Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / utils / TableGen / CodeGenDAGPatterns.cpp
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/TableGen/Error.h"
23 #include "llvm/TableGen/Record.h"
24 #include <algorithm>
25 #include <cstdio>
26 #include <set>
27 using namespace llvm;
28
29 #define DEBUG_TYPE "dag-patterns"
30
31 //===----------------------------------------------------------------------===//
32 //  EEVT::TypeSet Implementation
33 //===----------------------------------------------------------------------===//
34
35 static inline bool isInteger(MVT::SimpleValueType VT) {
36   return MVT(VT).isInteger();
37 }
38 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
39   return MVT(VT).isFloatingPoint();
40 }
41 static inline bool isVector(MVT::SimpleValueType VT) {
42   return MVT(VT).isVector();
43 }
44 static inline bool isScalar(MVT::SimpleValueType VT) {
45   return !MVT(VT).isVector();
46 }
47
48 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
49   if (VT == MVT::iAny)
50     EnforceInteger(TP);
51   else if (VT == MVT::fAny)
52     EnforceFloatingPoint(TP);
53   else if (VT == MVT::vAny)
54     EnforceVector(TP);
55   else {
56     assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
57             VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!");
58     TypeVec.push_back(VT);
59   }
60 }
61
62
63 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
64   assert(!VTList.empty() && "empty list?");
65   TypeVec.append(VTList.begin(), VTList.end());
66
67   if (!VTList.empty())
68     assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
69            VTList[0] != MVT::fAny);
70
71   // Verify no duplicates.
72   array_pod_sort(TypeVec.begin(), TypeVec.end());
73   assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
74 }
75
76 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
77 /// on completely unknown type sets.
78 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
79                                           bool (*Pred)(MVT::SimpleValueType),
80                                           const char *PredicateName) {
81   assert(isCompletelyUnknown());
82   ArrayRef<MVT::SimpleValueType> LegalTypes =
83     TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
84
85   if (TP.hasError())
86     return false;
87
88   for (MVT::SimpleValueType VT : LegalTypes)
89     if (!Pred || Pred(VT))
90       TypeVec.push_back(VT);
91
92   // If we have nothing that matches the predicate, bail out.
93   if (TypeVec.empty()) {
94     TP.error("Type inference contradiction found, no " +
95              std::string(PredicateName) + " types found");
96     return false;
97   }
98   // No need to sort with one element.
99   if (TypeVec.size() == 1) return true;
100
101   // Remove duplicates.
102   array_pod_sort(TypeVec.begin(), TypeVec.end());
103   TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
104
105   return true;
106 }
107
108 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
109 /// integer value type.
110 bool EEVT::TypeSet::hasIntegerTypes() const {
111   return std::any_of(TypeVec.begin(), TypeVec.end(), isInteger);
112 }
113
114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115 /// a floating point value type.
116 bool EEVT::TypeSet::hasFloatingPointTypes() const {
117   return std::any_of(TypeVec.begin(), TypeVec.end(), isFloatingPoint);
118 }
119
120 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type.
121 bool EEVT::TypeSet::hasScalarTypes() const {
122   return std::any_of(TypeVec.begin(), TypeVec.end(), isScalar);
123 }
124
125 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
126 /// value type.
127 bool EEVT::TypeSet::hasVectorTypes() const {
128   return std::any_of(TypeVec.begin(), TypeVec.end(), isVector);
129 }
130
131
132 std::string EEVT::TypeSet::getName() const {
133   if (TypeVec.empty()) return "<empty>";
134
135   std::string Result;
136
137   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
138     std::string VTName = llvm::getEnumName(TypeVec[i]);
139     // Strip off MVT:: prefix if present.
140     if (VTName.substr(0,5) == "MVT::")
141       VTName = VTName.substr(5);
142     if (i) Result += ':';
143     Result += VTName;
144   }
145
146   if (TypeVec.size() == 1)
147     return Result;
148   return "{" + Result + "}";
149 }
150
151 /// MergeInTypeInfo - This merges in type information from the specified
152 /// argument.  If 'this' changes, it returns true.  If the two types are
153 /// contradictory (e.g. merge f32 into i32) then this flags an error.
154 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
155   if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
156     return false;
157
158   if (isCompletelyUnknown()) {
159     *this = InVT;
160     return true;
161   }
162
163   assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns");
164
165   // Handle the abstract cases, seeing if we can resolve them better.
166   switch (TypeVec[0]) {
167   default: break;
168   case MVT::iPTR:
169   case MVT::iPTRAny:
170     if (InVT.hasIntegerTypes()) {
171       EEVT::TypeSet InCopy(InVT);
172       InCopy.EnforceInteger(TP);
173       InCopy.EnforceScalar(TP);
174
175       if (InCopy.isConcrete()) {
176         // If the RHS has one integer type, upgrade iPTR to i32.
177         TypeVec[0] = InVT.TypeVec[0];
178         return true;
179       }
180
181       // If the input has multiple scalar integers, this doesn't add any info.
182       if (!InCopy.isCompletelyUnknown())
183         return false;
184     }
185     break;
186   }
187
188   // If the input constraint is iAny/iPTR and this is an integer type list,
189   // remove non-integer types from the list.
190   if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
191       hasIntegerTypes()) {
192     bool MadeChange = EnforceInteger(TP);
193
194     // If we're merging in iPTR/iPTRAny and the node currently has a list of
195     // multiple different integer types, replace them with a single iPTR.
196     if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
197         TypeVec.size() != 1) {
198       TypeVec.assign(1, InVT.TypeVec[0]);
199       MadeChange = true;
200     }
201
202     return MadeChange;
203   }
204
205   // If this is a type list and the RHS is a typelist as well, eliminate entries
206   // from this list that aren't in the other one.
207   TypeSet InputSet(*this);
208
209   TypeVec.clear();
210   std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(),
211                         InVT.TypeVec.begin(), InVT.TypeVec.end(),
212                         std::back_inserter(TypeVec));
213
214   // If the intersection is the same size as the original set then we're done.
215   if (TypeVec.size() == InputSet.TypeVec.size())
216     return false;
217
218   // If we removed all of our types, we have a type contradiction.
219   if (!TypeVec.empty())
220     return true;
221
222   // FIXME: Really want an SMLoc here!
223   TP.error("Type inference contradiction found, merging '" +
224            InVT.getName() + "' into '" + InputSet.getName() + "'");
225   return false;
226 }
227
228 /// EnforceInteger - Remove all non-integer types from this set.
229 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
230   if (TP.hasError())
231     return false;
232   // If we know nothing, then get the full set.
233   if (TypeVec.empty())
234     return FillWithPossibleTypes(TP, isInteger, "integer");
235
236   if (!hasFloatingPointTypes())
237     return false;
238
239   TypeSet InputSet(*this);
240
241   // Filter out all the fp types.
242   TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
243                                std::not1(std::ptr_fun(isInteger))),
244                 TypeVec.end());
245
246   if (TypeVec.empty()) {
247     TP.error("Type inference contradiction found, '" +
248              InputSet.getName() + "' needs to be integer");
249     return false;
250   }
251   return true;
252 }
253
254 /// EnforceFloatingPoint - Remove all integer types from this set.
255 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
256   if (TP.hasError())
257     return false;
258   // If we know nothing, then get the full set.
259   if (TypeVec.empty())
260     return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
261
262   if (!hasIntegerTypes())
263     return false;
264
265   TypeSet InputSet(*this);
266
267   // Filter out all the integer types.
268   TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
269                                std::not1(std::ptr_fun(isFloatingPoint))),
270                 TypeVec.end());
271
272   if (TypeVec.empty()) {
273     TP.error("Type inference contradiction found, '" +
274              InputSet.getName() + "' needs to be floating point");
275     return false;
276   }
277   return true;
278 }
279
280 /// EnforceScalar - Remove all vector types from this.
281 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
282   if (TP.hasError())
283     return false;
284
285   // If we know nothing, then get the full set.
286   if (TypeVec.empty())
287     return FillWithPossibleTypes(TP, isScalar, "scalar");
288
289   if (!hasVectorTypes())
290     return false;
291
292   TypeSet InputSet(*this);
293
294   // Filter out all the vector types.
295   TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
296                                std::not1(std::ptr_fun(isScalar))),
297                 TypeVec.end());
298
299   if (TypeVec.empty()) {
300     TP.error("Type inference contradiction found, '" +
301              InputSet.getName() + "' needs to be scalar");
302     return false;
303   }
304   return true;
305 }
306
307 /// EnforceVector - Remove all vector types from this.
308 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
309   if (TP.hasError())
310     return false;
311
312   // If we know nothing, then get the full set.
313   if (TypeVec.empty())
314     return FillWithPossibleTypes(TP, isVector, "vector");
315
316   TypeSet InputSet(*this);
317   bool MadeChange = false;
318
319   // Filter out all the scalar types.
320   TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
321                                std::not1(std::ptr_fun(isVector))),
322                 TypeVec.end());
323
324   if (TypeVec.empty()) {
325     TP.error("Type inference contradiction found, '" +
326              InputSet.getName() + "' needs to be a vector");
327     return false;
328   }
329   return MadeChange;
330 }
331
332
333
334 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors
335 /// this should be based on the element type. Update this and other based on
336 /// this information.
337 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
338   if (TP.hasError())
339     return false;
340
341   // Both operands must be integer or FP, but we don't care which.
342   bool MadeChange = false;
343
344   if (isCompletelyUnknown())
345     MadeChange = FillWithPossibleTypes(TP);
346
347   if (Other.isCompletelyUnknown())
348     MadeChange = Other.FillWithPossibleTypes(TP);
349
350   // If one side is known to be integer or known to be FP but the other side has
351   // no information, get at least the type integrality info in there.
352   if (!hasFloatingPointTypes())
353     MadeChange |= Other.EnforceInteger(TP);
354   else if (!hasIntegerTypes())
355     MadeChange |= Other.EnforceFloatingPoint(TP);
356   if (!Other.hasFloatingPointTypes())
357     MadeChange |= EnforceInteger(TP);
358   else if (!Other.hasIntegerTypes())
359     MadeChange |= EnforceFloatingPoint(TP);
360
361   assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
362          "Should have a type list now");
363
364   // If one contains vectors but the other doesn't pull vectors out.
365   if (!hasVectorTypes())
366     MadeChange |= Other.EnforceScalar(TP);
367   else if (!hasScalarTypes())
368     MadeChange |= Other.EnforceVector(TP);
369   if (!Other.hasVectorTypes())
370     MadeChange |= EnforceScalar(TP);
371   else if (!Other.hasScalarTypes())
372     MadeChange |= EnforceVector(TP);
373
374   // This code does not currently handle nodes which have multiple types,
375   // where some types are integer, and some are fp.  Assert that this is not
376   // the case.
377   assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
378          !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
379          "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
380
381   if (TP.hasError())
382     return false;
383
384   // Okay, find the smallest type from current set and remove anything the
385   // same or smaller from the other set. We need to ensure that the scalar
386   // type size is smaller than the scalar size of the smallest type. For
387   // vectors, we also need to make sure that the total size is no larger than
388   // the size of the smallest type.
389   {
390     TypeSet InputSet(Other);
391     MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(),
392       [](MVT A, MVT B) {
393         return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
394                (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
395                 A.getSizeInBits() < B.getSizeInBits());
396       });
397
398     auto I = std::remove_if(Other.TypeVec.begin(), Other.TypeVec.end(),
399       [Smallest](MVT OtherVT) {
400         // Don't compare vector and non-vector types.
401         if (OtherVT.isVector() != Smallest.isVector())
402           return false;
403         // The getSizeInBits() check here is only needed for vectors, but is
404         // a subset of the scalar check for scalars so no need to qualify.
405         return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits()||
406                OtherVT.getSizeInBits() < Smallest.getSizeInBits();
407       });
408     MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types.
409     Other.TypeVec.erase(I, Other.TypeVec.end());
410
411     if (Other.TypeVec.empty()) {
412       TP.error("Type inference contradiction found, '" + InputSet.getName() +
413                "' has nothing larger than '" + getName() +"'!");
414       return false;
415     }
416   }
417
418   // Okay, find the largest type from the other set and remove anything the
419   // same or smaller from the current set. We need to ensure that the scalar
420   // type size is larger than the scalar size of the largest type. For
421   // vectors, we also need to make sure that the total size is no smaller than
422   // the size of the largest type.
423   {
424     TypeSet InputSet(*this);
425     MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(),
426       [](MVT A, MVT B) {
427         return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
428                (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
429                 A.getSizeInBits() < B.getSizeInBits());
430       });
431     auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
432       [Largest](MVT OtherVT) {
433         // Don't compare vector and non-vector types.
434         if (OtherVT.isVector() != Largest.isVector())
435           return false;
436         return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() ||
437                OtherVT.getSizeInBits() > Largest.getSizeInBits();
438       });
439     MadeChange |= I != TypeVec.end(); // If we're about to remove types.
440     TypeVec.erase(I, TypeVec.end());
441
442     if (TypeVec.empty()) {
443       TP.error("Type inference contradiction found, '" + InputSet.getName() +
444                "' has nothing smaller than '" + Other.getName() +"'!");
445       return false;
446     }
447   }
448
449   return MadeChange;
450 }
451
452 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
453 /// whose element is specified by VTOperand.
454 bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT,
455                                            TreePattern &TP) {
456   bool MadeChange = false;
457
458   MadeChange |= EnforceVector(TP);
459
460   TypeSet InputSet(*this);
461
462   // Filter out all the types which don't have the right element type.
463   auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
464     [VT](MVT VVT) {
465       return VVT.getVectorElementType().SimpleTy != VT;
466     });
467   MadeChange |= I != TypeVec.end();
468   TypeVec.erase(I, TypeVec.end());
469
470   if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
471     TP.error("Type inference contradiction found, forcing '" +
472              InputSet.getName() + "' to have a vector element of type " +
473              getEnumName(VT));
474     return false;
475   }
476
477   return MadeChange;
478 }
479
480 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
481 /// whose element is specified by VTOperand.
482 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
483                                            TreePattern &TP) {
484   if (TP.hasError())
485     return false;
486
487   // "This" must be a vector and "VTOperand" must be a scalar.
488   bool MadeChange = false;
489   MadeChange |= EnforceVector(TP);
490   MadeChange |= VTOperand.EnforceScalar(TP);
491
492   // If we know the vector type, it forces the scalar to agree.
493   if (isConcrete()) {
494     MVT IVT = getConcrete();
495     IVT = IVT.getVectorElementType();
496     return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
497   }
498
499   // If the scalar type is known, filter out vector types whose element types
500   // disagree.
501   if (!VTOperand.isConcrete())
502     return MadeChange;
503
504   MVT::SimpleValueType VT = VTOperand.getConcrete();
505
506   MadeChange |= EnforceVectorEltTypeIs(VT, TP);
507
508   return MadeChange;
509 }
510
511 /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a
512 /// vector type specified by VTOperand.
513 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
514                                                  TreePattern &TP) {
515   if (TP.hasError())
516     return false;
517
518   // "This" must be a vector and "VTOperand" must be a vector.
519   bool MadeChange = false;
520   MadeChange |= EnforceVector(TP);
521   MadeChange |= VTOperand.EnforceVector(TP);
522
523   // If one side is known to be integer or known to be FP but the other side has
524   // no information, get at least the type integrality info in there.
525   if (!hasFloatingPointTypes())
526     MadeChange |= VTOperand.EnforceInteger(TP);
527   else if (!hasIntegerTypes())
528     MadeChange |= VTOperand.EnforceFloatingPoint(TP);
529   if (!VTOperand.hasFloatingPointTypes())
530     MadeChange |= EnforceInteger(TP);
531   else if (!VTOperand.hasIntegerTypes())
532     MadeChange |= EnforceFloatingPoint(TP);
533
534   assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() &&
535          "Should have a type list now");
536
537   // If we know the vector type, it forces the scalar types to agree.
538   // Also force one vector to have more elements than the other.
539   if (isConcrete()) {
540     MVT IVT = getConcrete();
541     unsigned NumElems = IVT.getVectorNumElements();
542     IVT = IVT.getVectorElementType();
543
544     EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
545     MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
546
547     // Only keep types that have less elements than VTOperand.
548     TypeSet InputSet(VTOperand);
549
550     auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
551                             [NumElems](MVT VVT) {
552                               return VVT.getVectorNumElements() >= NumElems;
553                             });
554     MadeChange |= I != VTOperand.TypeVec.end();
555     VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
556
557     if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
558       TP.error("Type inference contradiction found, forcing '" +
559                InputSet.getName() + "' to have less vector elements than '" +
560                getName() + "'");
561       return false;
562     }
563   } else if (VTOperand.isConcrete()) {
564     MVT IVT = VTOperand.getConcrete();
565     unsigned NumElems = IVT.getVectorNumElements();
566     IVT = IVT.getVectorElementType();
567
568     EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
569     MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
570
571     // Only keep types that have more elements than 'this'.
572     TypeSet InputSet(*this);
573
574     auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
575                             [NumElems](MVT VVT) {
576                               return VVT.getVectorNumElements() <= NumElems;
577                             });
578     MadeChange |= I != TypeVec.end();
579     TypeVec.erase(I, TypeVec.end());
580
581     if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
582       TP.error("Type inference contradiction found, forcing '" +
583                InputSet.getName() + "' to have more vector elements than '" +
584                VTOperand.getName() + "'");
585       return false;
586     }
587   }
588
589   return MadeChange;
590 }
591
592 /// EnforceVectorSameNumElts - 'this' is now constrained to
593 /// be a vector with same num elements as VTOperand.
594 bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand,
595                                              TreePattern &TP) {
596   if (TP.hasError())
597     return false;
598
599   // "This" must be a vector and "VTOperand" must be a vector.
600   bool MadeChange = false;
601   MadeChange |= EnforceVector(TP);
602   MadeChange |= VTOperand.EnforceVector(TP);
603
604   // If we know one of the vector types, it forces the other type to agree.
605   if (isConcrete()) {
606     MVT IVT = getConcrete();
607     unsigned NumElems = IVT.getVectorNumElements();
608
609     // Only keep types that have same elements as 'this'.
610     TypeSet InputSet(VTOperand);
611
612     auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
613                             [NumElems](MVT VVT) {
614                               return VVT.getVectorNumElements() != NumElems;
615                             });
616     MadeChange |= I != VTOperand.TypeVec.end();
617     VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
618
619     if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
620       TP.error("Type inference contradiction found, forcing '" +
621                InputSet.getName() + "' to have same number elements as '" +
622                getName() + "'");
623       return false;
624     }
625   } else if (VTOperand.isConcrete()) {
626     MVT IVT = VTOperand.getConcrete();
627     unsigned NumElems = IVT.getVectorNumElements();
628
629     // Only keep types that have same elements as VTOperand.
630     TypeSet InputSet(*this);
631
632     auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
633                             [NumElems](MVT VVT) {
634                               return VVT.getVectorNumElements() != NumElems;
635                             });
636     MadeChange |= I != TypeVec.end();
637     TypeVec.erase(I, TypeVec.end());
638
639     if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
640       TP.error("Type inference contradiction found, forcing '" +
641                InputSet.getName() + "' to have same number elements than '" +
642                VTOperand.getName() + "'");
643       return false;
644     }
645   }
646
647   return MadeChange;
648 }
649
650 /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand.
651 bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand,
652                                     TreePattern &TP) {
653   if (TP.hasError())
654     return false;
655
656   bool MadeChange = false;
657
658   // If we know one of the types, it forces the other type agree.
659   if (isConcrete()) {
660     MVT IVT = getConcrete();
661     unsigned Size = IVT.getSizeInBits();
662
663     // Only keep types that have the same size as 'this'.
664     TypeSet InputSet(VTOperand);
665
666     auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
667                             [&](MVT VT) {
668                               return VT.getSizeInBits() != Size;
669                             });
670     MadeChange |= I != VTOperand.TypeVec.end();
671     VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
672
673     if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
674       TP.error("Type inference contradiction found, forcing '" +
675                InputSet.getName() + "' to have same size as '" +
676                getName() + "'");
677       return false;
678     }
679   } else if (VTOperand.isConcrete()) {
680     MVT IVT = VTOperand.getConcrete();
681     unsigned Size = IVT.getSizeInBits();
682
683     // Only keep types that have the same size as VTOperand.
684     TypeSet InputSet(*this);
685
686     auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
687                             [&](MVT VT) {
688                               return VT.getSizeInBits() != Size;
689                             });
690     MadeChange |= I != TypeVec.end();
691     TypeVec.erase(I, TypeVec.end());
692
693     if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
694       TP.error("Type inference contradiction found, forcing '" +
695                InputSet.getName() + "' to have same size as '" +
696                VTOperand.getName() + "'");
697       return false;
698     }
699   }
700
701   return MadeChange;
702 }
703
704 //===----------------------------------------------------------------------===//
705 // Helpers for working with extended types.
706
707 /// Dependent variable map for CodeGenDAGPattern variant generation
708 typedef std::map<std::string, int> DepVarMap;
709
710 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
711   if (N->isLeaf()) {
712     if (isa<DefInit>(N->getLeafValue()))
713       DepMap[N->getName()]++;
714   } else {
715     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
716       FindDepVarsOf(N->getChild(i), DepMap);
717   }
718 }
719   
720 /// Find dependent variables within child patterns
721 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
722   DepVarMap depcounts;
723   FindDepVarsOf(N, depcounts);
724   for (const std::pair<std::string, int> &Pair : depcounts) {
725     if (Pair.second > 1)
726       DepVars.insert(Pair.first);
727   }
728 }
729
730 #ifndef NDEBUG
731 /// Dump the dependent variable set:
732 static void DumpDepVars(MultipleUseVarSet &DepVars) {
733   if (DepVars.empty()) {
734     DEBUG(errs() << "<empty set>");
735   } else {
736     DEBUG(errs() << "[ ");
737     for (const std::string &DepVar : DepVars) {
738       DEBUG(errs() << DepVar << " ");
739     }
740     DEBUG(errs() << "]");
741   }
742 }
743 #endif
744
745
746 //===----------------------------------------------------------------------===//
747 // TreePredicateFn Implementation
748 //===----------------------------------------------------------------------===//
749
750 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
751 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
752   assert((getPredCode().empty() || getImmCode().empty()) &&
753         ".td file corrupt: can't have a node predicate *and* an imm predicate");
754 }
755
756 std::string TreePredicateFn::getPredCode() const {
757   return PatFragRec->getRecord()->getValueAsString("PredicateCode");
758 }
759
760 std::string TreePredicateFn::getImmCode() const {
761   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
762 }
763
764
765 /// isAlwaysTrue - Return true if this is a noop predicate.
766 bool TreePredicateFn::isAlwaysTrue() const {
767   return getPredCode().empty() && getImmCode().empty();
768 }
769
770 /// Return the name to use in the generated code to reference this, this is
771 /// "Predicate_foo" if from a pattern fragment "foo".
772 std::string TreePredicateFn::getFnName() const {
773   return "Predicate_" + PatFragRec->getRecord()->getName();
774 }
775
776 /// getCodeToRunOnSDNode - Return the code for the function body that
777 /// evaluates this predicate.  The argument is expected to be in "Node",
778 /// not N.  This handles casting and conversion to a concrete node type as
779 /// appropriate.
780 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
781   // Handle immediate predicates first.
782   std::string ImmCode = getImmCode();
783   if (!ImmCode.empty()) {
784     std::string Result =
785       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
786     return Result + ImmCode;
787   }
788   
789   // Handle arbitrary node predicates.
790   assert(!getPredCode().empty() && "Don't have any predicate code!");
791   std::string ClassName;
792   if (PatFragRec->getOnlyTree()->isLeaf())
793     ClassName = "SDNode";
794   else {
795     Record *Op = PatFragRec->getOnlyTree()->getOperator();
796     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
797   }
798   std::string Result;
799   if (ClassName == "SDNode")
800     Result = "    SDNode *N = Node;\n";
801   else
802     Result = "    auto *N = cast<" + ClassName + ">(Node);\n";
803   
804   return Result + getPredCode();
805 }
806
807 //===----------------------------------------------------------------------===//
808 // PatternToMatch implementation
809 //
810
811
812 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
813 /// patterns before small ones.  This is used to determine the size of a
814 /// pattern.
815 static unsigned getPatternSize(const TreePatternNode *P,
816                                const CodeGenDAGPatterns &CGP) {
817   unsigned Size = 3;  // The node itself.
818   // If the root node is a ConstantSDNode, increases its size.
819   // e.g. (set R32:$dst, 0).
820   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
821     Size += 2;
822
823   // FIXME: This is a hack to statically increase the priority of patterns
824   // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
825   // Later we can allow complexity / cost for each pattern to be (optionally)
826   // specified. To get best possible pattern match we'll need to dynamically
827   // calculate the complexity of all patterns a dag can potentially map to.
828   const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
829   if (AM) {
830     Size += AM->getNumOperands() * 3;
831
832     // We don't want to count any children twice, so return early.
833     return Size;
834   }
835
836   // If this node has some predicate function that must match, it adds to the
837   // complexity of this node.
838   if (!P->getPredicateFns().empty())
839     ++Size;
840
841   // Count children in the count if they are also nodes.
842   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
843     TreePatternNode *Child = P->getChild(i);
844     if (!Child->isLeaf() && Child->getNumTypes() &&
845         Child->getType(0) != MVT::Other)
846       Size += getPatternSize(Child, CGP);
847     else if (Child->isLeaf()) {
848       if (isa<IntInit>(Child->getLeafValue()))
849         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
850       else if (Child->getComplexPatternInfo(CGP))
851         Size += getPatternSize(Child, CGP);
852       else if (!Child->getPredicateFns().empty())
853         ++Size;
854     }
855   }
856
857   return Size;
858 }
859
860 /// Compute the complexity metric for the input pattern.  This roughly
861 /// corresponds to the number of nodes that are covered.
862 int PatternToMatch::
863 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
864   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
865 }
866
867
868 /// getPredicateCheck - Return a single string containing all of this
869 /// pattern's predicates concatenated with "&&" operators.
870 ///
871 std::string PatternToMatch::getPredicateCheck() const {
872   SmallVector<Record *, 4> PredicateRecs;
873   for (Init *I : Predicates->getValues()) {
874     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
875       Record *Def = Pred->getDef();
876       if (!Def->isSubClassOf("Predicate")) {
877 #ifndef NDEBUG
878         Def->dump();
879 #endif
880         llvm_unreachable("Unknown predicate type!");
881       }
882       PredicateRecs.push_back(Def);
883     }
884   }
885   // Sort so that different orders get canonicalized to the same string.
886   std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord());
887
888   SmallString<128> PredicateCheck;
889   for (Record *Pred : PredicateRecs) {
890     if (!PredicateCheck.empty())
891       PredicateCheck += " && ";
892     PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")";
893   }
894
895   return PredicateCheck.str();
896 }
897
898 //===----------------------------------------------------------------------===//
899 // SDTypeConstraint implementation
900 //
901
902 SDTypeConstraint::SDTypeConstraint(Record *R) {
903   OperandNo = R->getValueAsInt("OperandNum");
904
905   if (R->isSubClassOf("SDTCisVT")) {
906     ConstraintType = SDTCisVT;
907     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
908     if (x.SDTCisVT_Info.VT == MVT::isVoid)
909       PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
910
911   } else if (R->isSubClassOf("SDTCisPtrTy")) {
912     ConstraintType = SDTCisPtrTy;
913   } else if (R->isSubClassOf("SDTCisInt")) {
914     ConstraintType = SDTCisInt;
915   } else if (R->isSubClassOf("SDTCisFP")) {
916     ConstraintType = SDTCisFP;
917   } else if (R->isSubClassOf("SDTCisVec")) {
918     ConstraintType = SDTCisVec;
919   } else if (R->isSubClassOf("SDTCisSameAs")) {
920     ConstraintType = SDTCisSameAs;
921     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
922   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
923     ConstraintType = SDTCisVTSmallerThanOp;
924     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
925       R->getValueAsInt("OtherOperandNum");
926   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
927     ConstraintType = SDTCisOpSmallerThanOp;
928     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
929       R->getValueAsInt("BigOperandNum");
930   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
931     ConstraintType = SDTCisEltOfVec;
932     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
933   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
934     ConstraintType = SDTCisSubVecOfVec;
935     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
936       R->getValueAsInt("OtherOpNum");
937   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
938     ConstraintType = SDTCVecEltisVT;
939     x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
940     if (MVT(x.SDTCVecEltisVT_Info.VT).isVector())
941       PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT");
942     if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() &&
943         !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint())
944       PrintFatalError(R->getLoc(), "Must use integer or floating point type "
945                                    "as SDTCVecEltisVT");
946   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
947     ConstraintType = SDTCisSameNumEltsAs;
948     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
949       R->getValueAsInt("OtherOperandNum");
950   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
951     ConstraintType = SDTCisSameSizeAs;
952     x.SDTCisSameSizeAs_Info.OtherOperandNum =
953       R->getValueAsInt("OtherOperandNum");
954   } else {
955     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
956   }
957 }
958
959 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
960 /// N, and the result number in ResNo.
961 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
962                                       const SDNodeInfo &NodeInfo,
963                                       unsigned &ResNo) {
964   unsigned NumResults = NodeInfo.getNumResults();
965   if (OpNo < NumResults) {
966     ResNo = OpNo;
967     return N;
968   }
969
970   OpNo -= NumResults;
971
972   if (OpNo >= N->getNumChildren()) {
973     std::string S;
974     raw_string_ostream OS(S);
975     OS << "Invalid operand number in type constraint "
976            << (OpNo+NumResults) << " ";
977     N->print(OS);
978     PrintFatalError(OS.str());
979   }
980
981   return N->getChild(OpNo);
982 }
983
984 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
985 /// constraint to the nodes operands.  This returns true if it makes a
986 /// change, false otherwise.  If a type contradiction is found, flag an error.
987 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
988                                            const SDNodeInfo &NodeInfo,
989                                            TreePattern &TP) const {
990   if (TP.hasError())
991     return false;
992
993   unsigned ResNo = 0; // The result number being referenced.
994   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
995
996   switch (ConstraintType) {
997   case SDTCisVT:
998     // Operand must be a particular type.
999     return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
1000   case SDTCisPtrTy:
1001     // Operand must be same as target pointer type.
1002     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1003   case SDTCisInt:
1004     // Require it to be one of the legal integer VTs.
1005     return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
1006   case SDTCisFP:
1007     // Require it to be one of the legal fp VTs.
1008     return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
1009   case SDTCisVec:
1010     // Require it to be one of the legal vector VTs.
1011     return NodeToApply->getExtType(ResNo).EnforceVector(TP);
1012   case SDTCisSameAs: {
1013     unsigned OResNo = 0;
1014     TreePatternNode *OtherNode =
1015       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1016     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1017            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1018   }
1019   case SDTCisVTSmallerThanOp: {
1020     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1021     // have an integer type that is smaller than the VT.
1022     if (!NodeToApply->isLeaf() ||
1023         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1024         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1025                ->isSubClassOf("ValueType")) {
1026       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1027       return false;
1028     }
1029     MVT::SimpleValueType VT =
1030      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
1031
1032     EEVT::TypeSet TypeListTmp(VT, TP);
1033
1034     unsigned OResNo = 0;
1035     TreePatternNode *OtherNode =
1036       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1037                     OResNo);
1038
1039     return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
1040   }
1041   case SDTCisOpSmallerThanOp: {
1042     unsigned BResNo = 0;
1043     TreePatternNode *BigOperand =
1044       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1045                     BResNo);
1046     return NodeToApply->getExtType(ResNo).
1047                   EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
1048   }
1049   case SDTCisEltOfVec: {
1050     unsigned VResNo = 0;
1051     TreePatternNode *VecOperand =
1052       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1053                     VResNo);
1054
1055     // Filter vector types out of VecOperand that don't have the right element
1056     // type.
1057     return VecOperand->getExtType(VResNo).
1058       EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
1059   }
1060   case SDTCisSubVecOfVec: {
1061     unsigned VResNo = 0;
1062     TreePatternNode *BigVecOperand =
1063       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1064                     VResNo);
1065
1066     // Filter vector types out of BigVecOperand that don't have the
1067     // right subvector type.
1068     return BigVecOperand->getExtType(VResNo).
1069       EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
1070   }
1071   case SDTCVecEltisVT: {
1072     return NodeToApply->getExtType(ResNo).
1073       EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP);
1074   }
1075   case SDTCisSameNumEltsAs: {
1076     unsigned OResNo = 0;
1077     TreePatternNode *OtherNode =
1078       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1079                     N, NodeInfo, OResNo);
1080     return OtherNode->getExtType(OResNo).
1081       EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP);
1082   }
1083   case SDTCisSameSizeAs: {
1084     unsigned OResNo = 0;
1085     TreePatternNode *OtherNode =
1086       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1087                     N, NodeInfo, OResNo);
1088     return OtherNode->getExtType(OResNo).
1089       EnforceSameSize(NodeToApply->getExtType(ResNo), TP);
1090   }
1091   }
1092   llvm_unreachable("Invalid ConstraintType!");
1093 }
1094
1095 // Update the node type to match an instruction operand or result as specified
1096 // in the ins or outs lists on the instruction definition. Return true if the
1097 // type was actually changed.
1098 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1099                                              Record *Operand,
1100                                              TreePattern &TP) {
1101   // The 'unknown' operand indicates that types should be inferred from the
1102   // context.
1103   if (Operand->isSubClassOf("unknown_class"))
1104     return false;
1105
1106   // The Operand class specifies a type directly.
1107   if (Operand->isSubClassOf("Operand"))
1108     return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
1109                           TP);
1110
1111   // PointerLikeRegClass has a type that is determined at runtime.
1112   if (Operand->isSubClassOf("PointerLikeRegClass"))
1113     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1114
1115   // Both RegisterClass and RegisterOperand operands derive their types from a
1116   // register class def.
1117   Record *RC = nullptr;
1118   if (Operand->isSubClassOf("RegisterClass"))
1119     RC = Operand;
1120   else if (Operand->isSubClassOf("RegisterOperand"))
1121     RC = Operand->getValueAsDef("RegClass");
1122
1123   assert(RC && "Unknown operand type");
1124   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1125   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1126 }
1127
1128
1129 //===----------------------------------------------------------------------===//
1130 // SDNodeInfo implementation
1131 //
1132 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
1133   EnumName    = R->getValueAsString("Opcode");
1134   SDClassName = R->getValueAsString("SDClass");
1135   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1136   NumResults = TypeProfile->getValueAsInt("NumResults");
1137   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1138
1139   // Parse the properties.
1140   Properties = 0;
1141   for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1142     if (Property->getName() == "SDNPCommutative") {
1143       Properties |= 1 << SDNPCommutative;
1144     } else if (Property->getName() == "SDNPAssociative") {
1145       Properties |= 1 << SDNPAssociative;
1146     } else if (Property->getName() == "SDNPHasChain") {
1147       Properties |= 1 << SDNPHasChain;
1148     } else if (Property->getName() == "SDNPOutGlue") {
1149       Properties |= 1 << SDNPOutGlue;
1150     } else if (Property->getName() == "SDNPInGlue") {
1151       Properties |= 1 << SDNPInGlue;
1152     } else if (Property->getName() == "SDNPOptInGlue") {
1153       Properties |= 1 << SDNPOptInGlue;
1154     } else if (Property->getName() == "SDNPMayStore") {
1155       Properties |= 1 << SDNPMayStore;
1156     } else if (Property->getName() == "SDNPMayLoad") {
1157       Properties |= 1 << SDNPMayLoad;
1158     } else if (Property->getName() == "SDNPSideEffect") {
1159       Properties |= 1 << SDNPSideEffect;
1160     } else if (Property->getName() == "SDNPMemOperand") {
1161       Properties |= 1 << SDNPMemOperand;
1162     } else if (Property->getName() == "SDNPVariadic") {
1163       Properties |= 1 << SDNPVariadic;
1164     } else {
1165       PrintFatalError("Unknown SD Node property '" +
1166                       Property->getName() + "' on node '" +
1167                       R->getName() + "'!");
1168     }
1169   }
1170
1171
1172   // Parse the type constraints.
1173   std::vector<Record*> ConstraintList =
1174     TypeProfile->getValueAsListOfDefs("Constraints");
1175   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1176 }
1177
1178 /// getKnownType - If the type constraints on this node imply a fixed type
1179 /// (e.g. all stores return void, etc), then return it as an
1180 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1181 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1182   unsigned NumResults = getNumResults();
1183   assert(NumResults <= 1 &&
1184          "We only work with nodes with zero or one result so far!");
1185   assert(ResNo == 0 && "Only handles single result nodes so far");
1186
1187   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1188     // Make sure that this applies to the correct node result.
1189     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1190       continue;
1191
1192     switch (Constraint.ConstraintType) {
1193     default: break;
1194     case SDTypeConstraint::SDTCisVT:
1195       return Constraint.x.SDTCisVT_Info.VT;
1196     case SDTypeConstraint::SDTCisPtrTy:
1197       return MVT::iPTR;
1198     }
1199   }
1200   return MVT::Other;
1201 }
1202
1203 //===----------------------------------------------------------------------===//
1204 // TreePatternNode implementation
1205 //
1206
1207 TreePatternNode::~TreePatternNode() {
1208 #if 0 // FIXME: implement refcounted tree nodes!
1209   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1210     delete getChild(i);
1211 #endif
1212 }
1213
1214 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1215   if (Operator->getName() == "set" ||
1216       Operator->getName() == "implicit")
1217     return 0;  // All return nothing.
1218
1219   if (Operator->isSubClassOf("Intrinsic"))
1220     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1221
1222   if (Operator->isSubClassOf("SDNode"))
1223     return CDP.getSDNodeInfo(Operator).getNumResults();
1224
1225   if (Operator->isSubClassOf("PatFrag")) {
1226     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1227     // the forward reference case where one pattern fragment references another
1228     // before it is processed.
1229     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1230       return PFRec->getOnlyTree()->getNumTypes();
1231
1232     // Get the result tree.
1233     DagInit *Tree = Operator->getValueAsDag("Fragment");
1234     Record *Op = nullptr;
1235     if (Tree)
1236       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1237         Op = DI->getDef();
1238     assert(Op && "Invalid Fragment");
1239     return GetNumNodeResults(Op, CDP);
1240   }
1241
1242   if (Operator->isSubClassOf("Instruction")) {
1243     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1244
1245     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1246
1247     // Subtract any defaulted outputs.
1248     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1249       Record *OperandNode = InstInfo.Operands[i].Rec;
1250
1251       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1252           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1253         --NumDefsToAdd;
1254     }
1255
1256     // Add on one implicit def if it has a resolvable type.
1257     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1258       ++NumDefsToAdd;
1259     return NumDefsToAdd;
1260   }
1261
1262   if (Operator->isSubClassOf("SDNodeXForm"))
1263     return 1;  // FIXME: Generalize SDNodeXForm
1264
1265   if (Operator->isSubClassOf("ValueType"))
1266     return 1;  // A type-cast of one result.
1267
1268   if (Operator->isSubClassOf("ComplexPattern"))
1269     return 1;
1270
1271   Operator->dump();
1272   PrintFatalError("Unhandled node in GetNumNodeResults");
1273 }
1274
1275 void TreePatternNode::print(raw_ostream &OS) const {
1276   if (isLeaf())
1277     OS << *getLeafValue();
1278   else
1279     OS << '(' << getOperator()->getName();
1280
1281   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1282     OS << ':' << getExtType(i).getName();
1283
1284   if (!isLeaf()) {
1285     if (getNumChildren() != 0) {
1286       OS << " ";
1287       getChild(0)->print(OS);
1288       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1289         OS << ", ";
1290         getChild(i)->print(OS);
1291       }
1292     }
1293     OS << ")";
1294   }
1295
1296   for (const TreePredicateFn &Pred : PredicateFns)
1297     OS << "<<P:" << Pred.getFnName() << ">>";
1298   if (TransformFn)
1299     OS << "<<X:" << TransformFn->getName() << ">>";
1300   if (!getName().empty())
1301     OS << ":$" << getName();
1302
1303 }
1304 void TreePatternNode::dump() const {
1305   print(errs());
1306 }
1307
1308 /// isIsomorphicTo - Return true if this node is recursively
1309 /// isomorphic to the specified node.  For this comparison, the node's
1310 /// entire state is considered. The assigned name is ignored, since
1311 /// nodes with differing names are considered isomorphic. However, if
1312 /// the assigned name is present in the dependent variable set, then
1313 /// the assigned name is considered significant and the node is
1314 /// isomorphic if the names match.
1315 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1316                                      const MultipleUseVarSet &DepVars) const {
1317   if (N == this) return true;
1318   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1319       getPredicateFns() != N->getPredicateFns() ||
1320       getTransformFn() != N->getTransformFn())
1321     return false;
1322
1323   if (isLeaf()) {
1324     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1325       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1326         return ((DI->getDef() == NDI->getDef())
1327                 && (DepVars.find(getName()) == DepVars.end()
1328                     || getName() == N->getName()));
1329       }
1330     }
1331     return getLeafValue() == N->getLeafValue();
1332   }
1333
1334   if (N->getOperator() != getOperator() ||
1335       N->getNumChildren() != getNumChildren()) return false;
1336   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1337     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1338       return false;
1339   return true;
1340 }
1341
1342 /// clone - Make a copy of this tree and all of its children.
1343 ///
1344 TreePatternNode *TreePatternNode::clone() const {
1345   TreePatternNode *New;
1346   if (isLeaf()) {
1347     New = new TreePatternNode(getLeafValue(), getNumTypes());
1348   } else {
1349     std::vector<TreePatternNode*> CChildren;
1350     CChildren.reserve(Children.size());
1351     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1352       CChildren.push_back(getChild(i)->clone());
1353     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1354   }
1355   New->setName(getName());
1356   New->Types = Types;
1357   New->setPredicateFns(getPredicateFns());
1358   New->setTransformFn(getTransformFn());
1359   return New;
1360 }
1361
1362 /// RemoveAllTypes - Recursively strip all the types of this tree.
1363 void TreePatternNode::RemoveAllTypes() {
1364   // Reset to unknown type.
1365   std::fill(Types.begin(), Types.end(), EEVT::TypeSet());
1366   if (isLeaf()) return;
1367   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1368     getChild(i)->RemoveAllTypes();
1369 }
1370
1371
1372 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1373 /// with actual values specified by ArgMap.
1374 void TreePatternNode::
1375 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1376   if (isLeaf()) return;
1377
1378   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1379     TreePatternNode *Child = getChild(i);
1380     if (Child->isLeaf()) {
1381       Init *Val = Child->getLeafValue();
1382       // Note that, when substituting into an output pattern, Val might be an
1383       // UnsetInit.
1384       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1385           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1386         // We found a use of a formal argument, replace it with its value.
1387         TreePatternNode *NewChild = ArgMap[Child->getName()];
1388         assert(NewChild && "Couldn't find formal argument!");
1389         assert((Child->getPredicateFns().empty() ||
1390                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1391                "Non-empty child predicate clobbered!");
1392         setChild(i, NewChild);
1393       }
1394     } else {
1395       getChild(i)->SubstituteFormalArguments(ArgMap);
1396     }
1397   }
1398 }
1399
1400
1401 /// InlinePatternFragments - If this pattern refers to any pattern
1402 /// fragments, inline them into place, giving us a pattern without any
1403 /// PatFrag references.
1404 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1405   if (TP.hasError())
1406     return nullptr;
1407
1408   if (isLeaf())
1409      return this;  // nothing to do.
1410   Record *Op = getOperator();
1411
1412   if (!Op->isSubClassOf("PatFrag")) {
1413     // Just recursively inline children nodes.
1414     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1415       TreePatternNode *Child = getChild(i);
1416       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1417
1418       assert((Child->getPredicateFns().empty() ||
1419               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1420              "Non-empty child predicate clobbered!");
1421
1422       setChild(i, NewChild);
1423     }
1424     return this;
1425   }
1426
1427   // Otherwise, we found a reference to a fragment.  First, look up its
1428   // TreePattern record.
1429   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1430
1431   // Verify that we are passing the right number of operands.
1432   if (Frag->getNumArgs() != Children.size()) {
1433     TP.error("'" + Op->getName() + "' fragment requires " +
1434              utostr(Frag->getNumArgs()) + " operands!");
1435     return nullptr;
1436   }
1437
1438   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1439
1440   TreePredicateFn PredFn(Frag);
1441   if (!PredFn.isAlwaysTrue())
1442     FragTree->addPredicateFn(PredFn);
1443
1444   // Resolve formal arguments to their actual value.
1445   if (Frag->getNumArgs()) {
1446     // Compute the map of formal to actual arguments.
1447     std::map<std::string, TreePatternNode*> ArgMap;
1448     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1449       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1450
1451     FragTree->SubstituteFormalArguments(ArgMap);
1452   }
1453
1454   FragTree->setName(getName());
1455   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1456     FragTree->UpdateNodeType(i, getExtType(i), TP);
1457
1458   // Transfer in the old predicates.
1459   for (const TreePredicateFn &Pred : getPredicateFns())
1460     FragTree->addPredicateFn(Pred);
1461
1462   // Get a new copy of this fragment to stitch into here.
1463   //delete this;    // FIXME: implement refcounting!
1464
1465   // The fragment we inlined could have recursive inlining that is needed.  See
1466   // if there are any pattern fragments in it and inline them as needed.
1467   return FragTree->InlinePatternFragments(TP);
1468 }
1469
1470 /// getImplicitType - Check to see if the specified record has an implicit
1471 /// type which should be applied to it.  This will infer the type of register
1472 /// references from the register file information, for example.
1473 ///
1474 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1475 /// the F8RC register class argument in:
1476 ///
1477 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1478 ///
1479 /// When Unnamed is false, return the type of a named DAG operand such as the
1480 /// GPR:$src operand above.
1481 ///
1482 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1483                                      bool NotRegisters,
1484                                      bool Unnamed,
1485                                      TreePattern &TP) {
1486   // Check to see if this is a register operand.
1487   if (R->isSubClassOf("RegisterOperand")) {
1488     assert(ResNo == 0 && "Regoperand ref only has one result!");
1489     if (NotRegisters)
1490       return EEVT::TypeSet(); // Unknown.
1491     Record *RegClass = R->getValueAsDef("RegClass");
1492     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1493     return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1494   }
1495
1496   // Check to see if this is a register or a register class.
1497   if (R->isSubClassOf("RegisterClass")) {
1498     assert(ResNo == 0 && "Regclass ref only has one result!");
1499     // An unnamed register class represents itself as an i32 immediate, for
1500     // example on a COPY_TO_REGCLASS instruction.
1501     if (Unnamed)
1502       return EEVT::TypeSet(MVT::i32, TP);
1503
1504     // In a named operand, the register class provides the possible set of
1505     // types.
1506     if (NotRegisters)
1507       return EEVT::TypeSet(); // Unknown.
1508     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1509     return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1510   }
1511
1512   if (R->isSubClassOf("PatFrag")) {
1513     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1514     // Pattern fragment types will be resolved when they are inlined.
1515     return EEVT::TypeSet(); // Unknown.
1516   }
1517
1518   if (R->isSubClassOf("Register")) {
1519     assert(ResNo == 0 && "Registers only produce one result!");
1520     if (NotRegisters)
1521       return EEVT::TypeSet(); // Unknown.
1522     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1523     return EEVT::TypeSet(T.getRegisterVTs(R));
1524   }
1525
1526   if (R->isSubClassOf("SubRegIndex")) {
1527     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1528     return EEVT::TypeSet(MVT::i32, TP);
1529   }
1530
1531   if (R->isSubClassOf("ValueType")) {
1532     assert(ResNo == 0 && "This node only has one result!");
1533     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1534     //
1535     //   (sext_inreg GPR:$src, i16)
1536     //                         ~~~
1537     if (Unnamed)
1538       return EEVT::TypeSet(MVT::Other, TP);
1539     // With a name, the ValueType simply provides the type of the named
1540     // variable.
1541     //
1542     //   (sext_inreg i32:$src, i16)
1543     //               ~~~~~~~~
1544     if (NotRegisters)
1545       return EEVT::TypeSet(); // Unknown.
1546     return EEVT::TypeSet(getValueType(R), TP);
1547   }
1548
1549   if (R->isSubClassOf("CondCode")) {
1550     assert(ResNo == 0 && "This node only has one result!");
1551     // Using a CondCodeSDNode.
1552     return EEVT::TypeSet(MVT::Other, TP);
1553   }
1554
1555   if (R->isSubClassOf("ComplexPattern")) {
1556     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1557     if (NotRegisters)
1558       return EEVT::TypeSet(); // Unknown.
1559    return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1560                          TP);
1561   }
1562   if (R->isSubClassOf("PointerLikeRegClass")) {
1563     assert(ResNo == 0 && "Regclass can only have one result!");
1564     return EEVT::TypeSet(MVT::iPTR, TP);
1565   }
1566
1567   if (R->getName() == "node" || R->getName() == "srcvalue" ||
1568       R->getName() == "zero_reg") {
1569     // Placeholder.
1570     return EEVT::TypeSet(); // Unknown.
1571   }
1572
1573   if (R->isSubClassOf("Operand"))
1574     return EEVT::TypeSet(getValueType(R->getValueAsDef("Type")));
1575
1576   TP.error("Unknown node flavor used in pattern: " + R->getName());
1577   return EEVT::TypeSet(MVT::Other, TP);
1578 }
1579
1580
1581 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1582 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1583 const CodeGenIntrinsic *TreePatternNode::
1584 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1585   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1586       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1587       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1588     return nullptr;
1589
1590   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1591   return &CDP.getIntrinsicInfo(IID);
1592 }
1593
1594 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1595 /// return the ComplexPattern information, otherwise return null.
1596 const ComplexPattern *
1597 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1598   Record *Rec;
1599   if (isLeaf()) {
1600     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1601     if (!DI)
1602       return nullptr;
1603     Rec = DI->getDef();
1604   } else
1605     Rec = getOperator();
1606
1607   if (!Rec->isSubClassOf("ComplexPattern"))
1608     return nullptr;
1609   return &CGP.getComplexPattern(Rec);
1610 }
1611
1612 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
1613   // A ComplexPattern specifically declares how many results it fills in.
1614   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1615     return CP->getNumOperands();
1616
1617   // If MIOperandInfo is specified, that gives the count.
1618   if (isLeaf()) {
1619     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1620     if (DI && DI->getDef()->isSubClassOf("Operand")) {
1621       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
1622       if (MIOps->getNumArgs())
1623         return MIOps->getNumArgs();
1624     }
1625   }
1626
1627   // Otherwise there is just one result.
1628   return 1;
1629 }
1630
1631 /// NodeHasProperty - Return true if this node has the specified property.
1632 bool TreePatternNode::NodeHasProperty(SDNP Property,
1633                                       const CodeGenDAGPatterns &CGP) const {
1634   if (isLeaf()) {
1635     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1636       return CP->hasProperty(Property);
1637     return false;
1638   }
1639
1640   Record *Operator = getOperator();
1641   if (!Operator->isSubClassOf("SDNode")) return false;
1642
1643   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1644 }
1645
1646
1647
1648
1649 /// TreeHasProperty - Return true if any node in this tree has the specified
1650 /// property.
1651 bool TreePatternNode::TreeHasProperty(SDNP Property,
1652                                       const CodeGenDAGPatterns &CGP) const {
1653   if (NodeHasProperty(Property, CGP))
1654     return true;
1655   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1656     if (getChild(i)->TreeHasProperty(Property, CGP))
1657       return true;
1658   return false;
1659 }
1660
1661 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1662 /// commutative intrinsic.
1663 bool
1664 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1665   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1666     return Int->isCommutative;
1667   return false;
1668 }
1669
1670 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
1671   if (!N->isLeaf())
1672     return N->getOperator()->isSubClassOf(Class);
1673
1674   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
1675   if (DI && DI->getDef()->isSubClassOf(Class))
1676     return true;
1677
1678   return false;
1679 }
1680
1681 static void emitTooManyOperandsError(TreePattern &TP,
1682                                      StringRef InstName,
1683                                      unsigned Expected,
1684                                      unsigned Actual) {
1685   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
1686            " operands but expected only " + Twine(Expected) + "!");
1687 }
1688
1689 static void emitTooFewOperandsError(TreePattern &TP,
1690                                     StringRef InstName,
1691                                     unsigned Actual) {
1692   TP.error("Instruction '" + InstName +
1693            "' expects more than the provided " + Twine(Actual) + " operands!");
1694 }
1695
1696 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1697 /// this node and its children in the tree.  This returns true if it makes a
1698 /// change, false otherwise.  If a type contradiction is found, flag an error.
1699 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1700   if (TP.hasError())
1701     return false;
1702
1703   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1704   if (isLeaf()) {
1705     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1706       // If it's a regclass or something else known, include the type.
1707       bool MadeChange = false;
1708       for (unsigned i = 0, e = Types.size(); i != e; ++i)
1709         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1710                                                         NotRegisters,
1711                                                         !hasName(), TP), TP);
1712       return MadeChange;
1713     }
1714
1715     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1716       assert(Types.size() == 1 && "Invalid IntInit");
1717
1718       // Int inits are always integers. :)
1719       bool MadeChange = Types[0].EnforceInteger(TP);
1720
1721       if (!Types[0].isConcrete())
1722         return MadeChange;
1723
1724       MVT::SimpleValueType VT = getType(0);
1725       if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1726         return MadeChange;
1727
1728       unsigned Size = MVT(VT).getSizeInBits();
1729       // Make sure that the value is representable for this type.
1730       if (Size >= 32) return MadeChange;
1731
1732       // Check that the value doesn't use more bits than we have. It must either
1733       // be a sign- or zero-extended equivalent of the original.
1734       int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1735       if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1736         return MadeChange;
1737
1738       TP.error("Integer value '" + itostr(II->getValue()) +
1739                "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1740       return false;
1741     }
1742     return false;
1743   }
1744
1745   // special handling for set, which isn't really an SDNode.
1746   if (getOperator()->getName() == "set") {
1747     assert(getNumTypes() == 0 && "Set doesn't produce a value");
1748     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1749     unsigned NC = getNumChildren();
1750
1751     TreePatternNode *SetVal = getChild(NC-1);
1752     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1753
1754     for (unsigned i = 0; i < NC-1; ++i) {
1755       TreePatternNode *Child = getChild(i);
1756       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1757
1758       // Types of operands must match.
1759       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1760       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1761     }
1762     return MadeChange;
1763   }
1764
1765   if (getOperator()->getName() == "implicit") {
1766     assert(getNumTypes() == 0 && "Node doesn't produce a value");
1767
1768     bool MadeChange = false;
1769     for (unsigned i = 0; i < getNumChildren(); ++i)
1770       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1771     return MadeChange;
1772   }
1773
1774   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1775     bool MadeChange = false;
1776
1777     // Apply the result type to the node.
1778     unsigned NumRetVTs = Int->IS.RetVTs.size();
1779     unsigned NumParamVTs = Int->IS.ParamVTs.size();
1780
1781     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1782       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1783
1784     if (getNumChildren() != NumParamVTs + 1) {
1785       TP.error("Intrinsic '" + Int->Name + "' expects " +
1786                utostr(NumParamVTs) + " operands, not " +
1787                utostr(getNumChildren() - 1) + " operands!");
1788       return false;
1789     }
1790
1791     // Apply type info to the intrinsic ID.
1792     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1793
1794     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1795       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1796
1797       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1798       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1799       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1800     }
1801     return MadeChange;
1802   }
1803
1804   if (getOperator()->isSubClassOf("SDNode")) {
1805     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1806
1807     // Check that the number of operands is sane.  Negative operands -> varargs.
1808     if (NI.getNumOperands() >= 0 &&
1809         getNumChildren() != (unsigned)NI.getNumOperands()) {
1810       TP.error(getOperator()->getName() + " node requires exactly " +
1811                itostr(NI.getNumOperands()) + " operands!");
1812       return false;
1813     }
1814
1815     bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1816     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1817       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1818     return MadeChange;
1819   }
1820
1821   if (getOperator()->isSubClassOf("Instruction")) {
1822     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1823     CodeGenInstruction &InstInfo =
1824       CDP.getTargetInfo().getInstruction(getOperator());
1825
1826     bool MadeChange = false;
1827
1828     // Apply the result types to the node, these come from the things in the
1829     // (outs) list of the instruction.
1830     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
1831                                         Inst.getNumResults());
1832     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1833       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1834
1835     // If the instruction has implicit defs, we apply the first one as a result.
1836     // FIXME: This sucks, it should apply all implicit defs.
1837     if (!InstInfo.ImplicitDefs.empty()) {
1838       unsigned ResNo = NumResultsToAdd;
1839
1840       // FIXME: Generalize to multiple possible types and multiple possible
1841       // ImplicitDefs.
1842       MVT::SimpleValueType VT =
1843         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1844
1845       if (VT != MVT::Other)
1846         MadeChange |= UpdateNodeType(ResNo, VT, TP);
1847     }
1848
1849     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1850     // be the same.
1851     if (getOperator()->getName() == "INSERT_SUBREG") {
1852       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1853       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1854       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1855     } else if (getOperator()->getName() == "REG_SEQUENCE") {
1856       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
1857       // variadic.
1858
1859       unsigned NChild = getNumChildren();
1860       if (NChild < 3) {
1861         TP.error("REG_SEQUENCE requires at least 3 operands!");
1862         return false;
1863       }
1864
1865       if (NChild % 2 == 0) {
1866         TP.error("REG_SEQUENCE requires an odd number of operands!");
1867         return false;
1868       }
1869
1870       if (!isOperandClass(getChild(0), "RegisterClass")) {
1871         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
1872         return false;
1873       }
1874
1875       for (unsigned I = 1; I < NChild; I += 2) {
1876         TreePatternNode *SubIdxChild = getChild(I + 1);
1877         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
1878           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
1879                    itostr(I + 1) + "!");
1880           return false;
1881         }
1882       }
1883     }
1884
1885     unsigned ChildNo = 0;
1886     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1887       Record *OperandNode = Inst.getOperand(i);
1888
1889       // If the instruction expects a predicate or optional def operand, we
1890       // codegen this by setting the operand to it's default value if it has a
1891       // non-empty DefaultOps field.
1892       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1893           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1894         continue;
1895
1896       // Verify that we didn't run out of provided operands.
1897       if (ChildNo >= getNumChildren()) {
1898         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
1899         return false;
1900       }
1901
1902       TreePatternNode *Child = getChild(ChildNo++);
1903       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1904
1905       // If the operand has sub-operands, they may be provided by distinct
1906       // child patterns, so attempt to match each sub-operand separately.
1907       if (OperandNode->isSubClassOf("Operand")) {
1908         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1909         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1910           // But don't do that if the whole operand is being provided by
1911           // a single ComplexPattern-related Operand.
1912
1913           if (Child->getNumMIResults(CDP) < NumArgs) {
1914             // Match first sub-operand against the child we already have.
1915             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1916             MadeChange |=
1917               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1918
1919             // And the remaining sub-operands against subsequent children.
1920             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1921               if (ChildNo >= getNumChildren()) {
1922                 emitTooFewOperandsError(TP, getOperator()->getName(),
1923                                         getNumChildren());
1924                 return false;
1925               }
1926               Child = getChild(ChildNo++);
1927
1928               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1929               MadeChange |=
1930                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1931             }
1932             continue;
1933           }
1934         }
1935       }
1936
1937       // If we didn't match by pieces above, attempt to match the whole
1938       // operand now.
1939       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1940     }
1941
1942     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
1943       emitTooManyOperandsError(TP, getOperator()->getName(),
1944                                ChildNo, getNumChildren());
1945       return false;
1946     }
1947
1948     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1949       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1950     return MadeChange;
1951   }
1952
1953   if (getOperator()->isSubClassOf("ComplexPattern")) {
1954     bool MadeChange = false;
1955
1956     for (unsigned i = 0; i < getNumChildren(); ++i)
1957       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1958
1959     return MadeChange;
1960   }
1961
1962   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1963
1964   // Node transforms always take one operand.
1965   if (getNumChildren() != 1) {
1966     TP.error("Node transform '" + getOperator()->getName() +
1967              "' requires one operand!");
1968     return false;
1969   }
1970
1971   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1972
1973
1974   // If either the output or input of the xform does not have exact
1975   // type info. We assume they must be the same. Otherwise, it is perfectly
1976   // legal to transform from one type to a completely different type.
1977 #if 0
1978   if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1979     bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1980     MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1981     return MadeChange;
1982   }
1983 #endif
1984   return MadeChange;
1985 }
1986
1987 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1988 /// RHS of a commutative operation, not the on LHS.
1989 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1990   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1991     return true;
1992   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1993     return true;
1994   return false;
1995 }
1996
1997
1998 /// canPatternMatch - If it is impossible for this pattern to match on this
1999 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2000 /// used as a sanity check for .td files (to prevent people from writing stuff
2001 /// that can never possibly work), and to prevent the pattern permuter from
2002 /// generating stuff that is useless.
2003 bool TreePatternNode::canPatternMatch(std::string &Reason,
2004                                       const CodeGenDAGPatterns &CDP) {
2005   if (isLeaf()) return true;
2006
2007   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2008     if (!getChild(i)->canPatternMatch(Reason, CDP))
2009       return false;
2010
2011   // If this is an intrinsic, handle cases that would make it not match.  For
2012   // example, if an operand is required to be an immediate.
2013   if (getOperator()->isSubClassOf("Intrinsic")) {
2014     // TODO:
2015     return true;
2016   }
2017
2018   if (getOperator()->isSubClassOf("ComplexPattern"))
2019     return true;
2020
2021   // If this node is a commutative operator, check that the LHS isn't an
2022   // immediate.
2023   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2024   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2025   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2026     // Scan all of the operands of the node and make sure that only the last one
2027     // is a constant node, unless the RHS also is.
2028     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2029       bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2030       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2031         if (OnlyOnRHSOfCommutative(getChild(i))) {
2032           Reason="Immediate value must be on the RHS of commutative operators!";
2033           return false;
2034         }
2035     }
2036   }
2037
2038   return true;
2039 }
2040
2041 //===----------------------------------------------------------------------===//
2042 // TreePattern implementation
2043 //
2044
2045 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2046                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2047                          isInputPattern(isInput), HasError(false) {
2048   for (Init *I : RawPat->getValues())
2049     Trees.push_back(ParseTreePattern(I, ""));
2050 }
2051
2052 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2053                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2054                          isInputPattern(isInput), HasError(false) {
2055   Trees.push_back(ParseTreePattern(Pat, ""));
2056 }
2057
2058 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2059                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2060                          isInputPattern(isInput), HasError(false) {
2061   Trees.push_back(Pat);
2062 }
2063
2064 void TreePattern::error(const Twine &Msg) {
2065   if (HasError)
2066     return;
2067   dump();
2068   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2069   HasError = true;
2070 }
2071
2072 void TreePattern::ComputeNamedNodes() {
2073   for (TreePatternNode *Tree : Trees)
2074     ComputeNamedNodes(Tree);
2075 }
2076
2077 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2078   if (!N->getName().empty())
2079     NamedNodes[N->getName()].push_back(N);
2080
2081   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2082     ComputeNamedNodes(N->getChild(i));
2083 }
2084
2085
2086 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2087   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2088     Record *R = DI->getDef();
2089
2090     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2091     // TreePatternNode of its own.  For example:
2092     ///   (foo GPR, imm) -> (foo GPR, (imm))
2093     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2094       return ParseTreePattern(
2095         DagInit::get(DI, "",
2096                      std::vector<std::pair<Init*, std::string> >()),
2097         OpName);
2098
2099     // Input argument?
2100     TreePatternNode *Res = new TreePatternNode(DI, 1);
2101     if (R->getName() == "node" && !OpName.empty()) {
2102       if (OpName.empty())
2103         error("'node' argument requires a name to match with operand list");
2104       Args.push_back(OpName);
2105     }
2106
2107     Res->setName(OpName);
2108     return Res;
2109   }
2110
2111   // ?:$name or just $name.
2112   if (isa<UnsetInit>(TheInit)) {
2113     if (OpName.empty())
2114       error("'?' argument requires a name to match with operand list");
2115     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2116     Args.push_back(OpName);
2117     Res->setName(OpName);
2118     return Res;
2119   }
2120
2121   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2122     if (!OpName.empty())
2123       error("Constant int argument should not have a name!");
2124     return new TreePatternNode(II, 1);
2125   }
2126
2127   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2128     // Turn this into an IntInit.
2129     Init *II = BI->convertInitializerTo(IntRecTy::get());
2130     if (!II || !isa<IntInit>(II))
2131       error("Bits value must be constants!");
2132     return ParseTreePattern(II, OpName);
2133   }
2134
2135   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2136   if (!Dag) {
2137     TheInit->dump();
2138     error("Pattern has unexpected init kind!");
2139   }
2140   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2141   if (!OpDef) error("Pattern has unexpected operator type!");
2142   Record *Operator = OpDef->getDef();
2143
2144   if (Operator->isSubClassOf("ValueType")) {
2145     // If the operator is a ValueType, then this must be "type cast" of a leaf
2146     // node.
2147     if (Dag->getNumArgs() != 1)
2148       error("Type cast only takes one operand!");
2149
2150     TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
2151
2152     // Apply the type cast.
2153     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2154     New->UpdateNodeType(0, getValueType(Operator), *this);
2155
2156     if (!OpName.empty())
2157       error("ValueType cast should not have a name!");
2158     return New;
2159   }
2160
2161   // Verify that this is something that makes sense for an operator.
2162   if (!Operator->isSubClassOf("PatFrag") &&
2163       !Operator->isSubClassOf("SDNode") &&
2164       !Operator->isSubClassOf("Instruction") &&
2165       !Operator->isSubClassOf("SDNodeXForm") &&
2166       !Operator->isSubClassOf("Intrinsic") &&
2167       !Operator->isSubClassOf("ComplexPattern") &&
2168       Operator->getName() != "set" &&
2169       Operator->getName() != "implicit")
2170     error("Unrecognized node '" + Operator->getName() + "'!");
2171
2172   //  Check to see if this is something that is illegal in an input pattern.
2173   if (isInputPattern) {
2174     if (Operator->isSubClassOf("Instruction") ||
2175         Operator->isSubClassOf("SDNodeXForm"))
2176       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2177   } else {
2178     if (Operator->isSubClassOf("Intrinsic"))
2179       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2180
2181     if (Operator->isSubClassOf("SDNode") &&
2182         Operator->getName() != "imm" &&
2183         Operator->getName() != "fpimm" &&
2184         Operator->getName() != "tglobaltlsaddr" &&
2185         Operator->getName() != "tconstpool" &&
2186         Operator->getName() != "tjumptable" &&
2187         Operator->getName() != "tframeindex" &&
2188         Operator->getName() != "texternalsym" &&
2189         Operator->getName() != "tblockaddress" &&
2190         Operator->getName() != "tglobaladdr" &&
2191         Operator->getName() != "bb" &&
2192         Operator->getName() != "vt" &&
2193         Operator->getName() != "mcsym")
2194       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2195   }
2196
2197   std::vector<TreePatternNode*> Children;
2198
2199   // Parse all the operands.
2200   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2201     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
2202
2203   // If the operator is an intrinsic, then this is just syntactic sugar for for
2204   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2205   // convert the intrinsic name to a number.
2206   if (Operator->isSubClassOf("Intrinsic")) {
2207     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2208     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2209
2210     // If this intrinsic returns void, it must have side-effects and thus a
2211     // chain.
2212     if (Int.IS.RetVTs.empty())
2213       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2214     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2215       // Has side-effects, requires chain.
2216       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2217     else // Otherwise, no chain.
2218       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2219
2220     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2221     Children.insert(Children.begin(), IIDNode);
2222   }
2223
2224   if (Operator->isSubClassOf("ComplexPattern")) {
2225     for (unsigned i = 0; i < Children.size(); ++i) {
2226       TreePatternNode *Child = Children[i];
2227
2228       if (Child->getName().empty())
2229         error("All arguments to a ComplexPattern must be named");
2230
2231       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2232       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2233       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2234       auto OperandId = std::make_pair(Operator, i);
2235       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2236       if (PrevOp != ComplexPatternOperands.end()) {
2237         if (PrevOp->getValue() != OperandId)
2238           error("All ComplexPattern operands must appear consistently: "
2239                 "in the same order in just one ComplexPattern instance.");
2240       } else
2241         ComplexPatternOperands[Child->getName()] = OperandId;
2242     }
2243   }
2244
2245   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2246   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2247   Result->setName(OpName);
2248
2249   if (!Dag->getName().empty()) {
2250     assert(Result->getName().empty());
2251     Result->setName(Dag->getName());
2252   }
2253   return Result;
2254 }
2255
2256 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2257 /// will never match in favor of something obvious that will.  This is here
2258 /// strictly as a convenience to target authors because it allows them to write
2259 /// more type generic things and have useless type casts fold away.
2260 ///
2261 /// This returns true if any change is made.
2262 static bool SimplifyTree(TreePatternNode *&N) {
2263   if (N->isLeaf())
2264     return false;
2265
2266   // If we have a bitconvert with a resolved type and if the source and
2267   // destination types are the same, then the bitconvert is useless, remove it.
2268   if (N->getOperator()->getName() == "bitconvert" &&
2269       N->getExtType(0).isConcrete() &&
2270       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2271       N->getName().empty()) {
2272     N = N->getChild(0);
2273     SimplifyTree(N);
2274     return true;
2275   }
2276
2277   // Walk all children.
2278   bool MadeChange = false;
2279   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2280     TreePatternNode *Child = N->getChild(i);
2281     MadeChange |= SimplifyTree(Child);
2282     N->setChild(i, Child);
2283   }
2284   return MadeChange;
2285 }
2286
2287
2288
2289 /// InferAllTypes - Infer/propagate as many types throughout the expression
2290 /// patterns as possible.  Return true if all types are inferred, false
2291 /// otherwise.  Flags an error if a type contradiction is found.
2292 bool TreePattern::
2293 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2294   if (NamedNodes.empty())
2295     ComputeNamedNodes();
2296
2297   bool MadeChange = true;
2298   while (MadeChange) {
2299     MadeChange = false;
2300     for (TreePatternNode *Tree : Trees) {
2301       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2302       MadeChange |= SimplifyTree(Tree);
2303     }
2304
2305     // If there are constraints on our named nodes, apply them.
2306     for (auto &Entry : NamedNodes) {
2307       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2308
2309       // If we have input named node types, propagate their types to the named
2310       // values here.
2311       if (InNamedTypes) {
2312         if (!InNamedTypes->count(Entry.getKey())) {
2313           error("Node '" + std::string(Entry.getKey()) +
2314                 "' in output pattern but not input pattern");
2315           return true;
2316         }
2317
2318         const SmallVectorImpl<TreePatternNode*> &InNodes =
2319           InNamedTypes->find(Entry.getKey())->second;
2320
2321         // The input types should be fully resolved by now.
2322         for (TreePatternNode *Node : Nodes) {
2323           // If this node is a register class, and it is the root of the pattern
2324           // then we're mapping something onto an input register.  We allow
2325           // changing the type of the input register in this case.  This allows
2326           // us to match things like:
2327           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2328           if (Node == Trees[0] && Node->isLeaf()) {
2329             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2330             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2331                        DI->getDef()->isSubClassOf("RegisterOperand")))
2332               continue;
2333           }
2334
2335           assert(Node->getNumTypes() == 1 &&
2336                  InNodes[0]->getNumTypes() == 1 &&
2337                  "FIXME: cannot name multiple result nodes yet");
2338           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2339                                              *this);
2340         }
2341       }
2342
2343       // If there are multiple nodes with the same name, they must all have the
2344       // same type.
2345       if (Entry.second.size() > 1) {
2346         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2347           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2348           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2349                  "FIXME: cannot name multiple result nodes yet");
2350
2351           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2352           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2353         }
2354       }
2355     }
2356   }
2357
2358   bool HasUnresolvedTypes = false;
2359   for (const TreePatternNode *Tree : Trees)
2360     HasUnresolvedTypes |= Tree->ContainsUnresolvedType();
2361   return !HasUnresolvedTypes;
2362 }
2363
2364 void TreePattern::print(raw_ostream &OS) const {
2365   OS << getRecord()->getName();
2366   if (!Args.empty()) {
2367     OS << "(" << Args[0];
2368     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2369       OS << ", " << Args[i];
2370     OS << ")";
2371   }
2372   OS << ": ";
2373
2374   if (Trees.size() > 1)
2375     OS << "[\n";
2376   for (const TreePatternNode *Tree : Trees) {
2377     OS << "\t";
2378     Tree->print(OS);
2379     OS << "\n";
2380   }
2381
2382   if (Trees.size() > 1)
2383     OS << "]\n";
2384 }
2385
2386 void TreePattern::dump() const { print(errs()); }
2387
2388 //===----------------------------------------------------------------------===//
2389 // CodeGenDAGPatterns implementation
2390 //
2391
2392 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2393   Records(R), Target(R) {
2394
2395   Intrinsics = LoadIntrinsics(Records, false);
2396   TgtIntrinsics = LoadIntrinsics(Records, true);
2397   ParseNodeInfo();
2398   ParseNodeTransforms();
2399   ParseComplexPatterns();
2400   ParsePatternFragments();
2401   ParseDefaultOperands();
2402   ParseInstructions();
2403   ParsePatternFragments(/*OutFrags*/true);
2404   ParsePatterns();
2405
2406   // Generate variants.  For example, commutative patterns can match
2407   // multiple ways.  Add them to PatternsToMatch as well.
2408   GenerateVariants();
2409
2410   // Infer instruction flags.  For example, we can detect loads,
2411   // stores, and side effects in many cases by examining an
2412   // instruction's pattern.
2413   InferInstructionFlags();
2414
2415   // Verify that instruction flags match the patterns.
2416   VerifyInstructionFlags();
2417 }
2418
2419 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2420   Record *N = Records.getDef(Name);
2421   if (!N || !N->isSubClassOf("SDNode"))
2422     PrintFatalError("Error getting SDNode '" + Name + "'!");
2423
2424   return N;
2425 }
2426
2427 // Parse all of the SDNode definitions for the target, populating SDNodes.
2428 void CodeGenDAGPatterns::ParseNodeInfo() {
2429   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2430   while (!Nodes.empty()) {
2431     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2432     Nodes.pop_back();
2433   }
2434
2435   // Get the builtin intrinsic nodes.
2436   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2437   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2438   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2439 }
2440
2441 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2442 /// map, and emit them to the file as functions.
2443 void CodeGenDAGPatterns::ParseNodeTransforms() {
2444   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2445   while (!Xforms.empty()) {
2446     Record *XFormNode = Xforms.back();
2447     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2448     std::string Code = XFormNode->getValueAsString("XFormFunction");
2449     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2450
2451     Xforms.pop_back();
2452   }
2453 }
2454
2455 void CodeGenDAGPatterns::ParseComplexPatterns() {
2456   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2457   while (!AMs.empty()) {
2458     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2459     AMs.pop_back();
2460   }
2461 }
2462
2463
2464 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2465 /// file, building up the PatternFragments map.  After we've collected them all,
2466 /// inline fragments together as necessary, so that there are no references left
2467 /// inside a pattern fragment to a pattern fragment.
2468 ///
2469 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2470   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2471
2472   // First step, parse all of the fragments.
2473   for (Record *Frag : Fragments) {
2474     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2475       continue;
2476
2477     DagInit *Tree = Frag->getValueAsDag("Fragment");
2478     TreePattern *P =
2479         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2480              Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2481              *this)).get();
2482
2483     // Validate the argument list, converting it to set, to discard duplicates.
2484     std::vector<std::string> &Args = P->getArgList();
2485     std::set<std::string> OperandsSet(Args.begin(), Args.end());
2486
2487     if (OperandsSet.count(""))
2488       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2489
2490     // Parse the operands list.
2491     DagInit *OpsList = Frag->getValueAsDag("Operands");
2492     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2493     // Special cases: ops == outs == ins. Different names are used to
2494     // improve readability.
2495     if (!OpsOp ||
2496         (OpsOp->getDef()->getName() != "ops" &&
2497          OpsOp->getDef()->getName() != "outs" &&
2498          OpsOp->getDef()->getName() != "ins"))
2499       P->error("Operands list should start with '(ops ... '!");
2500
2501     // Copy over the arguments.
2502     Args.clear();
2503     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2504       if (!isa<DefInit>(OpsList->getArg(j)) ||
2505           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2506         P->error("Operands list should all be 'node' values.");
2507       if (OpsList->getArgName(j).empty())
2508         P->error("Operands list should have names for each operand!");
2509       if (!OperandsSet.count(OpsList->getArgName(j)))
2510         P->error("'" + OpsList->getArgName(j) +
2511                  "' does not occur in pattern or was multiply specified!");
2512       OperandsSet.erase(OpsList->getArgName(j));
2513       Args.push_back(OpsList->getArgName(j));
2514     }
2515
2516     if (!OperandsSet.empty())
2517       P->error("Operands list does not contain an entry for operand '" +
2518                *OperandsSet.begin() + "'!");
2519
2520     // If there is a code init for this fragment, keep track of the fact that
2521     // this fragment uses it.
2522     TreePredicateFn PredFn(P);
2523     if (!PredFn.isAlwaysTrue())
2524       P->getOnlyTree()->addPredicateFn(PredFn);
2525
2526     // If there is a node transformation corresponding to this, keep track of
2527     // it.
2528     Record *Transform = Frag->getValueAsDef("OperandTransform");
2529     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2530       P->getOnlyTree()->setTransformFn(Transform);
2531   }
2532
2533   // Now that we've parsed all of the tree fragments, do a closure on them so
2534   // that there are not references to PatFrags left inside of them.
2535   for (Record *Frag : Fragments) {
2536     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2537       continue;
2538
2539     TreePattern &ThePat = *PatternFragments[Frag];
2540     ThePat.InlinePatternFragments();
2541
2542     // Infer as many types as possible.  Don't worry about it if we don't infer
2543     // all of them, some may depend on the inputs of the pattern.
2544     ThePat.InferAllTypes();
2545     ThePat.resetError();
2546
2547     // If debugging, print out the pattern fragment result.
2548     DEBUG(ThePat.dump());
2549   }
2550 }
2551
2552 void CodeGenDAGPatterns::ParseDefaultOperands() {
2553   std::vector<Record*> DefaultOps;
2554   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2555
2556   // Find some SDNode.
2557   assert(!SDNodes.empty() && "No SDNodes parsed?");
2558   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2559
2560   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2561     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2562
2563     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2564     // SomeSDnode so that we can parse this.
2565     std::vector<std::pair<Init*, std::string> > Ops;
2566     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2567       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2568                                    DefaultInfo->getArgName(op)));
2569     DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2570
2571     // Create a TreePattern to parse this.
2572     TreePattern P(DefaultOps[i], DI, false, *this);
2573     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2574
2575     // Copy the operands over into a DAGDefaultOperand.
2576     DAGDefaultOperand DefaultOpInfo;
2577
2578     TreePatternNode *T = P.getTree(0);
2579     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2580       TreePatternNode *TPN = T->getChild(op);
2581       while (TPN->ApplyTypeConstraints(P, false))
2582         /* Resolve all types */;
2583
2584       if (TPN->ContainsUnresolvedType()) {
2585         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
2586                         DefaultOps[i]->getName() +
2587                         "' doesn't have a concrete type!");
2588       }
2589       DefaultOpInfo.DefaultOps.push_back(TPN);
2590     }
2591
2592     // Insert it into the DefaultOperands map so we can find it later.
2593     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2594   }
2595 }
2596
2597 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2598 /// instruction input.  Return true if this is a real use.
2599 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2600                       std::map<std::string, TreePatternNode*> &InstInputs) {
2601   // No name -> not interesting.
2602   if (Pat->getName().empty()) {
2603     if (Pat->isLeaf()) {
2604       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2605       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2606                  DI->getDef()->isSubClassOf("RegisterOperand")))
2607         I->error("Input " + DI->getDef()->getName() + " must be named!");
2608     }
2609     return false;
2610   }
2611
2612   Record *Rec;
2613   if (Pat->isLeaf()) {
2614     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2615     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2616     Rec = DI->getDef();
2617   } else {
2618     Rec = Pat->getOperator();
2619   }
2620
2621   // SRCVALUE nodes are ignored.
2622   if (Rec->getName() == "srcvalue")
2623     return false;
2624
2625   TreePatternNode *&Slot = InstInputs[Pat->getName()];
2626   if (!Slot) {
2627     Slot = Pat;
2628     return true;
2629   }
2630   Record *SlotRec;
2631   if (Slot->isLeaf()) {
2632     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2633   } else {
2634     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2635     SlotRec = Slot->getOperator();
2636   }
2637
2638   // Ensure that the inputs agree if we've already seen this input.
2639   if (Rec != SlotRec)
2640     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2641   if (Slot->getExtTypes() != Pat->getExtTypes())
2642     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2643   return true;
2644 }
2645
2646 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2647 /// part of "I", the instruction), computing the set of inputs and outputs of
2648 /// the pattern.  Report errors if we see anything naughty.
2649 void CodeGenDAGPatterns::
2650 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2651                             std::map<std::string, TreePatternNode*> &InstInputs,
2652                             std::map<std::string, TreePatternNode*>&InstResults,
2653                             std::vector<Record*> &InstImpResults) {
2654   if (Pat->isLeaf()) {
2655     bool isUse = HandleUse(I, Pat, InstInputs);
2656     if (!isUse && Pat->getTransformFn())
2657       I->error("Cannot specify a transform function for a non-input value!");
2658     return;
2659   }
2660
2661   if (Pat->getOperator()->getName() == "implicit") {
2662     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2663       TreePatternNode *Dest = Pat->getChild(i);
2664       if (!Dest->isLeaf())
2665         I->error("implicitly defined value should be a register!");
2666
2667       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2668       if (!Val || !Val->getDef()->isSubClassOf("Register"))
2669         I->error("implicitly defined value should be a register!");
2670       InstImpResults.push_back(Val->getDef());
2671     }
2672     return;
2673   }
2674
2675   if (Pat->getOperator()->getName() != "set") {
2676     // If this is not a set, verify that the children nodes are not void typed,
2677     // and recurse.
2678     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2679       if (Pat->getChild(i)->getNumTypes() == 0)
2680         I->error("Cannot have void nodes inside of patterns!");
2681       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2682                                   InstImpResults);
2683     }
2684
2685     // If this is a non-leaf node with no children, treat it basically as if
2686     // it were a leaf.  This handles nodes like (imm).
2687     bool isUse = HandleUse(I, Pat, InstInputs);
2688
2689     if (!isUse && Pat->getTransformFn())
2690       I->error("Cannot specify a transform function for a non-input value!");
2691     return;
2692   }
2693
2694   // Otherwise, this is a set, validate and collect instruction results.
2695   if (Pat->getNumChildren() == 0)
2696     I->error("set requires operands!");
2697
2698   if (Pat->getTransformFn())
2699     I->error("Cannot specify a transform function on a set node!");
2700
2701   // Check the set destinations.
2702   unsigned NumDests = Pat->getNumChildren()-1;
2703   for (unsigned i = 0; i != NumDests; ++i) {
2704     TreePatternNode *Dest = Pat->getChild(i);
2705     if (!Dest->isLeaf())
2706       I->error("set destination should be a register!");
2707
2708     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2709     if (!Val) {
2710       I->error("set destination should be a register!");
2711       continue;
2712     }
2713
2714     if (Val->getDef()->isSubClassOf("RegisterClass") ||
2715         Val->getDef()->isSubClassOf("ValueType") ||
2716         Val->getDef()->isSubClassOf("RegisterOperand") ||
2717         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2718       if (Dest->getName().empty())
2719         I->error("set destination must have a name!");
2720       if (InstResults.count(Dest->getName()))
2721         I->error("cannot set '" + Dest->getName() +"' multiple times");
2722       InstResults[Dest->getName()] = Dest;
2723     } else if (Val->getDef()->isSubClassOf("Register")) {
2724       InstImpResults.push_back(Val->getDef());
2725     } else {
2726       I->error("set destination should be a register!");
2727     }
2728   }
2729
2730   // Verify and collect info from the computation.
2731   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2732                               InstInputs, InstResults, InstImpResults);
2733 }
2734
2735 //===----------------------------------------------------------------------===//
2736 // Instruction Analysis
2737 //===----------------------------------------------------------------------===//
2738
2739 class InstAnalyzer {
2740   const CodeGenDAGPatterns &CDP;
2741 public:
2742   bool hasSideEffects;
2743   bool mayStore;
2744   bool mayLoad;
2745   bool isBitcast;
2746   bool isVariadic;
2747
2748   InstAnalyzer(const CodeGenDAGPatterns &cdp)
2749     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2750       isBitcast(false), isVariadic(false) {}
2751
2752   void Analyze(const TreePattern *Pat) {
2753     // Assume only the first tree is the pattern. The others are clobber nodes.
2754     AnalyzeNode(Pat->getTree(0));
2755   }
2756
2757   void Analyze(const PatternToMatch *Pat) {
2758     AnalyzeNode(Pat->getSrcPattern());
2759   }
2760
2761 private:
2762   bool IsNodeBitcast(const TreePatternNode *N) const {
2763     if (hasSideEffects || mayLoad || mayStore || isVariadic)
2764       return false;
2765
2766     if (N->getNumChildren() != 2)
2767       return false;
2768
2769     const TreePatternNode *N0 = N->getChild(0);
2770     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2771       return false;
2772
2773     const TreePatternNode *N1 = N->getChild(1);
2774     if (N1->isLeaf())
2775       return false;
2776     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2777       return false;
2778
2779     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2780     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2781       return false;
2782     return OpInfo.getEnumName() == "ISD::BITCAST";
2783   }
2784
2785 public:
2786   void AnalyzeNode(const TreePatternNode *N) {
2787     if (N->isLeaf()) {
2788       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2789         Record *LeafRec = DI->getDef();
2790         // Handle ComplexPattern leaves.
2791         if (LeafRec->isSubClassOf("ComplexPattern")) {
2792           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2793           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2794           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2795           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2796         }
2797       }
2798       return;
2799     }
2800
2801     // Analyze children.
2802     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2803       AnalyzeNode(N->getChild(i));
2804
2805     // Ignore set nodes, which are not SDNodes.
2806     if (N->getOperator()->getName() == "set") {
2807       isBitcast = IsNodeBitcast(N);
2808       return;
2809     }
2810
2811     // Notice properties of the node.
2812     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
2813     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
2814     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
2815     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
2816
2817     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2818       // If this is an intrinsic, analyze it.
2819       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2820         mayLoad = true;// These may load memory.
2821
2822       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2823         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2824
2825       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2826         // WriteMem intrinsics can have other strange effects.
2827         hasSideEffects = true;
2828     }
2829   }
2830
2831 };
2832
2833 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2834                              const InstAnalyzer &PatInfo,
2835                              Record *PatDef) {
2836   bool Error = false;
2837
2838   // Remember where InstInfo got its flags.
2839   if (InstInfo.hasUndefFlags())
2840       InstInfo.InferredFrom = PatDef;
2841
2842   // Check explicitly set flags for consistency.
2843   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2844       !InstInfo.hasSideEffects_Unset) {
2845     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2846     // the pattern has no side effects. That could be useful for div/rem
2847     // instructions that may trap.
2848     if (!InstInfo.hasSideEffects) {
2849       Error = true;
2850       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2851                  Twine(InstInfo.hasSideEffects));
2852     }
2853   }
2854
2855   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2856     Error = true;
2857     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2858                Twine(InstInfo.mayStore));
2859   }
2860
2861   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2862     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2863     // Some targets translate immediates to loads.
2864     if (!InstInfo.mayLoad) {
2865       Error = true;
2866       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2867                  Twine(InstInfo.mayLoad));
2868     }
2869   }
2870
2871   // Transfer inferred flags.
2872   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2873   InstInfo.mayStore |= PatInfo.mayStore;
2874   InstInfo.mayLoad |= PatInfo.mayLoad;
2875
2876   // These flags are silently added without any verification.
2877   InstInfo.isBitcast |= PatInfo.isBitcast;
2878
2879   // Don't infer isVariadic. This flag means something different on SDNodes and
2880   // instructions. For example, a CALL SDNode is variadic because it has the
2881   // call arguments as operands, but a CALL instruction is not variadic - it
2882   // has argument registers as implicit, not explicit uses.
2883
2884   return Error;
2885 }
2886
2887 /// hasNullFragReference - Return true if the DAG has any reference to the
2888 /// null_frag operator.
2889 static bool hasNullFragReference(DagInit *DI) {
2890   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2891   if (!OpDef) return false;
2892   Record *Operator = OpDef->getDef();
2893
2894   // If this is the null fragment, return true.
2895   if (Operator->getName() == "null_frag") return true;
2896   // If any of the arguments reference the null fragment, return true.
2897   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2898     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2899     if (Arg && hasNullFragReference(Arg))
2900       return true;
2901   }
2902
2903   return false;
2904 }
2905
2906 /// hasNullFragReference - Return true if any DAG in the list references
2907 /// the null_frag operator.
2908 static bool hasNullFragReference(ListInit *LI) {
2909   for (Init *I : LI->getValues()) {
2910     DagInit *DI = dyn_cast<DagInit>(I);
2911     assert(DI && "non-dag in an instruction Pattern list?!");
2912     if (hasNullFragReference(DI))
2913       return true;
2914   }
2915   return false;
2916 }
2917
2918 /// Get all the instructions in a tree.
2919 static void
2920 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2921   if (Tree->isLeaf())
2922     return;
2923   if (Tree->getOperator()->isSubClassOf("Instruction"))
2924     Instrs.push_back(Tree->getOperator());
2925   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2926     getInstructionsInTree(Tree->getChild(i), Instrs);
2927 }
2928
2929 /// Check the class of a pattern leaf node against the instruction operand it
2930 /// represents.
2931 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2932                               Record *Leaf) {
2933   if (OI.Rec == Leaf)
2934     return true;
2935
2936   // Allow direct value types to be used in instruction set patterns.
2937   // The type will be checked later.
2938   if (Leaf->isSubClassOf("ValueType"))
2939     return true;
2940
2941   // Patterns can also be ComplexPattern instances.
2942   if (Leaf->isSubClassOf("ComplexPattern"))
2943     return true;
2944
2945   return false;
2946 }
2947
2948 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
2949     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
2950
2951   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
2952
2953   // Parse the instruction.
2954   TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
2955   // Inline pattern fragments into it.
2956   I->InlinePatternFragments();
2957
2958   // Infer as many types as possible.  If we cannot infer all of them, we can
2959   // never do anything with this instruction pattern: report it to the user.
2960   if (!I->InferAllTypes())
2961     I->error("Could not infer all types in pattern!");
2962
2963   // InstInputs - Keep track of all of the inputs of the instruction, along
2964   // with the record they are declared as.
2965   std::map<std::string, TreePatternNode*> InstInputs;
2966
2967   // InstResults - Keep track of all the virtual registers that are 'set'
2968   // in the instruction, including what reg class they are.
2969   std::map<std::string, TreePatternNode*> InstResults;
2970
2971   std::vector<Record*> InstImpResults;
2972
2973   // Verify that the top-level forms in the instruction are of void type, and
2974   // fill in the InstResults map.
2975   for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2976     TreePatternNode *Pat = I->getTree(j);
2977     if (Pat->getNumTypes() != 0)
2978       I->error("Top-level forms in instruction pattern should have"
2979                " void types");
2980
2981     // Find inputs and outputs, and verify the structure of the uses/defs.
2982     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2983                                 InstImpResults);
2984   }
2985
2986   // Now that we have inputs and outputs of the pattern, inspect the operands
2987   // list for the instruction.  This determines the order that operands are
2988   // added to the machine instruction the node corresponds to.
2989   unsigned NumResults = InstResults.size();
2990
2991   // Parse the operands list from the (ops) list, validating it.
2992   assert(I->getArgList().empty() && "Args list should still be empty here!");
2993
2994   // Check that all of the results occur first in the list.
2995   std::vector<Record*> Results;
2996   SmallVector<TreePatternNode *, 2> ResNodes;
2997   for (unsigned i = 0; i != NumResults; ++i) {
2998     if (i == CGI.Operands.size())
2999       I->error("'" + InstResults.begin()->first +
3000                "' set but does not appear in operand list!");
3001     const std::string &OpName = CGI.Operands[i].Name;
3002
3003     // Check that it exists in InstResults.
3004     TreePatternNode *RNode = InstResults[OpName];
3005     if (!RNode)
3006       I->error("Operand $" + OpName + " does not exist in operand list!");
3007
3008     ResNodes.push_back(RNode);
3009
3010     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3011     if (!R)
3012       I->error("Operand $" + OpName + " should be a set destination: all "
3013                "outputs must occur before inputs in operand list!");
3014
3015     if (!checkOperandClass(CGI.Operands[i], R))
3016       I->error("Operand $" + OpName + " class mismatch!");
3017
3018     // Remember the return type.
3019     Results.push_back(CGI.Operands[i].Rec);
3020
3021     // Okay, this one checks out.
3022     InstResults.erase(OpName);
3023   }
3024
3025   // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3026   // the copy while we're checking the inputs.
3027   std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3028
3029   std::vector<TreePatternNode*> ResultNodeOperands;
3030   std::vector<Record*> Operands;
3031   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3032     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3033     const std::string &OpName = Op.Name;
3034     if (OpName.empty())
3035       I->error("Operand #" + utostr(i) + " in operands list has no name!");
3036
3037     if (!InstInputsCheck.count(OpName)) {
3038       // If this is an operand with a DefaultOps set filled in, we can ignore
3039       // this.  When we codegen it, we will do so as always executed.
3040       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3041         // Does it have a non-empty DefaultOps field?  If so, ignore this
3042         // operand.
3043         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3044           continue;
3045       }
3046       I->error("Operand $" + OpName +
3047                " does not appear in the instruction pattern");
3048     }
3049     TreePatternNode *InVal = InstInputsCheck[OpName];
3050     InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3051
3052     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3053       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3054       if (!checkOperandClass(Op, InRec))
3055         I->error("Operand $" + OpName + "'s register class disagrees"
3056                  " between the operand and pattern");
3057     }
3058     Operands.push_back(Op.Rec);
3059
3060     // Construct the result for the dest-pattern operand list.
3061     TreePatternNode *OpNode = InVal->clone();
3062
3063     // No predicate is useful on the result.
3064     OpNode->clearPredicateFns();
3065
3066     // Promote the xform function to be an explicit node if set.
3067     if (Record *Xform = OpNode->getTransformFn()) {
3068       OpNode->setTransformFn(nullptr);
3069       std::vector<TreePatternNode*> Children;
3070       Children.push_back(OpNode);
3071       OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3072     }
3073
3074     ResultNodeOperands.push_back(OpNode);
3075   }
3076
3077   if (!InstInputsCheck.empty())
3078     I->error("Input operand $" + InstInputsCheck.begin()->first +
3079              " occurs in pattern but not in operands list!");
3080
3081   TreePatternNode *ResultPattern =
3082     new TreePatternNode(I->getRecord(), ResultNodeOperands,
3083                         GetNumNodeResults(I->getRecord(), *this));
3084   // Copy fully inferred output node types to instruction result pattern.
3085   for (unsigned i = 0; i != NumResults; ++i) {
3086     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3087     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3088   }
3089
3090   // Create and insert the instruction.
3091   // FIXME: InstImpResults should not be part of DAGInstruction.
3092   DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3093   DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3094
3095   // Use a temporary tree pattern to infer all types and make sure that the
3096   // constructed result is correct.  This depends on the instruction already
3097   // being inserted into the DAGInsts map.
3098   TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3099   Temp.InferAllTypes(&I->getNamedNodesMap());
3100
3101   DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3102   TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3103
3104   return TheInsertedInst;
3105 }
3106
3107 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3108 /// any fragments involved.  This populates the Instructions list with fully
3109 /// resolved instructions.
3110 void CodeGenDAGPatterns::ParseInstructions() {
3111   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3112
3113   for (Record *Instr : Instrs) {
3114     ListInit *LI = nullptr;
3115
3116     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3117       LI = Instr->getValueAsListInit("Pattern");
3118
3119     // If there is no pattern, only collect minimal information about the
3120     // instruction for its operand list.  We have to assume that there is one
3121     // result, as we have no detailed info. A pattern which references the
3122     // null_frag operator is as-if no pattern were specified. Normally this
3123     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3124     // null_frag.
3125     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3126       std::vector<Record*> Results;
3127       std::vector<Record*> Operands;
3128
3129       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3130
3131       if (InstInfo.Operands.size() != 0) {
3132         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3133           Results.push_back(InstInfo.Operands[j].Rec);
3134
3135         // The rest are inputs.
3136         for (unsigned j = InstInfo.Operands.NumDefs,
3137                e = InstInfo.Operands.size(); j < e; ++j)
3138           Operands.push_back(InstInfo.Operands[j].Rec);
3139       }
3140
3141       // Create and insert the instruction.
3142       std::vector<Record*> ImpResults;
3143       Instructions.insert(std::make_pair(Instr,
3144                           DAGInstruction(nullptr, Results, Operands, ImpResults)));
3145       continue;  // no pattern.
3146     }
3147
3148     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3149     const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3150
3151     (void)DI;
3152     DEBUG(DI.getPattern()->dump());
3153   }
3154
3155   // If we can, convert the instructions to be patterns that are matched!
3156   for (auto &Entry : Instructions) {
3157     DAGInstruction &TheInst = Entry.second;
3158     TreePattern *I = TheInst.getPattern();
3159     if (!I) continue;  // No pattern.
3160
3161     // FIXME: Assume only the first tree is the pattern. The others are clobber
3162     // nodes.
3163     TreePatternNode *Pattern = I->getTree(0);
3164     TreePatternNode *SrcPattern;
3165     if (Pattern->getOperator()->getName() == "set") {
3166       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3167     } else{
3168       // Not a set (store or something?)
3169       SrcPattern = Pattern;
3170     }
3171
3172     Record *Instr = Entry.first;
3173     AddPatternToMatch(I,
3174                       PatternToMatch(Instr,
3175                                      Instr->getValueAsListInit("Predicates"),
3176                                      SrcPattern,
3177                                      TheInst.getResultPattern(),
3178                                      TheInst.getImpResults(),
3179                                      Instr->getValueAsInt("AddedComplexity"),
3180                                      Instr->getID()));
3181   }
3182 }
3183
3184
3185 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3186
3187 static void FindNames(const TreePatternNode *P,
3188                       std::map<std::string, NameRecord> &Names,
3189                       TreePattern *PatternTop) {
3190   if (!P->getName().empty()) {
3191     NameRecord &Rec = Names[P->getName()];
3192     // If this is the first instance of the name, remember the node.
3193     if (Rec.second++ == 0)
3194       Rec.first = P;
3195     else if (Rec.first->getExtTypes() != P->getExtTypes())
3196       PatternTop->error("repetition of value: $" + P->getName() +
3197                         " where different uses have different types!");
3198   }
3199
3200   if (!P->isLeaf()) {
3201     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3202       FindNames(P->getChild(i), Names, PatternTop);
3203   }
3204 }
3205
3206 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3207                                            const PatternToMatch &PTM) {
3208   // Do some sanity checking on the pattern we're about to match.
3209   std::string Reason;
3210   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3211     PrintWarning(Pattern->getRecord()->getLoc(),
3212       Twine("Pattern can never match: ") + Reason);
3213     return;
3214   }
3215
3216   // If the source pattern's root is a complex pattern, that complex pattern
3217   // must specify the nodes it can potentially match.
3218   if (const ComplexPattern *CP =
3219         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3220     if (CP->getRootNodes().empty())
3221       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3222                      " could match");
3223
3224
3225   // Find all of the named values in the input and output, ensure they have the
3226   // same type.
3227   std::map<std::string, NameRecord> SrcNames, DstNames;
3228   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3229   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3230
3231   // Scan all of the named values in the destination pattern, rejecting them if
3232   // they don't exist in the input pattern.
3233   for (const auto &Entry : DstNames) {
3234     if (SrcNames[Entry.first].first == nullptr)
3235       Pattern->error("Pattern has input without matching name in output: $" +
3236                      Entry.first);
3237   }
3238
3239   // Scan all of the named values in the source pattern, rejecting them if the
3240   // name isn't used in the dest, and isn't used to tie two values together.
3241   for (const auto &Entry : SrcNames)
3242     if (DstNames[Entry.first].first == nullptr &&
3243         SrcNames[Entry.first].second == 1)
3244       Pattern->error("Pattern has dead named input: $" + Entry.first);
3245
3246   PatternsToMatch.push_back(PTM);
3247 }
3248
3249
3250
3251 void CodeGenDAGPatterns::InferInstructionFlags() {
3252   const std::vector<const CodeGenInstruction*> &Instructions =
3253     Target.getInstructionsByEnumValue();
3254
3255   // First try to infer flags from the primary instruction pattern, if any.
3256   SmallVector<CodeGenInstruction*, 8> Revisit;
3257   unsigned Errors = 0;
3258   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3259     CodeGenInstruction &InstInfo =
3260       const_cast<CodeGenInstruction &>(*Instructions[i]);
3261
3262     // Get the primary instruction pattern.
3263     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3264     if (!Pattern) {
3265       if (InstInfo.hasUndefFlags())
3266         Revisit.push_back(&InstInfo);
3267       continue;
3268     }
3269     InstAnalyzer PatInfo(*this);
3270     PatInfo.Analyze(Pattern);
3271     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3272   }
3273
3274   // Second, look for single-instruction patterns defined outside the
3275   // instruction.
3276   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3277     const PatternToMatch &PTM = *I;
3278
3279     // We can only infer from single-instruction patterns, otherwise we won't
3280     // know which instruction should get the flags.
3281     SmallVector<Record*, 8> PatInstrs;
3282     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3283     if (PatInstrs.size() != 1)
3284       continue;
3285
3286     // Get the single instruction.
3287     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3288
3289     // Only infer properties from the first pattern. We'll verify the others.
3290     if (InstInfo.InferredFrom)
3291       continue;
3292
3293     InstAnalyzer PatInfo(*this);
3294     PatInfo.Analyze(&PTM);
3295     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3296   }
3297
3298   if (Errors)
3299     PrintFatalError("pattern conflicts");
3300
3301   // Revisit instructions with undefined flags and no pattern.
3302   if (Target.guessInstructionProperties()) {
3303     for (CodeGenInstruction *InstInfo : Revisit) {
3304       if (InstInfo->InferredFrom)
3305         continue;
3306       // The mayLoad and mayStore flags default to false.
3307       // Conservatively assume hasSideEffects if it wasn't explicit.
3308       if (InstInfo->hasSideEffects_Unset)
3309         InstInfo->hasSideEffects = true;
3310     }
3311     return;
3312   }
3313
3314   // Complain about any flags that are still undefined.
3315   for (CodeGenInstruction *InstInfo : Revisit) {
3316     if (InstInfo->InferredFrom)
3317       continue;
3318     if (InstInfo->hasSideEffects_Unset)
3319       PrintError(InstInfo->TheDef->getLoc(),
3320                  "Can't infer hasSideEffects from patterns");
3321     if (InstInfo->mayStore_Unset)
3322       PrintError(InstInfo->TheDef->getLoc(),
3323                  "Can't infer mayStore from patterns");
3324     if (InstInfo->mayLoad_Unset)
3325       PrintError(InstInfo->TheDef->getLoc(),
3326                  "Can't infer mayLoad from patterns");
3327   }
3328 }
3329
3330
3331 /// Verify instruction flags against pattern node properties.
3332 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3333   unsigned Errors = 0;
3334   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3335     const PatternToMatch &PTM = *I;
3336     SmallVector<Record*, 8> Instrs;
3337     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3338     if (Instrs.empty())
3339       continue;
3340
3341     // Count the number of instructions with each flag set.
3342     unsigned NumSideEffects = 0;
3343     unsigned NumStores = 0;
3344     unsigned NumLoads = 0;
3345     for (const Record *Instr : Instrs) {
3346       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3347       NumSideEffects += InstInfo.hasSideEffects;
3348       NumStores += InstInfo.mayStore;
3349       NumLoads += InstInfo.mayLoad;
3350     }
3351
3352     // Analyze the source pattern.
3353     InstAnalyzer PatInfo(*this);
3354     PatInfo.Analyze(&PTM);
3355
3356     // Collect error messages.
3357     SmallVector<std::string, 4> Msgs;
3358
3359     // Check for missing flags in the output.
3360     // Permit extra flags for now at least.
3361     if (PatInfo.hasSideEffects && !NumSideEffects)
3362       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3363
3364     // Don't verify store flags on instructions with side effects. At least for
3365     // intrinsics, side effects implies mayStore.
3366     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3367       Msgs.push_back("pattern may store, but mayStore isn't set");
3368
3369     // Similarly, mayStore implies mayLoad on intrinsics.
3370     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3371       Msgs.push_back("pattern may load, but mayLoad isn't set");
3372
3373     // Print error messages.
3374     if (Msgs.empty())
3375       continue;
3376     ++Errors;
3377
3378     for (const std::string &Msg : Msgs)
3379       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3380                  (Instrs.size() == 1 ?
3381                   "instruction" : "output instructions"));
3382     // Provide the location of the relevant instruction definitions.
3383     for (const Record *Instr : Instrs) {
3384       if (Instr != PTM.getSrcRecord())
3385         PrintError(Instr->getLoc(), "defined here");
3386       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3387       if (InstInfo.InferredFrom &&
3388           InstInfo.InferredFrom != InstInfo.TheDef &&
3389           InstInfo.InferredFrom != PTM.getSrcRecord())
3390         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3391     }
3392   }
3393   if (Errors)
3394     PrintFatalError("Errors in DAG patterns");
3395 }
3396
3397 /// Given a pattern result with an unresolved type, see if we can find one
3398 /// instruction with an unresolved result type.  Force this result type to an
3399 /// arbitrary element if it's possible types to converge results.
3400 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3401   if (N->isLeaf())
3402     return false;
3403
3404   // Analyze children.
3405   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3406     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3407       return true;
3408
3409   if (!N->getOperator()->isSubClassOf("Instruction"))
3410     return false;
3411
3412   // If this type is already concrete or completely unknown we can't do
3413   // anything.
3414   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3415     if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3416       continue;
3417
3418     // Otherwise, force its type to the first possibility (an arbitrary choice).
3419     if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3420       return true;
3421   }
3422
3423   return false;
3424 }
3425
3426 void CodeGenDAGPatterns::ParsePatterns() {
3427   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3428
3429   for (Record *CurPattern : Patterns) {
3430     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3431
3432     // If the pattern references the null_frag, there's nothing to do.
3433     if (hasNullFragReference(Tree))
3434       continue;
3435
3436     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3437
3438     // Inline pattern fragments into it.
3439     Pattern->InlinePatternFragments();
3440
3441     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3442     if (LI->empty()) continue;  // no pattern.
3443
3444     // Parse the instruction.
3445     TreePattern Result(CurPattern, LI, false, *this);
3446
3447     // Inline pattern fragments into it.
3448     Result.InlinePatternFragments();
3449
3450     if (Result.getNumTrees() != 1)
3451       Result.error("Cannot handle instructions producing instructions "
3452                    "with temporaries yet!");
3453
3454     bool IterateInference;
3455     bool InferredAllPatternTypes, InferredAllResultTypes;
3456     do {
3457       // Infer as many types as possible.  If we cannot infer all of them, we
3458       // can never do anything with this pattern: report it to the user.
3459       InferredAllPatternTypes =
3460         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3461
3462       // Infer as many types as possible.  If we cannot infer all of them, we
3463       // can never do anything with this pattern: report it to the user.
3464       InferredAllResultTypes =
3465           Result.InferAllTypes(&Pattern->getNamedNodesMap());
3466
3467       IterateInference = false;
3468
3469       // Apply the type of the result to the source pattern.  This helps us
3470       // resolve cases where the input type is known to be a pointer type (which
3471       // is considered resolved), but the result knows it needs to be 32- or
3472       // 64-bits.  Infer the other way for good measure.
3473       for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3474                                         Pattern->getTree(0)->getNumTypes());
3475            i != e; ++i) {
3476         IterateInference = Pattern->getTree(0)->UpdateNodeType(
3477             i, Result.getTree(0)->getExtType(i), Result);
3478         IterateInference |= Result.getTree(0)->UpdateNodeType(
3479             i, Pattern->getTree(0)->getExtType(i), Result);
3480       }
3481
3482       // If our iteration has converged and the input pattern's types are fully
3483       // resolved but the result pattern is not fully resolved, we may have a
3484       // situation where we have two instructions in the result pattern and
3485       // the instructions require a common register class, but don't care about
3486       // what actual MVT is used.  This is actually a bug in our modelling:
3487       // output patterns should have register classes, not MVTs.
3488       //
3489       // In any case, to handle this, we just go through and disambiguate some
3490       // arbitrary types to the result pattern's nodes.
3491       if (!IterateInference && InferredAllPatternTypes &&
3492           !InferredAllResultTypes)
3493         IterateInference =
3494             ForceArbitraryInstResultType(Result.getTree(0), Result);
3495     } while (IterateInference);
3496
3497     // Verify that we inferred enough types that we can do something with the
3498     // pattern and result.  If these fire the user has to add type casts.
3499     if (!InferredAllPatternTypes)
3500       Pattern->error("Could not infer all types in pattern!");
3501     if (!InferredAllResultTypes) {
3502       Pattern->dump();
3503       Result.error("Could not infer all types in pattern result!");
3504     }
3505
3506     // Validate that the input pattern is correct.
3507     std::map<std::string, TreePatternNode*> InstInputs;
3508     std::map<std::string, TreePatternNode*> InstResults;
3509     std::vector<Record*> InstImpResults;
3510     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3511       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3512                                   InstInputs, InstResults,
3513                                   InstImpResults);
3514
3515     // Promote the xform function to be an explicit node if set.
3516     TreePatternNode *DstPattern = Result.getOnlyTree();
3517     std::vector<TreePatternNode*> ResultNodeOperands;
3518     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3519       TreePatternNode *OpNode = DstPattern->getChild(ii);
3520       if (Record *Xform = OpNode->getTransformFn()) {
3521         OpNode->setTransformFn(nullptr);
3522         std::vector<TreePatternNode*> Children;
3523         Children.push_back(OpNode);
3524         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3525       }
3526       ResultNodeOperands.push_back(OpNode);
3527     }
3528     DstPattern = Result.getOnlyTree();
3529     if (!DstPattern->isLeaf())
3530       DstPattern = new TreePatternNode(DstPattern->getOperator(),
3531                                        ResultNodeOperands,
3532                                        DstPattern->getNumTypes());
3533
3534     for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3535       DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3536
3537     TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
3538     Temp.InferAllTypes();
3539
3540
3541     AddPatternToMatch(Pattern,
3542                     PatternToMatch(CurPattern,
3543                                    CurPattern->getValueAsListInit("Predicates"),
3544                                    Pattern->getTree(0),
3545                                    Temp.getOnlyTree(), InstImpResults,
3546                                    CurPattern->getValueAsInt("AddedComplexity"),
3547                                    CurPattern->getID()));
3548   }
3549 }
3550
3551 /// CombineChildVariants - Given a bunch of permutations of each child of the
3552 /// 'operator' node, put them together in all possible ways.
3553 static void CombineChildVariants(TreePatternNode *Orig,
3554                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3555                                  std::vector<TreePatternNode*> &OutVariants,
3556                                  CodeGenDAGPatterns &CDP,
3557                                  const MultipleUseVarSet &DepVars) {
3558   // Make sure that each operand has at least one variant to choose from.
3559   for (const auto &Variants : ChildVariants)
3560     if (Variants.empty())
3561       return;
3562
3563   // The end result is an all-pairs construction of the resultant pattern.
3564   std::vector<unsigned> Idxs;
3565   Idxs.resize(ChildVariants.size());
3566   bool NotDone;
3567   do {
3568 #ifndef NDEBUG
3569     DEBUG(if (!Idxs.empty()) {
3570             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3571               for (unsigned Idx : Idxs) {
3572                 errs() << Idx << " ";
3573             }
3574             errs() << "]\n";
3575           });
3576 #endif
3577     // Create the variant and add it to the output list.
3578     std::vector<TreePatternNode*> NewChildren;
3579     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3580       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3581     auto R = llvm::make_unique<TreePatternNode>(
3582         Orig->getOperator(), NewChildren, Orig->getNumTypes());
3583
3584     // Copy over properties.
3585     R->setName(Orig->getName());
3586     R->setPredicateFns(Orig->getPredicateFns());
3587     R->setTransformFn(Orig->getTransformFn());
3588     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3589       R->setType(i, Orig->getExtType(i));
3590
3591     // If this pattern cannot match, do not include it as a variant.
3592     std::string ErrString;
3593     // Scan to see if this pattern has already been emitted.  We can get
3594     // duplication due to things like commuting:
3595     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3596     // which are the same pattern.  Ignore the dups.
3597     if (R->canPatternMatch(ErrString, CDP) &&
3598         std::none_of(OutVariants.begin(), OutVariants.end(),
3599                      [&](TreePatternNode *Variant) {
3600                        return R->isIsomorphicTo(Variant, DepVars);
3601                      }))
3602       OutVariants.push_back(R.release());
3603
3604     // Increment indices to the next permutation by incrementing the
3605     // indices from last index backward, e.g., generate the sequence
3606     // [0, 0], [0, 1], [1, 0], [1, 1].
3607     int IdxsIdx;
3608     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3609       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3610         Idxs[IdxsIdx] = 0;
3611       else
3612         break;
3613     }
3614     NotDone = (IdxsIdx >= 0);
3615   } while (NotDone);
3616 }
3617
3618 /// CombineChildVariants - A helper function for binary operators.
3619 ///
3620 static void CombineChildVariants(TreePatternNode *Orig,
3621                                  const std::vector<TreePatternNode*> &LHS,
3622                                  const std::vector<TreePatternNode*> &RHS,
3623                                  std::vector<TreePatternNode*> &OutVariants,
3624                                  CodeGenDAGPatterns &CDP,
3625                                  const MultipleUseVarSet &DepVars) {
3626   std::vector<std::vector<TreePatternNode*> > ChildVariants;
3627   ChildVariants.push_back(LHS);
3628   ChildVariants.push_back(RHS);
3629   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3630 }
3631
3632
3633 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3634                                      std::vector<TreePatternNode *> &Children) {
3635   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3636   Record *Operator = N->getOperator();
3637
3638   // Only permit raw nodes.
3639   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3640       N->getTransformFn()) {
3641     Children.push_back(N);
3642     return;
3643   }
3644
3645   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3646     Children.push_back(N->getChild(0));
3647   else
3648     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3649
3650   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3651     Children.push_back(N->getChild(1));
3652   else
3653     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3654 }
3655
3656 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3657 /// the (potentially recursive) pattern by using algebraic laws.
3658 ///
3659 static void GenerateVariantsOf(TreePatternNode *N,
3660                                std::vector<TreePatternNode*> &OutVariants,
3661                                CodeGenDAGPatterns &CDP,
3662                                const MultipleUseVarSet &DepVars) {
3663   // We cannot permute leaves or ComplexPattern uses.
3664   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
3665     OutVariants.push_back(N);
3666     return;
3667   }
3668
3669   // Look up interesting info about the node.
3670   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3671
3672   // If this node is associative, re-associate.
3673   if (NodeInfo.hasProperty(SDNPAssociative)) {
3674     // Re-associate by pulling together all of the linked operators
3675     std::vector<TreePatternNode*> MaximalChildren;
3676     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3677
3678     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3679     // permutations.
3680     if (MaximalChildren.size() == 3) {
3681       // Find the variants of all of our maximal children.
3682       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3683       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3684       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3685       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3686
3687       // There are only two ways we can permute the tree:
3688       //   (A op B) op C    and    A op (B op C)
3689       // Within these forms, we can also permute A/B/C.
3690
3691       // Generate legal pair permutations of A/B/C.
3692       std::vector<TreePatternNode*> ABVariants;
3693       std::vector<TreePatternNode*> BAVariants;
3694       std::vector<TreePatternNode*> ACVariants;
3695       std::vector<TreePatternNode*> CAVariants;
3696       std::vector<TreePatternNode*> BCVariants;
3697       std::vector<TreePatternNode*> CBVariants;
3698       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3699       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3700       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3701       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3702       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3703       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3704
3705       // Combine those into the result: (x op x) op x
3706       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3707       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3708       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3709       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3710       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3711       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3712
3713       // Combine those into the result: x op (x op x)
3714       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3715       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3716       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3717       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3718       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3719       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3720       return;
3721     }
3722   }
3723
3724   // Compute permutations of all children.
3725   std::vector<std::vector<TreePatternNode*> > ChildVariants;
3726   ChildVariants.resize(N->getNumChildren());
3727   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3728     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3729
3730   // Build all permutations based on how the children were formed.
3731   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3732
3733   // If this node is commutative, consider the commuted order.
3734   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3735   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3736     assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3737            "Commutative but doesn't have 2 children!");
3738     // Don't count children which are actually register references.
3739     unsigned NC = 0;
3740     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3741       TreePatternNode *Child = N->getChild(i);
3742       if (Child->isLeaf())
3743         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3744           Record *RR = DI->getDef();
3745           if (RR->isSubClassOf("Register"))
3746             continue;
3747         }
3748       NC++;
3749     }
3750     // Consider the commuted order.
3751     if (isCommIntrinsic) {
3752       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3753       // operands are the commutative operands, and there might be more operands
3754       // after those.
3755       assert(NC >= 3 &&
3756              "Commutative intrinsic should have at least 3 children!");
3757       std::vector<std::vector<TreePatternNode*> > Variants;
3758       Variants.push_back(ChildVariants[0]); // Intrinsic id.
3759       Variants.push_back(ChildVariants[2]);
3760       Variants.push_back(ChildVariants[1]);
3761       for (unsigned i = 3; i != NC; ++i)
3762         Variants.push_back(ChildVariants[i]);
3763       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3764     } else if (NC == 2)
3765       CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3766                            OutVariants, CDP, DepVars);
3767   }
3768 }
3769
3770
3771 // GenerateVariants - Generate variants.  For example, commutative patterns can
3772 // match multiple ways.  Add them to PatternsToMatch as well.
3773 void CodeGenDAGPatterns::GenerateVariants() {
3774   DEBUG(errs() << "Generating instruction variants.\n");
3775
3776   // Loop over all of the patterns we've collected, checking to see if we can
3777   // generate variants of the instruction, through the exploitation of
3778   // identities.  This permits the target to provide aggressive matching without
3779   // the .td file having to contain tons of variants of instructions.
3780   //
3781   // Note that this loop adds new patterns to the PatternsToMatch list, but we
3782   // intentionally do not reconsider these.  Any variants of added patterns have
3783   // already been added.
3784   //
3785   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3786     MultipleUseVarSet             DepVars;
3787     std::vector<TreePatternNode*> Variants;
3788     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3789     DEBUG(errs() << "Dependent/multiply used variables: ");
3790     DEBUG(DumpDepVars(DepVars));
3791     DEBUG(errs() << "\n");
3792     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3793                        DepVars);
3794
3795     assert(!Variants.empty() && "Must create at least original variant!");
3796     Variants.erase(Variants.begin());  // Remove the original pattern.
3797
3798     if (Variants.empty())  // No variants for this pattern.
3799       continue;
3800
3801     DEBUG(errs() << "FOUND VARIANTS OF: ";
3802           PatternsToMatch[i].getSrcPattern()->dump();
3803           errs() << "\n");
3804
3805     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3806       TreePatternNode *Variant = Variants[v];
3807
3808       DEBUG(errs() << "  VAR#" << v <<  ": ";
3809             Variant->dump();
3810             errs() << "\n");
3811
3812       // Scan to see if an instruction or explicit pattern already matches this.
3813       bool AlreadyExists = false;
3814       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3815         // Skip if the top level predicates do not match.
3816         if (PatternsToMatch[i].getPredicates() !=
3817             PatternsToMatch[p].getPredicates())
3818           continue;
3819         // Check to see if this variant already exists.
3820         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3821                                     DepVars)) {
3822           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3823           AlreadyExists = true;
3824           break;
3825         }
3826       }
3827       // If we already have it, ignore the variant.
3828       if (AlreadyExists) continue;
3829
3830       // Otherwise, add it to the list of patterns we have.
3831       PatternsToMatch.emplace_back(
3832           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
3833           Variant, PatternsToMatch[i].getDstPattern(),
3834           PatternsToMatch[i].getDstRegs(),
3835           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID());
3836     }
3837
3838     DEBUG(errs() << "\n");
3839   }
3840 }