   SetTheory::RecSet Order;
692   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
693     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
694     Orders[1 + i].append(Order.begin(), Order.end());
695     // Verify that all altorder members are regclass members.
696     while (!Order.empty()) {
697       CodeGenRegister *Reg = RegBank.getReg(Order.back());
698       Order.pop_back();
699       if (!contains(Reg))
700         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
701                       " is not a class member");
702     }
703   }
704
705   // Allow targets to override the size in bits of the RegisterClass.
706   unsigned Size = R->getValueAsInt("Size");
707
708   Namespace = R->getValueAsString("Namespace");
709   SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
710   SpillAlignment = R->getValueAsInt("Alignment");
711   CopyCost = R->getValueAsInt("CopyCost");
712   Allocatable = R->getValueAsBit("isAllocatable");
713   AltOrderSelect = R->getValueAsString("AltOrderSelect");
714   int AllocationPriority = R->getValueAsInt("AllocationPriority");
715   if (AllocationPriority < 0 || AllocationPriority > 63)
716     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
717   this->AllocationPriority = AllocationPriority;
718 }
719
720 // Create an inferred register class that was missing from the .td files.
721 // Most properties will be inherited from the closest super-class after the
722 // class structure has been computed.
723 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
724                                            StringRef Name, Key Props)
725   : Members(*Props.Members),
726     TheDef(nullptr),
727     Name(Name),
728     TopoSigs(RegBank.getNumTopoSigs()),
729     EnumValue(-1),
730     SpillSize(Props.SpillSize),
731     SpillAlignment(Props.SpillAlignment),
732     CopyCost(0),
733     Allocatable(true),
734     AllocationPriority(0) {
735   for (const auto R : Members)
736     TopoSigs.set(R->getTopoSig());
737 }
738
739 // Compute inherited propertied for a synthesized register class.
740 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
741   assert(!getDef() && "Only synthesized classes can inherit properties");
742   assert(!SuperClasses.empty() && "Synthesized class without super class");
743
744   // The last super-class is the smallest one.
745   CodeGenRegisterClass &Super = *SuperClasses.back();
746
747   // Most properties are copied directly.
748   // Exceptions are members, size, and alignment
749   Namespace = Super.Namespace;
750   VTs = Super.VTs;
751   CopyCost = Super.CopyCost;
752   Allocatable = Super.Allocatable;
753   AltOrderSelect = Super.AltOrderSelect;
754   AllocationPriority = Super.AllocationPriority;
755
756   // Copy all allocation orders, filter out foreign registers from the larger
757   // super-class.
758   Orders.resize(Super.Orders.size());
759   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
760     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
761       if (contains(RegBank.getReg(Super.Orders[i][j])))
762         Orders[i].push_back(Super.Orders[i][j]);
763 }
764
765 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
766   return std::binary_search(Members.begin(), Members.end(), Reg,
767                             deref<llvm::less>());
768 }
769
770 namespace llvm {
771   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
772     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
773     for (const auto R : *K.Members)
774       OS << ", " << R->getName();
775     return OS << " }";
776   }
777 }
778
779 // This is a simple lexicographical order that can be used to search for sets.
780 // It is not the same as the topological order provided by TopoOrderRC.
781 bool CodeGenRegisterClass::Key::
782 operator<(const CodeGenRegisterClass::Key &B) const {
783   assert(Members && B.Members);
784   return std::tie(*Members, SpillSize, SpillAlignment) <
785          std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
786 }
787
788 // Returns true if RC is a strict subclass.
789 // RC is a sub-class of this class if it is a valid replacement for any
790 // instruction operand where a register of this classis required. It must
791 // satisfy these conditions:
792 //
793 // 1. All RC registers are also in this.
794 // 2. The RC spill size must not be smaller than our spill size.
795 // 3. RC spill alignment must be compatible with ours.
796 //
797 static bool testSubClass(const CodeGenRegisterClass *A,
798                          const CodeGenRegisterClass *B) {
799   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
800          A->SpillSize <= B->SpillSize &&
801          std::includes(A->getMembers().begin(), A->getMembers().end(),
802                        B->getMembers().begin(), B->getMembers().end(),
803                        deref<llvm::less>());
804 }
805
806 /// Sorting predicate for register classes.  This provides a topological
807 /// ordering that arranges all register classes before their sub-classes.
808 ///
809 /// Register classes with the same registers, spill size, and alignment form a
810 /// clique.  They will be ordered alphabetically.
811 ///
812 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
813                         const CodeGenRegisterClass &PB) {
814   auto *A = &PA;
815   auto *B = &PB;
816   if (A == B)
817     return 0;
818
819   // Order by ascending spill size.
820   if (A->SpillSize < B->SpillSize)
821     return true;
822   if (A->SpillSize > B->SpillSize)
823     return false;
824
825   // Order by ascending spill alignment.
826   if (A->SpillAlignment < B->SpillAlignment)
827     return true;
828   if (A->SpillAlignment > B->SpillAlignment)
829     return false;
830
831   // Order by descending set size.  Note that the classes' allocation order may
832   // not have been computed yet.  The Members set is always vaild.
833   if (A->getMembers().size() > B->getMembers().size())
834     return true;
835   if (A->getMembers().size() < B->getMembers().size())
836     return false;
837
838   // Finally order by name as a tie breaker.
839   return StringRef(A->getName()) < B->getName();
840 }
841
842 std::string CodeGenRegisterClass::getQualifiedName() const {
843   if (Namespace.empty())
844     return getName();
845   else
846     return Namespace + "::" + getName();
847 }
848
849 // Compute sub-classes of all register classes.
850 // Assume the classes are ordered topologically.
851 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
852   auto &RegClasses = RegBank.getRegClasses();
853
854   // Visit backwards so sub-classes are seen first.
855   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
856     CodeGenRegisterClass &RC = *I;
857     RC.SubClasses.resize(RegClasses.size());
858     RC.SubClasses.set(RC.EnumValue);
859
860     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
861     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
862       CodeGenRegisterClass &SubRC = *I2;
863       if (RC.SubClasses.test(SubRC.EnumValue))
864         continue;
865       if (!testSubClass(&RC, &SubRC))
866         continue;
867       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
868       // check them again.
869       RC.SubClasses |= SubRC.SubClasses;
870     }
871
872     // Sweep up missed clique members.  They will be immediately preceding RC.
873     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
874       RC.SubClasses.set(I2->EnumValue);
875   }
876
877   // Compute the SuperClasses lists from the SubClasses vectors.
878   for (auto &RC : RegClasses) {
879     const BitVector &SC = RC.getSubClasses();
880     auto I = RegClasses.begin();
881     for (int s = 0, next_s = SC.find_first(); next_s != -1;
882          next_s = SC.find_next(s)) {
883       std::advance(I, next_s - s);
884       s = next_s;
885       if (&*I == &RC)
886         continue;
887       I->SuperClasses.push_back(&RC);
888     }
889   }
890
891   // With the class hierarchy in place, let synthesized register classes inherit
892   // properties from their closest super-class. The iteration order here can
893   // propagate properties down multiple levels.
894   for (auto &RC : RegClasses)
895     if (!RC.getDef())
896       RC.inheritProperties(RegBank);
897 }
898
899 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
900                                               BitVector &Out) const {
901   auto FindI = SuperRegClasses.find(SubIdx);
902   if (FindI == SuperRegClasses.end())
903     return;
904   for (CodeGenRegisterClass *RC : FindI->second)
905     Out.set(RC->EnumValue);
906 }
907
908 // Populate a unique sorted list of units from a register set.
909 void CodeGenRegisterClass::buildRegUnitSet(
910   std::vector<unsigned> &RegUnits) const {
911   std::vector<unsigned> TmpUnits;
912   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
913     TmpUnits.push_back(*UnitI);
914   std::sort(TmpUnits.begin(), TmpUnits.end());
915   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
916                    std::back_inserter(RegUnits));
917 }
918
919 //===----------------------------------------------------------------------===//
920 //                               CodeGenRegBank
921 //===----------------------------------------------------------------------===//
922
923 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
924   // Configure register Sets to understand register classes and tuples.
925   Sets.addFieldExpander("RegisterClass", "MemberList");
926   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
927   Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>());
928
929   // Read in the user-defined (named) sub-register indices.
930   // More indices will be synthesized later.
931   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
932   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
933   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
934     getSubRegIdx(SRIs[i]);
935   // Build composite maps from ComposedOf fields.
936   for (auto &Idx : SubRegIndices)
937     Idx.updateComponents(*this);
938
939   // Read in the register definitions.
940   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
941   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
942   // Assign the enumeration values.
943   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
944     getReg(Regs[i]);
945
946   // Expand tuples and number the new registers.
947   std::vector<Record*> Tups =
948     Records.getAllDerivedDefinitions("RegisterTuples");
949
950   for (Record *R : Tups) {
951     std::vector<Record *> TupRegs = *Sets.expand(R);
952     std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
953     for (Record *RC : TupRegs)
954       getReg(RC);
955   }
956
957   // Now all the registers are known. Build the object graph of explicit
958   // register-register references.
959   for (auto &Reg : Registers)
960     Reg.buildObjectGraph(*this);
961
962   // Compute register name map.
963   for (auto &Reg : Registers)
964     // FIXME: This could just be RegistersByName[name] = register, except that
965     // causes some failures in MIPS - perhaps they have duplicate register name
966     // entries? (or maybe there's a reason for it - I don't know much about this
967     // code, just drive-by refactoring)
968     RegistersByName.insert(
969         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
970
971   // Precompute all sub-register maps.
972   // This will create Composite entries for all inferred sub-register indices.
973   for (auto &Reg : Registers)
974     Reg.computeSubRegs(*this);
975
976   // Infer even more sub-registers by combining leading super-registers.
977   for (auto &Reg : Registers)
978     if (Reg.CoveredBySubRegs)
979       Reg.computeSecondarySubRegs(*this);
980
981   // After the sub-register graph is complete, compute the topologically
982   // ordered SuperRegs list.
983   for (auto &Reg : Registers)
984     Reg.computeSuperRegs(*this);
985
986   // Native register units are associated with a leaf register. They've all been
987   // discovered now.
988   NumNativeRegUnits = RegUnits.size();
989
990   // Read in register class definitions.
991   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
992   if (RCs.empty())
993     PrintFatalError("No 'RegisterClass' subclasses defined!");
994
995   // Allocate user-defined register classes.
996   for (auto *RC : RCs) {
997     RegClasses.emplace_back(*this, RC);
998     addToMaps(&RegClasses.back());
999   }
1000
1001   // Infer missing classes to create a full algebra.
1002   computeInferredRegisterClasses();
1003
1004   // Order register classes topologically and assign enum values.
1005   RegClasses.sort(TopoOrderRC);
1006   unsigned i = 0;
1007   for (auto &RC : RegClasses)
1008     RC.EnumValue = i++;
1009   CodeGenRegisterClass::computeSubClasses(*this);
1010 }
1011
1012 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1013 CodeGenSubRegIndex*
1014 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1015   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1016   return &SubRegIndices.back();
1017 }
1018
1019 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1020   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1021   if (Idx)
1022     return Idx;
1023   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1024   Idx = &SubRegIndices.back();
1025   return Idx;
1026 }
1027
1028 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1029   CodeGenRegister *&Reg = Def2Reg[Def];
1030   if (Reg)
1031     return Reg;
1032   Registers.emplace_back(Def, Registers.size() + 1);
1033   Reg = &Registers.back();
1034   return Reg;
1035 }
1036
1037 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1038   if (Record *Def = RC->getDef())
1039     Def2RC.insert(std::make_pair(Def, RC));
1040
1041   // Duplicate classes are rejected by insert().
1042   // That's OK, we only care about the properties handled by CGRC::Key.
1043   CodeGenRegisterClass::Key K(*RC);
1044   Key2RC.insert(std::make_pair(K, RC));
1045 }
1046
1047 // Create a synthetic sub-class if it is missing.
1048 CodeGenRegisterClass*
1049 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1050                                     const CodeGenRegister::Vec *Members,
1051                                     StringRef Name) {
1052   // Synthetic sub-class has the same size and alignment as RC.
1053   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1054   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1055   if (FoundI != Key2RC.end())
1056     return FoundI->second;
1057
1058   // Sub-class doesn't exist, create a new one.
1059   RegClasses.emplace_back(*this, Name, K);
1060   addToMaps(&RegClasses.back());
1061   return &RegClasses.back();
1062 }
1063
1064 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1065   if (CodeGenRegisterClass *RC = Def2RC[Def])
1066     return RC;
1067
1068   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1069 }
1070
1071 CodeGenSubRegIndex*
1072 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1073                                         CodeGenSubRegIndex *B) {
1074   // Look for an existing entry.
1075   CodeGenSubRegIndex *Comp = A->compose(B);
1076   if (Comp)
1077     return Comp;
1078
1079   // None exists, synthesize one.
1080   std::string Name = A->getName() + "_then_" + B->getName();
1081   Comp = createSubRegIndex(Name, A->getNamespace());
1082   A->addComposite(B, Comp);
1083   return Comp;
1084 }
1085
1086 CodeGenSubRegIndex *CodeGenRegBank::
1087 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1088   assert(Parts.size() > 1 && "Need two parts to concatenate");
1089
1090   // Look for an existing entry.
1091   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1092   if (Idx)
1093     return Idx;
1094
1095   // None exists, synthesize one.
1096   std::string Name = Parts.front()->getName();
1097   // Determine whether all parts are contiguous.
1098   bool isContinuous = true;
1099   unsigned Size = Parts.front()->Size;
1100   unsigned LastOffset = Parts.front()->Offset;
1101   unsigned LastSize = Parts.front()->Size;
1102   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1103     Name += '_';
1104     Name += Parts[i]->getName();
1105     Size += Parts[i]->Size;
1106     if (Parts[i]->Offset != (LastOffset + LastSize))
1107       isContinuous = false;
1108     LastOffset = Parts[i]->Offset;
1109     LastSize = Parts[i]->Size;
1110   }
1111   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1112   Idx->Size = Size;
1113   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1114   return Idx;
1115 }
1116
1117 void CodeGenRegBank::computeComposites() {
1118   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1119   // and many registers will share TopoSigs on regular architectures.
1120   BitVector TopoSigs(getNumTopoSigs());
1121
1122   for (const auto &Reg1 : Registers) {
1123     // Skip identical subreg structures already processed.
1124     if (TopoSigs.test(Reg1.getTopoSig()))
1125       continue;
1126     TopoSigs.set(Reg1.getTopoSig());
1127
1128     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1129     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1130          e1 = SRM1.end(); i1 != e1; ++i1) {
1131       CodeGenSubRegIndex *Idx1 = i1->first;
1132       CodeGenRegister *Reg2 = i1->second;
1133       // Ignore identity compositions.
1134       if (&Reg1 == Reg2)
1135         continue;
1136       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1137       // Try composing Idx1 with another SubRegIndex.
1138       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1139            e2 = SRM2.end(); i2 != e2; ++i2) {
1140         CodeGenSubRegIndex *Idx2 = i2->first;
1141         CodeGenRegister *Reg3 = i2->second;
1142         // Ignore identity compositions.
1143         if (Reg2 == Reg3)
1144           continue;
1145         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1146         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1147         assert(Idx3 && "Sub-register doesn't have an index");
1148
1149         // Conflicting composition? Emit a warning but allow it.
1150         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1151           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1152                        " and " + Idx2->getQualifiedName() +
1153                        " compose ambiguously as " + Prev->getQualifiedName() +
1154                        " or " + Idx3->getQualifiedName());
1155       }
1156     }
1157   }
1158 }
1159
1160 // Compute lane masks. This is similar to register units, but at the
1161 // sub-register index level. Each bit in the lane mask is like a register unit
1162 // class, and two lane masks will have a bit in common if two sub-register
1163 // indices overlap in some register.
1164 //
1165 // Conservatively share a lane mask bit if two sub-register indices overlap in
1166 // some registers, but not in others. That shouldn't happen a lot.
1167 void CodeGenRegBank::computeSubRegLaneMasks() {
1168   // First assign individual bits to all the leaf indices.
1169   unsigned Bit = 0;
1170   // Determine mask of lanes that cover their registers.
1171   CoveringLanes = ~0u;
1172   for (auto &Idx : SubRegIndices) {
1173     if (Idx.getComposites().empty()) {
1174       if (Bit > 32) {
1175         PrintFatalError(
1176           Twine("Ran out of lanemask bits to represent subregister ")
1177           + Idx.getName());
1178       }
1179       Idx.LaneMask = 1u << Bit;
1180       ++Bit;
1181     } else {
1182       Idx.LaneMask = 0;
1183     }
1184   }
1185
1186   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1187   // here is that for each possible target subregister we look at the leafs
1188   // in the subregister graph that compose for this target and create
1189   // transformation sequences for the lanemasks. Each step in the sequence
1190   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1191   // are usually the same for many subregisters we can easily combine the steps
1192   // by combining the masks.
1193   for (const auto &Idx : SubRegIndices) {
1194     const auto &Composites = Idx.getComposites();
1195     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1196     // Go through all leaf subregisters and find the ones that compose with Idx.
1197     // These make out all possible valid bits in the lane mask we want to
1198     // transform. Looking only at the leafs ensure that only a single bit in
1199     // the mask is set.
1200     unsigned NextBit = 0;
1201     for (auto &Idx2 : SubRegIndices) {
1202       // Skip non-leaf subregisters.
1203       if (!Idx2.getComposites().empty())
1204         continue;
1205       // Replicate the behaviour from the lane mask generation loop above.
1206       unsigned SrcBit = NextBit;
1207       unsigned SrcMask = 1u << SrcBit;
1208       if (NextBit < 31)
1209         ++NextBit;
1210       assert(Idx2.LaneMask == SrcMask);
1211
1212       // Get the composed subregister if there is any.
1213       auto C = Composites.find(&Idx2);
1214       if (C == Composites.end())
1215         continue;
1216       const CodeGenSubRegIndex *Composite = C->second;
1217       // The Composed subreg should be a leaf subreg too
1218       assert(Composite->getComposites().empty());
1219
1220       // Create Mask+Rotate operation and merge with existing ops if possible.
1221       unsigned DstBit = Log2_32(Composite->LaneMask);
1222       int Shift = DstBit - SrcBit;
1223       uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
1224       for (auto &I : LaneTransforms) {
1225         if (I.RotateLeft == RotateLeft) {
1226           I.Mask |= SrcMask;
1227           SrcMask = 0;
1228         }
1229       }
1230       if (SrcMask != 0) {
1231         MaskRolPair MaskRol = { SrcMask, RotateLeft };
1232         LaneTransforms.push_back(MaskRol);
1233       }
1234     }
1235     // Optimize if the transformation consists of one step only: Set mask to
1236     // 0xffffffff (including some irrelevant invalid bits) so that it should
1237     // merge with more entries later while compressing the table.
1238     if (LaneTransforms.size() == 1)
1239       LaneTransforms[0].Mask = ~0u;
1240
1241     // Further compression optimization: For invalid compositions resulting
1242     // in a sequence with 0 entries we can just pick any other. Choose
1243     // Mask 0xffffffff with Rotation 0.
1244     if (LaneTransforms.size() == 0) {
1245       MaskRolPair P = { ~0u, 0 };
1246       LaneTransforms.push_back(P);
1247     }
1248   }
1249
1250   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1251   // by the sub-register graph? This doesn't occur in any known targets.
1252
1253   // Inherit lanes from composites.
1254   for (const auto &Idx : SubRegIndices) {
1255     unsigned Mask = Idx.computeLaneMask();
1256     // If some super-registers without CoveredBySubRegs use this index, we can
1257     // no longer assume that the lanes are covering their registers.
1258     if (!Idx.AllSuperRegsCovered)
1259       CoveringLanes &= ~Mask;
1260   }
1261
1262   // Compute lane mask combinations for register classes.
1263   for (auto &RegClass : RegClasses) {
1264     unsigned LaneMask = 0;
1265     for (const auto &SubRegIndex : SubRegIndices) {
1266       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1267         continue;
1268       LaneMask |= SubRegIndex.LaneMask;
1269     }
1270
1271     // For classes without any subregisters set LaneMask to ~0u instead of 0.
1272     // This makes it easier for client code to handle classes uniformly.
1273     if (LaneMask == 0)
1274       LaneMask = ~0u;
1275
1276     RegClass.LaneMask = LaneMask;
1277   }
1278 }
1279
1280 namespace {
1281 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1282 // the transitive closure of the union of overlapping register
1283 // classes. Together, the UberRegSets form a partition of the registers. If we
1284 // consider overlapping register classes to be connected, then each UberRegSet
1285 // is a set of connected components.
1286 //
1287 // An UberRegSet will likely be a horizontal slice of register names of
1288 // the same width. Nontrivial subregisters should then be in a separate
1289 // UberRegSet. But this property isn't required for valid computation of
1290 // register unit weights.
1291 //
1292 // A Weight field caches the max per-register unit weight in each UberRegSet.
1293 //
1294 // A set of SingularDeterminants flags single units of some register in this set
1295 // for which the unit weight equals the set weight. These units should not have
1296 // their weight increased.
1297 struct UberRegSet {
1298   CodeGenRegister::Vec Regs;
1299   unsigned Weight;
1300   CodeGenRegister::RegUnitList SingularDeterminants;
1301
1302   UberRegSet(): Weight(0) {}
1303 };
1304 } // namespace
1305
1306 // Partition registers into UberRegSets, where each set is the transitive
1307 // closure of the union of overlapping register classes.
1308 //
1309 // UberRegSets[0] is a special non-allocatable set.
1310 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1311                             std::vector<UberRegSet*> &RegSets,
1312                             CodeGenRegBank &RegBank) {
1313
1314   const auto &Registers = RegBank.getRegisters();
1315
1316   // The Register EnumValue is one greater than its index into Registers.
1317   assert(Registers.size() == Registers.back().EnumValue &&
1318          "register enum value mismatch");
1319
1320   // For simplicitly make the SetID the same as EnumValue.
1321   IntEqClasses UberSetIDs(Registers.size()+1);
1322   std::set<unsigned> AllocatableRegs;
1323   for (auto &RegClass : RegBank.getRegClasses()) {
1324     if (!RegClass.Allocatable)
1325       continue;
1326
1327     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1328     if (Regs.empty())
1329       continue;
1330
1331     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1332     assert(USetID && "register number 0 is invalid");
1333
1334     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1335     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1336       AllocatableRegs.insert((*I)->EnumValue);
1337       UberSetIDs.join(USetID, (*I)->EnumValue);
1338     }
1339   }
1340   // Combine non-allocatable regs.
1341   for (const auto &Reg : Registers) {
1342     unsigned RegNum = Reg.EnumValue;
1343     if (AllocatableRegs.count(RegNum))
1344       continue;
1345
1346     UberSetIDs.join(0, RegNum);
1347   }
1348   UberSetIDs.compress();
1349
1350   // Make the first UberSet a special unallocatable set.
1351   unsigned ZeroID = UberSetIDs[0];
1352
1353   // Insert Registers into the UberSets formed by union-find.
1354   // Do not resize after this.
1355   UberSets.resize(UberSetIDs.getNumClasses());
1356   unsigned i = 0;
1357   for (const CodeGenRegister &Reg : Registers) {
1358     unsigned USetID = UberSetIDs[Reg.EnumValue];
1359     if (!USetID)
1360       USetID = ZeroID;
1361     else if (USetID == ZeroID)
1362       USetID = 0;
1363
1364     UberRegSet *USet = &UberSets[USetID];
1365     USet->Regs.push_back(&Reg);
1366     sortAndUniqueRegisters(USet->Regs);
1367     RegSets[i++] = USet;
1368   }
1369 }
1370
1371 // Recompute each UberSet weight after changing unit weights.
1372 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1373                                CodeGenRegBank &RegBank) {
1374   // Skip the first unallocatable set.
1375   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1376          E = UberSets.end(); I != E; ++I) {
1377
1378     // Initialize all unit weights in this set, and remember the max units/reg.
1379     const CodeGenRegister *Reg = nullptr;
1380     unsigned MaxWeight = 0, Weight = 0;
1381     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1382       if (Reg != UnitI.getReg()) {
1383         if (Weight > MaxWeight)
1384           MaxWeight = Weight;
1385         Reg = UnitI.getReg();
1386         Weight = 0;
1387       }
1388       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1389       if (!UWeight) {
1390         UWeight = 1;
1391         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1392       }
1393       Weight += UWeight;
1394     }
1395     if (Weight > MaxWeight)
1396       MaxWeight = Weight;
1397     if (I->Weight != MaxWeight) {
1398       DEBUG(
1399         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1400         for (auto &Unit : I->Regs)
1401           dbgs() << " " << Unit->getName();
1402         dbgs() << "\n");
1403       // Update the set weight.
1404       I->Weight = MaxWeight;
1405     }
1406
1407     // Find singular determinants.
1408     for (const auto R : I->Regs) {
1409       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1410         I->SingularDeterminants |= R->getRegUnits();
1411       }
1412     }
1413   }
1414 }
1415
1416 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1417 // a register and its subregisters so that they have the same weight as their
1418 // UberSet. Self-recursion processes the subregister tree in postorder so
1419 // subregisters are normalized first.
1420 //
1421 // Side effects:
1422 // - creates new adopted register units
1423 // - causes superregisters to inherit adopted units
1424 // - increases the weight of "singular" units
1425 // - induces recomputation of UberWeights.
1426 static bool normalizeWeight(CodeGenRegister *Reg,
1427                             std::vector<UberRegSet> &UberSets,
1428                             std::vector<UberRegSet*> &RegSets,
1429                             SparseBitVector<> &NormalRegs,
1430                             CodeGenRegister::RegUnitList &NormalUnits,
1431                             CodeGenRegBank &RegBank) {
1432   if (NormalRegs.test(Reg->EnumValue))
1433     return false;
1434   NormalRegs.set(Reg->EnumValue);
1435
1436   bool Changed = false;
1437   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1438   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1439          SRE = SRM.end(); SRI != SRE; ++SRI) {
1440     if (SRI->second == Reg)
1441       continue; // self-cycles happen
1442
1443     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1444                                NormalRegs, NormalUnits, RegBank);
1445   }
1446   // Postorder register normalization.
1447
1448   // Inherit register units newly adopted by subregisters.
1449   if (Reg->inheritRegUnits(RegBank))
1450     computeUberWeights(UberSets, RegBank);
1451
1452   // Check if this register is too skinny for its UberRegSet.
1453   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1454
1455   unsigned RegWeight = Reg->getWeight(RegBank);
1456   if (UberSet->Weight > RegWeight) {
1457     // A register unit's weight can be adjusted only if it is the singular unit
1458     // for this register, has not been used to normalize a subregister's set,
1459     // and has not already been used to singularly determine this UberRegSet.
1460     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1461     if (Reg->getRegUnits().count() != 1
1462         || hasRegUnit(NormalUnits, AdjustUnit)
1463         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1464       // We don't have an adjustable unit, so adopt a new one.
1465       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1466       Reg->adoptRegUnit(AdjustUnit);
1467       // Adopting a unit does not immediately require recomputing set weights.
1468     }
1469     else {
1470       // Adjust the existing single unit.
1471       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1472       // The unit may be shared among sets and registers within this set.
1473       computeUberWeights(UberSets, RegBank);
1474     }
1475     Changed = true;
1476   }
1477
1478   // Mark these units normalized so superregisters can't change their weights.
1479   NormalUnits |= Reg->getRegUnits();
1480
1481   return Changed;
1482 }
1483
1484 // Compute a weight for each register unit created during getSubRegs.
1485 //
1486 // The goal is that two registers in the same class will have the same weight,
1487 // where each register's weight is defined as sum of its units' weights.
1488 void CodeGenRegBank::computeRegUnitWeights() {
1489   std::vector<UberRegSet> UberSets;
1490   std::vector<UberRegSet*> RegSets(Registers.size());
1491   computeUberSets(UberSets, RegSets, *this);
1492   // UberSets and RegSets are now immutable.
1493
1494   computeUberWeights(UberSets, *this);
1495
1496   // Iterate over each Register, normalizing the unit weights until reaching
1497   // a fix point.
1498   unsigned NumIters = 0;
1499   for (bool Changed = true; Changed; ++NumIters) {
1500     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1501     Changed = false;
1502     for (auto &Reg : Registers) {
1503       CodeGenRegister::RegUnitList NormalUnits;
1504       SparseBitVector<> NormalRegs;
1505       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1506                                  NormalUnits, *this);
1507     }
1508   }
1509 }
1510
1511 // Find a set in UniqueSets with the same elements as Set.
1512 // Return an iterator into UniqueSets.
1513 static std::vector<RegUnitSet>::const_iterator
1514 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1515                const RegUnitSet &Set) {
1516   std::vector<RegUnitSet>::const_iterator
1517     I = UniqueSets.begin(), E = UniqueSets.end();
1518   for(;I != E; ++I) {
1519     if (I->Units == Set.Units)
1520       break;
1521   }
1522   return I;
1523 }
1524
1525 // Return true if the RUSubSet is a subset of RUSuperSet.
1526 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1527                             const std::vector<unsigned> &RUSuperSet) {
1528   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1529                        RUSubSet.begin(), RUSubSet.end());
1530 }
1531
1532 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1533 /// but with one or two registers removed. We occasionally have registers like
1534 /// APSR and PC thrown in with the general registers. We also see many
1535 /// special-purpose register subsets, such as tail-call and Thumb
1536 /// encodings. Generating all possible overlapping sets is combinatorial and
1537 /// overkill for modeling pressure. Ideally we could fix this statically in
1538 /// tablegen by (1) having the target define register classes that only include
1539 /// the allocatable registers and marking other classes as non-allocatable and
1540 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1541 /// the purpose of pressure.  However, we make an attempt to handle targets that
1542 /// are not nicely defined by merging nearly identical register unit sets
1543 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1544 /// set limit by filtering the reserved registers.
1545 ///
1546 /// Merge sets only if the units have the same weight. For example, on ARM,
1547 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1548 /// should not expand the S set to include D regs.
1549 void CodeGenRegBank::pruneUnitSets() {
1550   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1551
1552   // Form an equivalence class of UnitSets with no significant difference.
1553   std::vector<unsigned> SuperSetIDs;
1554   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1555        SubIdx != EndIdx; ++SubIdx) {
1556     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1557     unsigned SuperIdx = 0;
1558     for (; SuperIdx != EndIdx; ++SuperIdx) {
1559       if (SuperIdx == SubIdx)
1560         continue;
1561
1562       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1563       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1564       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1565           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1566           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1567           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1568         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1569               << "\n");
1570         // We can pick any of the set names for the merged set. Go for the
1571         // shortest one to avoid picking the name of one of the classes that are
1572         // artificially created by tablegen. So "FPR128_lo" instead of
1573         // "QQQQ_with_qsub3_in_FPR128_lo".
1574         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1575           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1576         break;
1577       }
1578     }
1579     if (SuperIdx == EndIdx)
1580       SuperSetIDs.push_back(SubIdx);
1581   }
1582   // Populate PrunedUnitSets with each equivalence class's superset.
1583   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1584   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1585     unsigned SuperIdx = SuperSetIDs[i];
1586     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1587     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1588   }
1589   RegUnitSets.swap(PrunedUnitSets);
1590 }
1591
1592 // Create a RegUnitSet for each RegClass that contains all units in the class
1593 // including adopted units that are necessary to model register pressure. Then
1594 // iteratively compute RegUnitSets such that the union of any two overlapping
1595 // RegUnitSets is repreresented.
1596 //
1597 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1598 // RegUnitSet that is a superset of that RegUnitClass.
1599 void CodeGenRegBank::computeRegUnitSets() {
1600   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1601
1602   // Compute a unique RegUnitSet for each RegClass.
1603   auto &RegClasses = getRegClasses();
1604   for (auto &RC : RegClasses) {
1605     if (!RC.Allocatable)
1606       continue;
1607
1608     // Speculatively grow the RegUnitSets to hold the new set.
1609     RegUnitSets.resize(RegUnitSets.size() + 1);
1610     RegUnitSets.back().Name = RC.getName();
1611
1612     // Compute a sorted list of units in this class.
1613     RC.buildRegUnitSet(RegUnitSets.back().Units);
1614
1615     // Find an existing RegUnitSet.
1616     std::vector<RegUnitSet>::const_iterator SetI =
1617       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1618     if (SetI != std::prev(RegUnitSets.end()))
1619       RegUnitSets.pop_back();
1620   }
1621
1622   DEBUG(dbgs() << "\nBefore pruning:\n";
1623         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1624              USIdx < USEnd; ++USIdx) {
1625           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1626                  << ":";
1627           for (auto &U : RegUnitSets[USIdx].Units)
1628             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1629           dbgs() << "\n";
1630         });
1631
1632   // Iteratively prune unit sets.
1633   pruneUnitSets();
1634
1635   DEBUG(dbgs() << "\nBefore union:\n";
1636         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1637              USIdx < USEnd; ++USIdx) {
1638           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1639                  << ":";
1640           for (auto &U : RegUnitSets[USIdx].Units)
1641             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1642           dbgs() << "\n";
1643         }
1644         dbgs() << "\nUnion sets:\n");
1645
1646   // Iterate over all unit sets, including new ones added by this loop.
1647   unsigned NumRegUnitSubSets = RegUnitSets.size();
1648   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1649     // In theory, this is combinatorial. In practice, it needs to be bounded
1650     // by a small number of sets for regpressure to be efficient.
1651     // If the assert is hit, we need to implement pruning.
1652     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1653
1654     // Compare new sets with all original classes.
1655     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1656          SearchIdx != EndIdx; ++SearchIdx) {
1657       std::set<unsigned> Intersection;
1658       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1659                             RegUnitSets[Idx].Units.end(),
1660                             RegUnitSets[SearchIdx].Units.begin(),
1661                             RegUnitSets[SearchIdx].Units.end(),
1662                             std::inserter(Intersection, Intersection.begin()));
1663       if (Intersection.empty())
1664         continue;
1665
1666       // Speculatively grow the RegUnitSets to hold the new set.
1667       RegUnitSets.resize(RegUnitSets.size() + 1);
1668       RegUnitSets.back().Name =
1669         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1670
1671       std::set_union(RegUnitSets[Idx].Units.begin(),
1672                      RegUnitSets[Idx].Units.end(),
1673                      RegUnitSets[SearchIdx].Units.begin(),
1674                      RegUnitSets[SearchIdx].Units.end(),
1675                      std::inserter(RegUnitSets.back().Units,
1676                                    RegUnitSets.back().Units.begin()));
1677
1678       // Find an existing RegUnitSet, or add the union to the unique sets.
1679       std::vector<RegUnitSet>::const_iterator SetI =
1680         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1681       if (SetI != std::prev(RegUnitSets.end()))
1682         RegUnitSets.pop_back();
1683       else {
1684         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1685               << " " << RegUnitSets.back().Name << ":";
1686               for (auto &U : RegUnitSets.back().Units)
1687                 dbgs() << " " << RegUnits[U].Roots[0]->getName();
1688               dbgs() << "\n";);
1689       }
1690     }
1691   }
1692
1693   // Iteratively prune unit sets after inferring supersets.
1694   pruneUnitSets();
1695
1696   DEBUG(dbgs() << "\n";
1697         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1698              USIdx < USEnd; ++USIdx) {
1699           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1700                  << ":";
1701           for (auto &U : RegUnitSets[USIdx].Units)
1702             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1703           dbgs() << "\n";
1704         });
1705
1706   // For each register class, list the UnitSets that are supersets.
1707   RegClassUnitSets.resize(RegClasses.size());
1708   int RCIdx = -1;
1709   for (auto &RC : RegClasses) {
1710     ++RCIdx;
1711     if (!RC.Allocatable)
1712       continue;
1713
1714     // Recompute the sorted list of units in this class.
1715     std::vector<unsigned> RCRegUnits;
1716     RC.buildRegUnitSet(RCRegUnits);
1717
1718     // Don't increase pressure for unallocatable regclasses.
1719     if (RCRegUnits.empty())
1720       continue;
1721
1722     DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1723           for (auto &U : RCRegUnits)
1724             dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
1725           dbgs() << "\n  UnitSetIDs:");
1726
1727     // Find all supersets.
1728     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1729          USIdx != USEnd; ++USIdx) {
1730       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1731         DEBUG(dbgs() << " " << USIdx);
1732         RegClassUnitSets[RCIdx].push_back(USIdx);
1733       }
1734     }
1735     DEBUG(dbgs() << "\n");
1736     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1737   }
1738
1739   // For each register unit, ensure that we have the list of UnitSets that
1740   // contain the unit. Normally, this matches an existing list of UnitSets for a
1741   // register class. If not, we create a new entry in RegClassUnitSets as a
1742   // "fake" register class.
1743   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1744        UnitIdx < UnitEnd; ++UnitIdx) {
1745     std::vector<unsigned> RUSets;
1746     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1747       RegUnitSet &RUSet = RegUnitSets[i];
1748       if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1749           == RUSet.Units.end())
1750         continue;
1751       RUSets.push_back(i);
1752     }
1753     unsigned RCUnitSetsIdx = 0;
1754     for (unsigned e = RegClassUnitSets.size();
1755          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1756       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1757         break;
1758       }
1759     }
1760     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1761     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1762       // Create a new list of UnitSets as a "fake" register class.
1763       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1764       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1765     }
1766   }
1767 }
1768
1769 void CodeGenRegBank::computeRegUnitLaneMasks() {
1770   for (auto &Register : Registers) {
1771     // Create an initial lane mask for all register units.
1772     const auto &RegUnits = Register.getRegUnits();
1773     CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0);
1774     // Iterate through SubRegisters.
1775     typedef CodeGenRegister::SubRegMap SubRegMap;
1776     const SubRegMap &SubRegs = Register.getSubRegs();
1777     for (SubRegMap::const_iterator S = SubRegs.begin(),
1778          SE = SubRegs.end(); S != SE; ++S) {
1779       CodeGenRegister *SubReg = S->second;
1780       // Ignore non-leaf subregisters, their lane masks are fully covered by
1781       // the leaf subregisters anyway.
1782       if (SubReg->getSubRegs().size() != 0)
1783         continue;
1784       CodeGenSubRegIndex *SubRegIndex = S->first;
1785       const CodeGenRegister *SubRegister = S->second;
1786       unsigned LaneMask = SubRegIndex->LaneMask;
1787       // Distribute LaneMask to Register Units touched.
1788       for (unsigned SUI : SubRegister->getRegUnits()) {
1789         bool Found = false;
1790         unsigned u = 0;
1791         for (unsigned RU : RegUnits) {
1792           if (SUI == RU) {
1793             RegUnitLaneMasks[u] |= LaneMask;
1794             assert(!Found);
1795             Found = true;
1796           }
1797           ++u;
1798         }
1799         (void)Found;
1800         assert(Found);
1801       }
1802     }
1803     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
1804   }
1805 }
1806
1807 void CodeGenRegBank::computeDerivedInfo() {
1808   computeComposites();
1809   computeSubRegLaneMasks();
1810
1811   // Compute a weight for each register unit created during getSubRegs.
1812   // This may create adopted register units (with unit # >= NumNativeRegUnits).
1813   computeRegUnitWeights();
1814
1815   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1816   // supersets for the union of overlapping sets.
1817   computeRegUnitSets();
1818
1819   computeRegUnitLaneMasks();
1820
1821   // Compute register class HasDisjunctSubRegs flag.
1822   for (CodeGenRegisterClass &RC : RegClasses) {
1823     RC.HasDisjunctSubRegs = false;
1824     for (const CodeGenRegister *Reg : RC.getMembers())
1825       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
1826   }
1827
1828   // Get the weight of each set.
1829   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1830     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1831
1832   // Find the order of each set.
1833   RegUnitSetOrder.reserve(RegUnitSets.size());
1834   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1835     RegUnitSetOrder.push_back(Idx);
1836
1837   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1838                    [this](unsigned ID1, unsigned ID2) {
1839     return getRegPressureSet(ID1).Units.size() <
1840            getRegPressureSet(ID2).Units.size();
1841   });
1842   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1843     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1844   }
1845 }
1846
1847 //
1848 // Synthesize missing register class intersections.
1849 //
1850 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1851 // returns a maximal register class for all X.
1852 //
1853 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1854   assert(!RegClasses.empty());
1855   // Stash the iterator to the last element so that this loop doesn't visit
1856   // elements added by the getOrCreateSubClass call within it.
1857   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
1858        I != std::next(E); ++I) {
1859     CodeGenRegisterClass *RC1 = RC;
1860     CodeGenRegisterClass *RC2 = &*I;
1861     if (RC1 == RC2)
1862       continue;
1863
1864     // Compute the set intersection of RC1 and RC2.
1865     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
1866     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
1867     CodeGenRegister::Vec Intersection;
1868     std::set_intersection(
1869         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
1870         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
1871
1872     // Skip disjoint class pairs.
1873     if (Intersection.empty())
1874       continue;
1875
1876     // If RC1 and RC2 have different spill sizes or alignments, use the
1877     // larger size for sub-classing.  If they are equal, prefer RC1.
1878     if (RC2->SpillSize > RC1->SpillSize ||
1879         (RC2->SpillSize == RC1->SpillSize &&
1880          RC2->SpillAlignment > RC1->SpillAlignment))
1881       std::swap(RC1, RC2);
1882
1883     getOrCreateSubClass(RC1, &Intersection,
1884                         RC1->getName() + "_and_" + RC2->getName());
1885   }
1886 }
1887
1888 //
1889 // Synthesize missing sub-classes for getSubClassWithSubReg().
1890 //
1891 // Make sure that the set of registers in RC with a given SubIdx sub-register
1892 // form a register class.  Update RC->SubClassWithSubReg.
1893 //
1894 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1895   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1896   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
1897                    deref<llvm::less>> SubReg2SetMap;
1898
1899   // Compute the set of registers supporting each SubRegIndex.
1900   SubReg2SetMap SRSets;
1901   for (const auto R : RC->getMembers()) {
1902     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
1903     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1904          E = SRM.end(); I != E; ++I)
1905       SRSets[I->first].push_back(R);
1906   }
1907
1908   for (auto I : SRSets)
1909     sortAndUniqueRegisters(I.second);
1910
1911   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1912   // numerical order to visit synthetic indices last.
1913   for (const auto &SubIdx : SubRegIndices) {
1914     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
1915     // Unsupported SubRegIndex. Skip it.
1916     if (I == SRSets.end())
1917       continue;
1918     // In most cases, all RC registers support the SubRegIndex.
1919     if (I->second.size() == RC->getMembers().size()) {
1920       RC->setSubClassWithSubReg(&SubIdx, RC);
1921       continue;
1922     }
1923     // This is a real subset.  See if we have a matching class.
1924     CodeGenRegisterClass *SubRC =
1925       getOrCreateSubClass(RC, &I->second,
1926                           RC->getName() + "_with_" + I->first->getName());
1927     RC->setSubClassWithSubReg(&SubIdx, SubRC);
1928   }
1929 }
1930
1931 //
1932 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1933 //
1934 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1935 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1936 //
1937
1938 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1939                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
1940   SmallVector<std::pair<const CodeGenRegister*,
1941                         const CodeGenRegister*>, 16> SSPairs;
1942   BitVector TopoSigs(getNumTopoSigs());
1943
1944   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1945   for (auto &SubIdx : SubRegIndices) {
1946     // Skip indexes that aren't fully supported by RC's registers. This was
1947     // computed by inferSubClassWithSubReg() above which should have been
1948     // called first.
1949     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
1950       continue;
1951
1952     // Build list of (Super, Sub) pairs for this SubIdx.
1953     SSPairs.clear();
1954     TopoSigs.reset();
1955     for (const auto Super : RC->getMembers()) {
1956       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
1957       assert(Sub && "Missing sub-register");
1958       SSPairs.push_back(std::make_pair(Super, Sub));
1959       TopoSigs.set(Sub->getTopoSig());
1960     }
1961
1962     // Iterate over sub-register class candidates.  Ignore classes created by
1963     // this loop. They will never be useful.
1964     // Store an iterator to the last element (not end) so that this loop doesn't
1965     // visit newly inserted elements.
1966     assert(!RegClasses.empty());
1967     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
1968          I != std::next(E); ++I) {
1969       CodeGenRegisterClass &SubRC = *I;
1970       // Topological shortcut: SubRC members have the wrong shape.
1971       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
1972         continue;
1973       // Compute the subset of RC that maps into SubRC.
1974       CodeGenRegister::Vec SubSetVec;
1975       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1976         if (SubRC.contains(SSPairs[i].second))
1977           SubSetVec.push_back(SSPairs[i].first);
1978
1979       if (SubSetVec.empty())
1980         continue;
1981
1982       // RC injects completely into SubRC.
1983       sortAndUniqueRegisters(SubSetVec);
1984       if (SubSetVec.size() == SSPairs.size()) {
1985         SubRC.addSuperRegClass(&SubIdx, RC);
1986         continue;
1987       }
1988
1989       // Only a subset of RC maps into SubRC. Make sure it is represented by a
1990       // class.
1991       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
1992                                           SubIdx.getName() + "_in_" +
1993                                           SubRC.getName());
1994     }
1995   }
1996 }
1997
1998
1999 //
2000 // Infer missing register classes.
2001 //
2002 void CodeGenRegBank::computeInferredRegisterClasses() {
2003   assert(!RegClasses.empty());
2004   // When this function is called, the register classes have not been sorted
2005   // and assigned EnumValues yet.  That means getSubClasses(),
2006   // getSuperClasses(), and hasSubClass() functions are defunct.
2007
2008   // Use one-before-the-end so it doesn't move forward when new elements are
2009   // added.
2010   auto FirstNewRC = std::prev(RegClasses.end());
2011
2012   // Visit all register classes, including the ones being added by the loop.
2013   // Watch out for iterator invalidation here.
2014   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2015     CodeGenRegisterClass *RC = &*I;
2016
2017     // Synthesize answers for getSubClassWithSubReg().
2018     inferSubClassWithSubReg(RC);
2019
2020     // Synthesize answers for getCommonSubClass().
2021     inferCommonSubClass(RC);
2022
2023     // Synthesize answers for getMatchingSuperRegClass().
2024     inferMatchingSuperRegClass(RC);
2025
2026     // New register classes are created while this loop is running, and we need
2027     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2028     // to match old super-register classes with sub-register classes created
2029     // after inferMatchingSuperRegClass was called.  At this point,
2030     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2031     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2032     if (I == FirstNewRC) {
2033       auto NextNewRC = std::prev(RegClasses.end());
2034       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2035            ++I2)
2036         inferMatchingSuperRegClass(&*I2, E2);
2037       FirstNewRC = NextNewRC;
2038     }
2039   }
2040 }
2041
2042 /// getRegisterClassForRegister - Find the register class that contains the
2043 /// specified physical register.  If the register is not in a register class,
2044 /// return null. If the register is in multiple classes, and the classes have a
2045 /// superset-subset relationship and the same set of types, return the
2046 /// superclass.  Otherwise return null.
2047 const CodeGenRegisterClass*
2048 CodeGenRegBank::getRegClassForRegister(Record *R) {
2049   const CodeGenRegister *Reg = getReg(R);
2050   const CodeGenRegisterClass *FoundRC = nullptr;
2051   for (const auto &RC : getRegClasses()) {
2052     if (!RC.contains(Reg))
2053       continue;
2054
2055     // If this is the first class that contains the register,
2056     // make a note of it and go on to the next class.
2057     if (!FoundRC) {
2058       FoundRC = &RC;
2059       continue;
2060     }
2061
2062     // If a register's classes have different types, return null.
2063     if (RC.getValueTypes() != FoundRC->getValueTypes())
2064       return nullptr;
2065
2066     // Check to see if the previously found class that contains
2067     // the register is a subclass of the current class. If so,
2068     // prefer the superclass.
2069     if (RC.hasSubClass(FoundRC)) {
2070       FoundRC = &RC;
2071       continue;
2072     }
2073
2074     // Check to see if the previously found class that contains
2075     // the register is a superclass of the current class. If so,
2076     // prefer the superclass.
2077     if (FoundRC->hasSubClass(&RC))
2078       continue;
2079
2080     // Multiple classes, and neither is a superclass of the other.
2081     // Return null.
2082     return nullptr;
2083   }
2084   return FoundRC;
2085 }
2086
2087 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2088   SetVector<const CodeGenRegister*> Set;
2089
2090   // First add Regs with all sub-registers.
2091   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2092     CodeGenRegister *Reg = getReg(Regs[i]);
2093     if (Set.insert(Reg))
2094       // Reg is new, add all sub-registers.
2095       // The pre-ordering is not important here.
2096       Reg->addSubRegsPreOrder(Set, *this);
2097   }
2098
2099   // Second, find all super-registers that are completely covered by the set.
2100   for (unsigned i = 0; i != Set.size(); ++i) {
2101     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2102     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2103       const CodeGenRegister *Super = SR[j];
2104       if (!Super->CoveredBySubRegs || Set.count(Super))
2105         continue;
2106       // This new super-register is covered by its sub-registers.
2107       bool AllSubsInSet = true;
2108       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2109       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2110              E = SRM.end(); I != E; ++I)
2111         if (!Set.count(I->second)) {
2112           AllSubsInSet = false;
2113           break;
2114         }
2115       // All sub-registers in Set, add Super as well.
2116       // We will visit Super later to recheck its super-registers.
2117       if (AllSubsInSet)
2118         Set.insert(Super);
2119     }
2120   }
2121
2122   // Convert to BitVector.
2123   BitVector BV(Registers.size() + 1);
2124   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2125     BV.set(Set[i]->EnumValue);
2126   return BV;
2127 }