Default SetVector to use a DenseSet.
[oota-llvm.git] / utils / TableGen / AsmMatcherEmitter.cpp
1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
13 //
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
16 //
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
23 //
24 // Some example inputs, for X86:
25 //   'addl' (immediate ...) (register ...)
26 //   'add' (immediate ...) (memory ...)
27 //   'call' '*' %epc
28 //
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
32 //
33 //  - It may be ambiguous; many architectures can legally encode particular
34 //    variants of an instruction in different ways (for example, using a smaller
35 //    encoding for small immediates). Such ambiguities should never be
36 //    arbitrarily resolved by the assembler, the assembler is always responsible
37 //    for choosing the "best" available instruction.
38 //
39 //  - It may depend on the subtarget or the assembler context. Instructions
40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 //    an SSE instruction in a file being assembled for i486) should be accepted
42 //    and rejected by the assembler front end. However, if the proper encoding
43 //    for an instruction is dependent on the assembler context then the matcher
44 //    is responsible for selecting the correct machine instruction for the
45 //    current mode.
46 //
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
51 //
52 // The matching is divided into two distinct phases:
53 //
54 //   1. Classification: Each operand is mapped to the unique set which (a)
55 //      contains it, and (b) is the largest such subset for which a single
56 //      instruction could match all members.
57 //
58 //      For register classes, we can generate these subgroups automatically. For
59 //      arbitrary operands, we expect the user to define the classes and their
60 //      relations to one another (for example, 8-bit signed immediates as a
61 //      subset of 32-bit immediates).
62 //
63 //      By partitioning the operands in this way, we guarantee that for any
64 //      tuple of classes, any single instruction must match either all or none
65 //      of the sets of operands which could classify to that tuple.
66 //
67 //      In addition, the subset relation amongst classes induces a partial order
68 //      on such tuples, which we use to resolve ambiguities.
69 //
70 //   2. The input can now be treated as a tuple of classes (static tokens are
71 //      simple singleton sets). Each such tuple should generally map to a single
72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
73 //      which we can emit a simple matcher for.
74 //
75 // Custom Operand Parsing
76 // ----------------------
77 //
78 //  Some targets need a custom way to parse operands, some specific instructions
79 //  can contain arguments that can represent processor flags and other kinds of
80 //  identifiers that need to be mapped to specific values in the final encoded
81 //  instructions. The target specific custom operand parsing works in the
82 //  following way:
83 //
84 //   1. A operand match table is built, each entry contains a mnemonic, an
85 //      operand class, a mask for all operand positions for that same
86 //      class/mnemonic and target features to be checked while trying to match.
87 //
88 //   2. The operand matcher will try every possible entry with the same
89 //      mnemonic and will check if the target feature for this mnemonic also
90 //      matches. After that, if the operand to be matched has its index
91 //      present in the mask, a successful match occurs. Otherwise, fallback
92 //      to the regular operand parsing.
93 //
94 //   3. For a match success, each operand class that has a 'ParserMethod'
95 //      becomes part of a switch from where the custom method is called.
96 //
97 //===----------------------------------------------------------------------===//
98
99 #include "CodeGenTarget.h"
100 #include "llvm/ADT/PointerUnion.h"
101 #include "llvm/ADT/STLExtras.h"
102 #include "llvm/ADT/SmallPtrSet.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/ADT/StringExtras.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/TableGen/Error.h"
109 #include "llvm/TableGen/Record.h"
110 #include "llvm/TableGen/StringMatcher.h"
111 #include "llvm/TableGen/StringToOffsetTable.h"
112 #include "llvm/TableGen/TableGenBackend.h"
113 #include <cassert>
114 #include <cctype>
115 #include <map>
116 #include <set>
117 #include <sstream>
118 #include <forward_list>
119 using namespace llvm;
120
121 #define DEBUG_TYPE "asm-matcher-emitter"
122
123 static cl::opt<std::string>
124 MatchPrefix("match-prefix", cl::init(""),
125             cl::desc("Only match instructions with the given prefix"));
126
127 namespace {
128 class AsmMatcherInfo;
129 struct SubtargetFeatureInfo;
130
131 // Register sets are used as keys in some second-order sets TableGen creates
132 // when generating its data structures. This means that the order of two
133 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
134 // can even affect compiler output (at least seen in diagnostics produced when
135 // all matches fail). So we use a type that sorts them consistently.
136 typedef std::set<Record*, LessRecordByID> RegisterSet;
137
138 class AsmMatcherEmitter {
139   RecordKeeper &Records;
140 public:
141   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
142
143   void run(raw_ostream &o);
144 };
145
146 /// ClassInfo - Helper class for storing the information about a particular
147 /// class of operands which can be matched.
148 struct ClassInfo {
149   enum ClassInfoKind {
150     /// Invalid kind, for use as a sentinel value.
151     Invalid = 0,
152
153     /// The class for a particular token.
154     Token,
155
156     /// The (first) register class, subsequent register classes are
157     /// RegisterClass0+1, and so on.
158     RegisterClass0,
159
160     /// The (first) user defined class, subsequent user defined classes are
161     /// UserClass0+1, and so on.
162     UserClass0 = 1<<16
163   };
164
165   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
166   /// N) for the Nth user defined class.
167   unsigned Kind;
168
169   /// SuperClasses - The super classes of this class. Note that for simplicities
170   /// sake user operands only record their immediate super class, while register
171   /// operands include all superclasses.
172   std::vector<ClassInfo*> SuperClasses;
173
174   /// Name - The full class name, suitable for use in an enum.
175   std::string Name;
176
177   /// ClassName - The unadorned generic name for this class (e.g., Token).
178   std::string ClassName;
179
180   /// ValueName - The name of the value this class represents; for a token this
181   /// is the literal token string, for an operand it is the TableGen class (or
182   /// empty if this is a derived class).
183   std::string ValueName;
184
185   /// PredicateMethod - The name of the operand method to test whether the
186   /// operand matches this class; this is not valid for Token or register kinds.
187   std::string PredicateMethod;
188
189   /// RenderMethod - The name of the operand method to add this operand to an
190   /// MCInst; this is not valid for Token or register kinds.
191   std::string RenderMethod;
192
193   /// ParserMethod - The name of the operand method to do a target specific
194   /// parsing on the operand.
195   std::string ParserMethod;
196
197   /// For register classes: the records for all the registers in this class.
198   RegisterSet Registers;
199
200   /// For custom match classes: the diagnostic kind for when the predicate fails.
201   std::string DiagnosticType;
202 public:
203   /// isRegisterClass() - Check if this is a register class.
204   bool isRegisterClass() const {
205     return Kind >= RegisterClass0 && Kind < UserClass0;
206   }
207
208   /// isUserClass() - Check if this is a user defined class.
209   bool isUserClass() const {
210     return Kind >= UserClass0;
211   }
212
213   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
214   /// are related if they are in the same class hierarchy.
215   bool isRelatedTo(const ClassInfo &RHS) const {
216     // Tokens are only related to tokens.
217     if (Kind == Token || RHS.Kind == Token)
218       return Kind == Token && RHS.Kind == Token;
219
220     // Registers classes are only related to registers classes, and only if
221     // their intersection is non-empty.
222     if (isRegisterClass() || RHS.isRegisterClass()) {
223       if (!isRegisterClass() || !RHS.isRegisterClass())
224         return false;
225
226       RegisterSet Tmp;
227       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
228       std::set_intersection(Registers.begin(), Registers.end(),
229                             RHS.Registers.begin(), RHS.Registers.end(),
230                             II, LessRecordByID());
231
232       return !Tmp.empty();
233     }
234
235     // Otherwise we have two users operands; they are related if they are in the
236     // same class hierarchy.
237     //
238     // FIXME: This is an oversimplification, they should only be related if they
239     // intersect, however we don't have that information.
240     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
241     const ClassInfo *Root = this;
242     while (!Root->SuperClasses.empty())
243       Root = Root->SuperClasses.front();
244
245     const ClassInfo *RHSRoot = &RHS;
246     while (!RHSRoot->SuperClasses.empty())
247       RHSRoot = RHSRoot->SuperClasses.front();
248
249     return Root == RHSRoot;
250   }
251
252   /// isSubsetOf - Test whether this class is a subset of \p RHS.
253   bool isSubsetOf(const ClassInfo &RHS) const {
254     // This is a subset of RHS if it is the same class...
255     if (this == &RHS)
256       return true;
257
258     // ... or if any of its super classes are a subset of RHS.
259     for (const ClassInfo *CI : SuperClasses)
260       if (CI->isSubsetOf(RHS))
261         return true;
262
263     return false;
264   }
265
266   /// operator< - Compare two classes.
267   // FIXME: This ordering seems to be broken. For example:
268   // u64 < i64, i64 < s8, s8 < u64, forming a cycle
269   // u64 is a subset of i64
270   // i64 and s8 are not subsets of each other, so are ordered by name
271   // s8 and u64 are not subsets of each other, so are ordered by name
272   bool operator<(const ClassInfo &RHS) const {
273     if (this == &RHS)
274       return false;
275
276     // Unrelated classes can be ordered by kind.
277     if (!isRelatedTo(RHS))
278       return Kind < RHS.Kind;
279
280     switch (Kind) {
281     case Invalid:
282       llvm_unreachable("Invalid kind!");
283
284     default:
285       // This class precedes the RHS if it is a proper subset of the RHS.
286       if (isSubsetOf(RHS))
287         return true;
288       if (RHS.isSubsetOf(*this))
289         return false;
290
291       // Otherwise, order by name to ensure we have a total ordering.
292       return ValueName < RHS.ValueName;
293     }
294   }
295 };
296
297 class AsmVariantInfo {
298 public:
299   std::string TokenizingCharacters;
300   std::string SeparatorCharacters;
301   std::string BreakCharacters;
302 };
303
304 /// MatchableInfo - Helper class for storing the necessary information for an
305 /// instruction or alias which is capable of being matched.
306 struct MatchableInfo {
307   struct AsmOperand {
308     /// Token - This is the token that the operand came from.
309     StringRef Token;
310
311     /// The unique class instance this operand should match.
312     ClassInfo *Class;
313
314     /// The operand name this is, if anything.
315     StringRef SrcOpName;
316
317     /// The suboperand index within SrcOpName, or -1 for the entire operand.
318     int SubOpIdx;
319
320     /// Whether the token is "isolated", i.e., it is preceded and followed
321     /// by separators.
322     bool IsIsolatedToken;
323
324     /// Register record if this token is singleton register.
325     Record *SingletonReg;
326
327     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
328         : Token(T), Class(nullptr), SubOpIdx(-1),
329           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
330   };
331
332   /// ResOperand - This represents a single operand in the result instruction
333   /// generated by the match.  In cases (like addressing modes) where a single
334   /// assembler operand expands to multiple MCOperands, this represents the
335   /// single assembler operand, not the MCOperand.
336   struct ResOperand {
337     enum {
338       /// RenderAsmOperand - This represents an operand result that is
339       /// generated by calling the render method on the assembly operand.  The
340       /// corresponding AsmOperand is specified by AsmOperandNum.
341       RenderAsmOperand,
342
343       /// TiedOperand - This represents a result operand that is a duplicate of
344       /// a previous result operand.
345       TiedOperand,
346
347       /// ImmOperand - This represents an immediate value that is dumped into
348       /// the operand.
349       ImmOperand,
350
351       /// RegOperand - This represents a fixed register that is dumped in.
352       RegOperand
353     } Kind;
354
355     union {
356       /// This is the operand # in the AsmOperands list that this should be
357       /// copied from.
358       unsigned AsmOperandNum;
359
360       /// TiedOperandNum - This is the (earlier) result operand that should be
361       /// copied from.
362       unsigned TiedOperandNum;
363
364       /// ImmVal - This is the immediate value added to the instruction.
365       int64_t ImmVal;
366
367       /// Register - This is the register record.
368       Record *Register;
369     };
370
371     /// MINumOperands - The number of MCInst operands populated by this
372     /// operand.
373     unsigned MINumOperands;
374
375     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
376       ResOperand X;
377       X.Kind = RenderAsmOperand;
378       X.AsmOperandNum = AsmOpNum;
379       X.MINumOperands = NumOperands;
380       return X;
381     }
382
383     static ResOperand getTiedOp(unsigned TiedOperandNum) {
384       ResOperand X;
385       X.Kind = TiedOperand;
386       X.TiedOperandNum = TiedOperandNum;
387       X.MINumOperands = 1;
388       return X;
389     }
390
391     static ResOperand getImmOp(int64_t Val) {
392       ResOperand X;
393       X.Kind = ImmOperand;
394       X.ImmVal = Val;
395       X.MINumOperands = 1;
396       return X;
397     }
398
399     static ResOperand getRegOp(Record *Reg) {
400       ResOperand X;
401       X.Kind = RegOperand;
402       X.Register = Reg;
403       X.MINumOperands = 1;
404       return X;
405     }
406   };
407
408   /// AsmVariantID - Target's assembly syntax variant no.
409   int AsmVariantID;
410
411   /// AsmString - The assembly string for this instruction (with variants
412   /// removed), e.g. "movsx $src, $dst".
413   std::string AsmString;
414
415   /// TheDef - This is the definition of the instruction or InstAlias that this
416   /// matchable came from.
417   Record *const TheDef;
418
419   /// DefRec - This is the definition that it came from.
420   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
421
422   const CodeGenInstruction *getResultInst() const {
423     if (DefRec.is<const CodeGenInstruction*>())
424       return DefRec.get<const CodeGenInstruction*>();
425     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
426   }
427
428   /// ResOperands - This is the operand list that should be built for the result
429   /// MCInst.
430   SmallVector<ResOperand, 8> ResOperands;
431
432   /// Mnemonic - This is the first token of the matched instruction, its
433   /// mnemonic.
434   StringRef Mnemonic;
435
436   /// AsmOperands - The textual operands that this instruction matches,
437   /// annotated with a class and where in the OperandList they were defined.
438   /// This directly corresponds to the tokenized AsmString after the mnemonic is
439   /// removed.
440   SmallVector<AsmOperand, 8> AsmOperands;
441
442   /// Predicates - The required subtarget features to match this instruction.
443   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
444
445   /// ConversionFnKind - The enum value which is passed to the generated
446   /// convertToMCInst to convert parsed operands into an MCInst for this
447   /// function.
448   std::string ConversionFnKind;
449
450   /// If this instruction is deprecated in some form.
451   bool HasDeprecation;
452
453   /// If this is an alias, this is use to determine whether or not to using
454   /// the conversion function defined by the instruction's AsmMatchConverter
455   /// or to use the function generated by the alias.
456   bool UseInstAsmMatchConverter;
457
458   MatchableInfo(const CodeGenInstruction &CGI)
459     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
460       UseInstAsmMatchConverter(true) {
461   }
462
463   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
464     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
465       DefRec(Alias.release()),
466       UseInstAsmMatchConverter(
467         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
468   }
469
470   // Could remove this and the dtor if PointerUnion supported unique_ptr
471   // elements with a dynamic failure/assertion (like the one below) in the case
472   // where it was copied while being in an owning state.
473   MatchableInfo(const MatchableInfo &RHS)
474       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
475         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
476         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
477         RequiredFeatures(RHS.RequiredFeatures),
478         ConversionFnKind(RHS.ConversionFnKind),
479         HasDeprecation(RHS.HasDeprecation),
480         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
481     assert(!DefRec.is<const CodeGenInstAlias *>());
482   }
483
484   ~MatchableInfo() {
485     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
486   }
487
488   // Two-operand aliases clone from the main matchable, but mark the second
489   // operand as a tied operand of the first for purposes of the assembler.
490   void formTwoOperandAlias(StringRef Constraint);
491
492   void initialize(const AsmMatcherInfo &Info,
493                   SmallPtrSetImpl<Record*> &SingletonRegisters,
494                   int AsmVariantNo, StringRef RegisterPrefix,
495                   AsmVariantInfo const &Variant);
496
497   /// validate - Return true if this matchable is a valid thing to match against
498   /// and perform a bunch of validity checking.
499   bool validate(StringRef CommentDelimiter, bool Hack) const;
500
501   /// findAsmOperand - Find the AsmOperand with the specified name and
502   /// suboperand index.
503   int findAsmOperand(StringRef N, int SubOpIdx) const {
504     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
505       if (N == AsmOperands[i].SrcOpName &&
506           SubOpIdx == AsmOperands[i].SubOpIdx)
507         return i;
508     return -1;
509   }
510
511   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
512   /// This does not check the suboperand index.
513   int findAsmOperandNamed(StringRef N) const {
514     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
515       if (N == AsmOperands[i].SrcOpName)
516         return i;
517     return -1;
518   }
519
520   void buildInstructionResultOperands();
521   void buildAliasResultOperands();
522
523   /// operator< - Compare two matchables.
524   bool operator<(const MatchableInfo &RHS) const {
525     // The primary comparator is the instruction mnemonic.
526     if (Mnemonic != RHS.Mnemonic)
527       return Mnemonic < RHS.Mnemonic;
528
529     if (AsmOperands.size() != RHS.AsmOperands.size())
530       return AsmOperands.size() < RHS.AsmOperands.size();
531
532     // Compare lexicographically by operand. The matcher validates that other
533     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
534     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
535       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
536         return true;
537       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
538         return false;
539     }
540
541     // Give matches that require more features higher precedence. This is useful
542     // because we cannot define AssemblerPredicates with the negation of
543     // processor features. For example, ARM v6 "nop" may be either a HINT or
544     // MOV. With v6, we want to match HINT. The assembler has no way to
545     // predicate MOV under "NoV6", but HINT will always match first because it
546     // requires V6 while MOV does not.
547     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
548       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
549
550     return false;
551   }
552
553   /// couldMatchAmbiguouslyWith - Check whether this matchable could
554   /// ambiguously match the same set of operands as \p RHS (without being a
555   /// strictly superior match).
556   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
557     // The primary comparator is the instruction mnemonic.
558     if (Mnemonic != RHS.Mnemonic)
559       return false;
560
561     // The number of operands is unambiguous.
562     if (AsmOperands.size() != RHS.AsmOperands.size())
563       return false;
564
565     // Otherwise, make sure the ordering of the two instructions is unambiguous
566     // by checking that either (a) a token or operand kind discriminates them,
567     // or (b) the ordering among equivalent kinds is consistent.
568
569     // Tokens and operand kinds are unambiguous (assuming a correct target
570     // specific parser).
571     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
572       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
573           AsmOperands[i].Class->Kind == ClassInfo::Token)
574         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
575             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
576           return false;
577
578     // Otherwise, this operand could commute if all operands are equivalent, or
579     // there is a pair of operands that compare less than and a pair that
580     // compare greater than.
581     bool HasLT = false, HasGT = false;
582     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
583       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
584         HasLT = true;
585       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
586         HasGT = true;
587     }
588
589     return !(HasLT ^ HasGT);
590   }
591
592   void dump() const;
593
594 private:
595   void tokenizeAsmString(AsmMatcherInfo const &Info,
596                          AsmVariantInfo const &Variant);
597   void addAsmOperand(size_t Start, size_t End,
598                      std::string const &SeparatorCharacters);
599 };
600
601 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
602 /// feature which participates in instruction matching.
603 struct SubtargetFeatureInfo {
604   /// \brief The predicate record for this feature.
605   Record *TheDef;
606
607   /// \brief An unique index assigned to represent this feature.
608   uint64_t Index;
609
610   SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
611
612   /// \brief The name of the enumerated constant identifying this feature.
613   std::string getEnumName() const {
614     return "Feature_" + TheDef->getName();
615   }
616
617   void dump() const {
618     errs() << getEnumName() << " " << Index << "\n";
619     TheDef->dump();
620   }
621 };
622
623 struct OperandMatchEntry {
624   unsigned OperandMask;
625   const MatchableInfo* MI;
626   ClassInfo *CI;
627
628   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
629                                   unsigned opMask) {
630     OperandMatchEntry X;
631     X.OperandMask = opMask;
632     X.CI = ci;
633     X.MI = mi;
634     return X;
635   }
636 };
637
638
639 class AsmMatcherInfo {
640 public:
641   /// Tracked Records
642   RecordKeeper &Records;
643
644   /// The tablegen AsmParser record.
645   Record *AsmParser;
646
647   /// Target - The target information.
648   CodeGenTarget &Target;
649
650   /// The classes which are needed for matching.
651   std::forward_list<ClassInfo> Classes;
652
653   /// The information on the matchables to match.
654   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
655
656   /// Info for custom matching operands by user defined methods.
657   std::vector<OperandMatchEntry> OperandMatchInfo;
658
659   /// Map of Register records to their class information.
660   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
661   RegisterClassesTy RegisterClasses;
662
663   /// Map of Predicate records to their subtarget information.
664   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
665
666   /// Map of AsmOperandClass records to their class information.
667   std::map<Record*, ClassInfo*> AsmOperandClasses;
668
669 private:
670   /// Map of token to class information which has already been constructed.
671   std::map<std::string, ClassInfo*> TokenClasses;
672
673   /// Map of RegisterClass records to their class information.
674   std::map<Record*, ClassInfo*> RegisterClassClasses;
675
676 private:
677   /// getTokenClass - Lookup or create the class for the given token.
678   ClassInfo *getTokenClass(StringRef Token);
679
680   /// getOperandClass - Lookup or create the class for the given operand.
681   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
682                              int SubOpIdx);
683   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
684
685   /// buildRegisterClasses - Build the ClassInfo* instances for register
686   /// classes.
687   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
688
689   /// buildOperandClasses - Build the ClassInfo* instances for user defined
690   /// operand classes.
691   void buildOperandClasses();
692
693   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
694                                         unsigned AsmOpIdx);
695   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
696                                   MatchableInfo::AsmOperand &Op);
697
698 public:
699   AsmMatcherInfo(Record *AsmParser,
700                  CodeGenTarget &Target,
701                  RecordKeeper &Records);
702
703   /// buildInfo - Construct the various tables used during matching.
704   void buildInfo();
705
706   /// buildOperandMatchInfo - Build the necessary information to handle user
707   /// defined operand parsing methods.
708   void buildOperandMatchInfo();
709
710   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
711   /// given operand.
712   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
713     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
714     const auto &I = SubtargetFeatures.find(Def);
715     return I == SubtargetFeatures.end() ? nullptr : &I->second;
716   }
717
718   RecordKeeper &getRecords() const {
719     return Records;
720   }
721 };
722
723 } // End anonymous namespace
724
725 void MatchableInfo::dump() const {
726   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
727
728   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
729     const AsmOperand &Op = AsmOperands[i];
730     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
731     errs() << '\"' << Op.Token << "\"\n";
732   }
733 }
734
735 static std::pair<StringRef, StringRef>
736 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
737   // Split via the '='.
738   std::pair<StringRef, StringRef> Ops = S.split('=');
739   if (Ops.second == "")
740     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
741   // Trim whitespace and the leading '$' on the operand names.
742   size_t start = Ops.first.find_first_of('$');
743   if (start == std::string::npos)
744     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
745   Ops.first = Ops.first.slice(start + 1, std::string::npos);
746   size_t end = Ops.first.find_last_of(" \t");
747   Ops.first = Ops.first.slice(0, end);
748   // Now the second operand.
749   start = Ops.second.find_first_of('$');
750   if (start == std::string::npos)
751     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
752   Ops.second = Ops.second.slice(start + 1, std::string::npos);
753   end = Ops.second.find_last_of(" \t");
754   Ops.first = Ops.first.slice(0, end);
755   return Ops;
756 }
757
758 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
759   // Figure out which operands are aliased and mark them as tied.
760   std::pair<StringRef, StringRef> Ops =
761     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
762
763   // Find the AsmOperands that refer to the operands we're aliasing.
764   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
765   int DstAsmOperand = findAsmOperandNamed(Ops.second);
766   if (SrcAsmOperand == -1)
767     PrintFatalError(TheDef->getLoc(),
768                     "unknown source two-operand alias operand '" + Ops.first +
769                     "'.");
770   if (DstAsmOperand == -1)
771     PrintFatalError(TheDef->getLoc(),
772                     "unknown destination two-operand alias operand '" +
773                     Ops.second + "'.");
774
775   // Find the ResOperand that refers to the operand we're aliasing away
776   // and update it to refer to the combined operand instead.
777   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
778     ResOperand &Op = ResOperands[i];
779     if (Op.Kind == ResOperand::RenderAsmOperand &&
780         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
781       Op.AsmOperandNum = DstAsmOperand;
782       break;
783     }
784   }
785   // Remove the AsmOperand for the alias operand.
786   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
787   // Adjust the ResOperand references to any AsmOperands that followed
788   // the one we just deleted.
789   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
790     ResOperand &Op = ResOperands[i];
791     switch(Op.Kind) {
792     default:
793       // Nothing to do for operands that don't reference AsmOperands.
794       break;
795     case ResOperand::RenderAsmOperand:
796       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
797         --Op.AsmOperandNum;
798       break;
799     case ResOperand::TiedOperand:
800       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
801         --Op.TiedOperandNum;
802       break;
803     }
804   }
805 }
806
807 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
808 /// if present, from specified token.
809 static void
810 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
811                                       const AsmMatcherInfo &Info,
812                                       StringRef RegisterPrefix) {
813   StringRef Tok = Op.Token;
814
815   // If this token is not an isolated token, i.e., it isn't separated from
816   // other tokens (e.g. with whitespace), don't interpret it as a register name.
817   if (!Op.IsIsolatedToken)
818     return;
819
820   if (RegisterPrefix.empty()) {
821     std::string LoweredTok = Tok.lower();
822     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
823       Op.SingletonReg = Reg->TheDef;
824     return;
825   }
826
827   if (!Tok.startswith(RegisterPrefix))
828     return;
829
830   StringRef RegName = Tok.substr(RegisterPrefix.size());
831   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
832     Op.SingletonReg = Reg->TheDef;
833
834   // If there is no register prefix (i.e. "%" in "%eax"), then this may
835   // be some random non-register token, just ignore it.
836   return;
837 }
838
839 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
840                                SmallPtrSetImpl<Record*> &SingletonRegisters,
841                                int AsmVariantNo, StringRef RegisterPrefix,
842                                AsmVariantInfo const &Variant) {
843   AsmVariantID = AsmVariantNo;
844   AsmString =
845     CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
846
847   tokenizeAsmString(Info, Variant);
848
849   // Compute the require features.
850   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
851     if (const SubtargetFeatureInfo *Feature =
852             Info.getSubtargetFeature(Predicate))
853       RequiredFeatures.push_back(Feature);
854
855   // Collect singleton registers, if used.
856   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
857     extractSingletonRegisterForAsmOperand(Op, Info, RegisterPrefix);
858     if (Record *Reg = Op.SingletonReg)
859       SingletonRegisters.insert(Reg);
860   }
861
862   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
863   if (!DepMask)
864     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
865
866   HasDeprecation =
867       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
868 }
869
870 /// Append an AsmOperand for the given substring of AsmString.
871 void MatchableInfo::addAsmOperand(size_t Start, size_t End,
872                                   std::string const &Separators) {
873   StringRef String = AsmString;
874   // Look for separators before and after to figure out is this token is
875   // isolated.  Accept '$$' as that's how we escape '$'.
876   bool IsIsolatedToken =
877       (!Start || Separators.find(String[Start - 1]) != StringRef::npos ||
878        String.substr(Start - 1, 2) == "$$") &&
879       (End >= String.size() || Separators.find(String[End]) != StringRef::npos);
880   AsmOperands.push_back(AsmOperand(IsIsolatedToken, String.slice(Start, End)));
881 }
882
883 /// tokenizeAsmString - Tokenize a simplified assembly string.
884 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
885                                       AsmVariantInfo const &Variant) {
886   StringRef String = AsmString;
887   unsigned Prev = 0;
888   bool InTok = false;
889   std::string Separators = Variant.TokenizingCharacters +
890                            Variant.SeparatorCharacters;
891   for (unsigned i = 0, e = String.size(); i != e; ++i) {
892     if(Variant.BreakCharacters.find(String[i]) != std::string::npos) {
893       if(InTok) {
894         addAsmOperand(Prev, i, Separators);
895         Prev = i;
896       }
897       InTok = true;
898       continue;
899     }
900     if(Variant.TokenizingCharacters.find(String[i]) != std::string::npos) {
901       if(InTok) {
902         addAsmOperand(Prev, i, Separators);
903         InTok = false;
904       }
905       addAsmOperand(i, i + 1, Separators);
906       Prev = i + 1;
907       continue;
908     }
909     if(Variant.SeparatorCharacters.find(String[i]) != std::string::npos) {
910       if(InTok) {
911         addAsmOperand(Prev, i, Separators);
912         InTok = false;
913       }
914       Prev = i + 1;
915       continue;
916     }
917     switch (String[i]) {
918     case '\\':
919       if (InTok) {
920         addAsmOperand(Prev, i, Separators);
921         InTok = false;
922       }
923       ++i;
924       assert(i != String.size() && "Invalid quoted character");
925       addAsmOperand(i, i + 1, Separators);
926       Prev = i + 1;
927       break;
928
929     case '$': {
930       if (InTok && Prev != i) {
931         addAsmOperand(Prev, i, Separators);
932         InTok = false;
933       }
934
935       // If this isn't "${", start new identifier looking like "$xxx"
936       if (i + 1 == String.size() || String[i + 1] != '{') {
937         Prev = i;
938         break;
939       }
940
941       StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
942       assert(End != String.end() && "Missing brace in operand reference!");
943       size_t EndPos = End - String.begin();
944       addAsmOperand(i, EndPos+1, Separators);
945       Prev = EndPos + 1;
946       i = EndPos;
947       break;
948     }
949     default:
950       InTok = true;
951     }
952   }
953   if (InTok && Prev != String.size())
954     addAsmOperand(Prev, StringRef::npos, Separators);
955
956   // The first token of the instruction is the mnemonic, which must be a
957   // simple string, not a $foo variable or a singleton register.
958   if (AsmOperands.empty())
959     PrintFatalError(TheDef->getLoc(),
960                   "Instruction '" + TheDef->getName() + "' has no tokens");
961   assert(!AsmOperands[0].Token.empty());
962   if (AsmOperands[0].Token[0] != '$')
963     Mnemonic = AsmOperands[0].Token;
964 }
965
966 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
967   // Reject matchables with no .s string.
968   if (AsmString.empty())
969     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
970
971   // Reject any matchables with a newline in them, they should be marked
972   // isCodeGenOnly if they are pseudo instructions.
973   if (AsmString.find('\n') != std::string::npos)
974     PrintFatalError(TheDef->getLoc(),
975                   "multiline instruction is not valid for the asmparser, "
976                   "mark it isCodeGenOnly");
977
978   // Remove comments from the asm string.  We know that the asmstring only
979   // has one line.
980   if (!CommentDelimiter.empty() &&
981       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
982     PrintFatalError(TheDef->getLoc(),
983                   "asmstring for instruction has comment character in it, "
984                   "mark it isCodeGenOnly");
985
986   // Reject matchables with operand modifiers, these aren't something we can
987   // handle, the target should be refactored to use operands instead of
988   // modifiers.
989   //
990   // Also, check for instructions which reference the operand multiple times;
991   // this implies a constraint we would not honor.
992   std::set<std::string> OperandNames;
993   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
994     StringRef Tok = AsmOperands[i].Token;
995     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
996       PrintFatalError(TheDef->getLoc(),
997                       "matchable with operand modifier '" + Tok +
998                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
999
1000     // Verify that any operand is only mentioned once.
1001     // We reject aliases and ignore instructions for now.
1002     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
1003       if (!Hack)
1004         PrintFatalError(TheDef->getLoc(),
1005                         "ERROR: matchable with tied operand '" + Tok +
1006                         "' can never be matched!");
1007       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
1008       // bunch of instructions.  It is unclear what the right answer is.
1009       DEBUG({
1010         errs() << "warning: '" << TheDef->getName() << "': "
1011                << "ignoring instruction with tied operand '"
1012                << Tok << "'\n";
1013       });
1014       return false;
1015     }
1016   }
1017
1018   return true;
1019 }
1020
1021 static std::string getEnumNameForToken(StringRef Str) {
1022   std::string Res;
1023
1024   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1025     switch (*it) {
1026     case '*': Res += "_STAR_"; break;
1027     case '%': Res += "_PCT_"; break;
1028     case ':': Res += "_COLON_"; break;
1029     case '!': Res += "_EXCLAIM_"; break;
1030     case '.': Res += "_DOT_"; break;
1031     case '<': Res += "_LT_"; break;
1032     case '>': Res += "_GT_"; break;
1033     case '-': Res += "_MINUS_"; break;
1034     default:
1035       if ((*it >= 'A' && *it <= 'Z') ||
1036           (*it >= 'a' && *it <= 'z') ||
1037           (*it >= '0' && *it <= '9'))
1038         Res += *it;
1039       else
1040         Res += "_" + utostr((unsigned) *it) + "_";
1041     }
1042   }
1043
1044   return Res;
1045 }
1046
1047 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1048   ClassInfo *&Entry = TokenClasses[Token];
1049
1050   if (!Entry) {
1051     Classes.emplace_front();
1052     Entry = &Classes.front();
1053     Entry->Kind = ClassInfo::Token;
1054     Entry->ClassName = "Token";
1055     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1056     Entry->ValueName = Token;
1057     Entry->PredicateMethod = "<invalid>";
1058     Entry->RenderMethod = "<invalid>";
1059     Entry->ParserMethod = "";
1060     Entry->DiagnosticType = "";
1061   }
1062
1063   return Entry;
1064 }
1065
1066 ClassInfo *
1067 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1068                                 int SubOpIdx) {
1069   Record *Rec = OI.Rec;
1070   if (SubOpIdx != -1)
1071     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1072   return getOperandClass(Rec, SubOpIdx);
1073 }
1074
1075 ClassInfo *
1076 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1077   if (Rec->isSubClassOf("RegisterOperand")) {
1078     // RegisterOperand may have an associated ParserMatchClass. If it does,
1079     // use it, else just fall back to the underlying register class.
1080     const RecordVal *R = Rec->getValue("ParserMatchClass");
1081     if (!R || !R->getValue())
1082       PrintFatalError("Record `" + Rec->getName() +
1083         "' does not have a ParserMatchClass!\n");
1084
1085     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1086       Record *MatchClass = DI->getDef();
1087       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1088         return CI;
1089     }
1090
1091     // No custom match class. Just use the register class.
1092     Record *ClassRec = Rec->getValueAsDef("RegClass");
1093     if (!ClassRec)
1094       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1095                     "' has no associated register class!\n");
1096     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1097       return CI;
1098     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1099   }
1100
1101
1102   if (Rec->isSubClassOf("RegisterClass")) {
1103     if (ClassInfo *CI = RegisterClassClasses[Rec])
1104       return CI;
1105     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1106   }
1107
1108   if (!Rec->isSubClassOf("Operand"))
1109     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1110                   "' does not derive from class Operand!\n");
1111   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1112   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1113     return CI;
1114
1115   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1116 }
1117
1118 struct LessRegisterSet {
1119   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1120     // std::set<T> defines its own compariso "operator<", but it
1121     // performs a lexicographical comparison by T's innate comparison
1122     // for some reason. We don't want non-deterministic pointer
1123     // comparisons so use this instead.
1124     return std::lexicographical_compare(LHS.begin(), LHS.end(),
1125                                         RHS.begin(), RHS.end(),
1126                                         LessRecordByID());
1127   }
1128 };
1129
1130 void AsmMatcherInfo::
1131 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1132   const auto &Registers = Target.getRegBank().getRegisters();
1133   auto &RegClassList = Target.getRegBank().getRegClasses();
1134
1135   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1136
1137   // The register sets used for matching.
1138   RegisterSetSet RegisterSets;
1139
1140   // Gather the defined sets.
1141   for (const CodeGenRegisterClass &RC : RegClassList)
1142     RegisterSets.insert(
1143         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1144
1145   // Add any required singleton sets.
1146   for (Record *Rec : SingletonRegisters) {
1147     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1148   }
1149
1150   // Introduce derived sets where necessary (when a register does not determine
1151   // a unique register set class), and build the mapping of registers to the set
1152   // they should classify to.
1153   std::map<Record*, RegisterSet> RegisterMap;
1154   for (const CodeGenRegister &CGR : Registers) {
1155     // Compute the intersection of all sets containing this register.
1156     RegisterSet ContainingSet;
1157
1158     for (const RegisterSet &RS : RegisterSets) {
1159       if (!RS.count(CGR.TheDef))
1160         continue;
1161
1162       if (ContainingSet.empty()) {
1163         ContainingSet = RS;
1164         continue;
1165       }
1166
1167       RegisterSet Tmp;
1168       std::swap(Tmp, ContainingSet);
1169       std::insert_iterator<RegisterSet> II(ContainingSet,
1170                                            ContainingSet.begin());
1171       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1172                             LessRecordByID());
1173     }
1174
1175     if (!ContainingSet.empty()) {
1176       RegisterSets.insert(ContainingSet);
1177       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1178     }
1179   }
1180
1181   // Construct the register classes.
1182   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1183   unsigned Index = 0;
1184   for (const RegisterSet &RS : RegisterSets) {
1185     Classes.emplace_front();
1186     ClassInfo *CI = &Classes.front();
1187     CI->Kind = ClassInfo::RegisterClass0 + Index;
1188     CI->ClassName = "Reg" + utostr(Index);
1189     CI->Name = "MCK_Reg" + utostr(Index);
1190     CI->ValueName = "";
1191     CI->PredicateMethod = ""; // unused
1192     CI->RenderMethod = "addRegOperands";
1193     CI->Registers = RS;
1194     // FIXME: diagnostic type.
1195     CI->DiagnosticType = "";
1196     RegisterSetClasses.insert(std::make_pair(RS, CI));
1197     ++Index;
1198   }
1199
1200   // Find the superclasses; we could compute only the subgroup lattice edges,
1201   // but there isn't really a point.
1202   for (const RegisterSet &RS : RegisterSets) {
1203     ClassInfo *CI = RegisterSetClasses[RS];
1204     for (const RegisterSet &RS2 : RegisterSets)
1205       if (RS != RS2 &&
1206           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1207                         LessRecordByID()))
1208         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1209   }
1210
1211   // Name the register classes which correspond to a user defined RegisterClass.
1212   for (const CodeGenRegisterClass &RC : RegClassList) {
1213     // Def will be NULL for non-user defined register classes.
1214     Record *Def = RC.getDef();
1215     if (!Def)
1216       continue;
1217     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1218                                                    RC.getOrder().end())];
1219     if (CI->ValueName.empty()) {
1220       CI->ClassName = RC.getName();
1221       CI->Name = "MCK_" + RC.getName();
1222       CI->ValueName = RC.getName();
1223     } else
1224       CI->ValueName = CI->ValueName + "," + RC.getName();
1225
1226     RegisterClassClasses.insert(std::make_pair(Def, CI));
1227   }
1228
1229   // Populate the map for individual registers.
1230   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1231          ie = RegisterMap.end(); it != ie; ++it)
1232     RegisterClasses[it->first] = RegisterSetClasses[it->second];
1233
1234   // Name the register classes which correspond to singleton registers.
1235   for (Record *Rec : SingletonRegisters) {
1236     ClassInfo *CI = RegisterClasses[Rec];
1237     assert(CI && "Missing singleton register class info!");
1238
1239     if (CI->ValueName.empty()) {
1240       CI->ClassName = Rec->getName();
1241       CI->Name = "MCK_" + Rec->getName();
1242       CI->ValueName = Rec->getName();
1243     } else
1244       CI->ValueName = CI->ValueName + "," + Rec->getName();
1245   }
1246 }
1247
1248 void AsmMatcherInfo::buildOperandClasses() {
1249   std::vector<Record*> AsmOperands =
1250     Records.getAllDerivedDefinitions("AsmOperandClass");
1251
1252   // Pre-populate AsmOperandClasses map.
1253   for (Record *Rec : AsmOperands) {
1254     Classes.emplace_front();
1255     AsmOperandClasses[Rec] = &Classes.front();
1256   }
1257
1258   unsigned Index = 0;
1259   for (Record *Rec : AsmOperands) {
1260     ClassInfo *CI = AsmOperandClasses[Rec];
1261     CI->Kind = ClassInfo::UserClass0 + Index;
1262
1263     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1264     for (Init *I : Supers->getValues()) {
1265       DefInit *DI = dyn_cast<DefInit>(I);
1266       if (!DI) {
1267         PrintError(Rec->getLoc(), "Invalid super class reference!");
1268         continue;
1269       }
1270
1271       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1272       if (!SC)
1273         PrintError(Rec->getLoc(), "Invalid super class reference!");
1274       else
1275         CI->SuperClasses.push_back(SC);
1276     }
1277     CI->ClassName = Rec->getValueAsString("Name");
1278     CI->Name = "MCK_" + CI->ClassName;
1279     CI->ValueName = Rec->getName();
1280
1281     // Get or construct the predicate method name.
1282     Init *PMName = Rec->getValueInit("PredicateMethod");
1283     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1284       CI->PredicateMethod = SI->getValue();
1285     } else {
1286       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1287       CI->PredicateMethod = "is" + CI->ClassName;
1288     }
1289
1290     // Get or construct the render method name.
1291     Init *RMName = Rec->getValueInit("RenderMethod");
1292     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1293       CI->RenderMethod = SI->getValue();
1294     } else {
1295       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1296       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1297     }
1298
1299     // Get the parse method name or leave it as empty.
1300     Init *PRMName = Rec->getValueInit("ParserMethod");
1301     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1302       CI->ParserMethod = SI->getValue();
1303
1304     // Get the diagnostic type or leave it as empty.
1305     // Get the parse method name or leave it as empty.
1306     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1307     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1308       CI->DiagnosticType = SI->getValue();
1309
1310     ++Index;
1311   }
1312 }
1313
1314 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1315                                CodeGenTarget &target,
1316                                RecordKeeper &records)
1317   : Records(records), AsmParser(asmParser), Target(target) {
1318 }
1319
1320 /// buildOperandMatchInfo - Build the necessary information to handle user
1321 /// defined operand parsing methods.
1322 void AsmMatcherInfo::buildOperandMatchInfo() {
1323
1324   /// Map containing a mask with all operands indices that can be found for
1325   /// that class inside a instruction.
1326   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1327   OpClassMaskTy OpClassMask;
1328
1329   for (const auto &MI : Matchables) {
1330     OpClassMask.clear();
1331
1332     // Keep track of all operands of this instructions which belong to the
1333     // same class.
1334     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1335       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1336       if (Op.Class->ParserMethod.empty())
1337         continue;
1338       unsigned &OperandMask = OpClassMask[Op.Class];
1339       OperandMask |= (1 << i);
1340     }
1341
1342     // Generate operand match info for each mnemonic/operand class pair.
1343     for (const auto &OCM : OpClassMask) {
1344       unsigned OpMask = OCM.second;
1345       ClassInfo *CI = OCM.first;
1346       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1347                                                            OpMask));
1348     }
1349   }
1350 }
1351
1352 void AsmMatcherInfo::buildInfo() {
1353   // Build information about all of the AssemblerPredicates.
1354   std::vector<Record*> AllPredicates =
1355     Records.getAllDerivedDefinitions("Predicate");
1356   for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1357     Record *Pred = AllPredicates[i];
1358     // Ignore predicates that are not intended for the assembler.
1359     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1360       continue;
1361
1362     if (Pred->getName().empty())
1363       PrintFatalError(Pred->getLoc(), "Predicate has no name!");
1364
1365     SubtargetFeatures.insert(std::make_pair(
1366         Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
1367     DEBUG(SubtargetFeatures.find(Pred)->second.dump());
1368     assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1369   }
1370
1371   // Parse the instructions; we need to do this first so that we can gather the
1372   // singleton register classes.
1373   SmallPtrSet<Record*, 16> SingletonRegisters;
1374   unsigned VariantCount = Target.getAsmParserVariantCount();
1375   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1376     Record *AsmVariant = Target.getAsmParserVariant(VC);
1377     std::string CommentDelimiter =
1378       AsmVariant->getValueAsString("CommentDelimiter");
1379     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1380     AsmVariantInfo Variant;
1381     Variant.TokenizingCharacters =
1382         AsmVariant->getValueAsString("TokenizingCharacters");
1383     Variant.SeparatorCharacters =
1384         AsmVariant->getValueAsString("SeparatorCharacters");
1385     Variant.BreakCharacters =
1386         AsmVariant->getValueAsString("BreakCharacters");
1387     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1388
1389     for (const CodeGenInstruction *CGI : Target.instructions()) {
1390
1391       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1392       // filter the set of instructions we consider.
1393       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1394         continue;
1395
1396       // Ignore "codegen only" instructions.
1397       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1398         continue;
1399
1400       auto II = llvm::make_unique<MatchableInfo>(*CGI);
1401
1402       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix,
1403                      Variant);
1404
1405       // Ignore instructions which shouldn't be matched and diagnose invalid
1406       // instruction definitions with an error.
1407       if (!II->validate(CommentDelimiter, true))
1408         continue;
1409
1410       Matchables.push_back(std::move(II));
1411     }
1412
1413     // Parse all of the InstAlias definitions and stick them in the list of
1414     // matchables.
1415     std::vector<Record*> AllInstAliases =
1416       Records.getAllDerivedDefinitions("InstAlias");
1417     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1418       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1419                                                        AsmVariantNo, Target);
1420
1421       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1422       // filter the set of instruction aliases we consider, based on the target
1423       // instruction.
1424       if (!StringRef(Alias->ResultInst->TheDef->getName())
1425             .startswith( MatchPrefix))
1426         continue;
1427
1428       auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
1429
1430       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix,
1431                      Variant);
1432
1433       // Validate the alias definitions.
1434       II->validate(CommentDelimiter, false);
1435
1436       Matchables.push_back(std::move(II));
1437     }
1438   }
1439
1440   // Build info for the register classes.
1441   buildRegisterClasses(SingletonRegisters);
1442
1443   // Build info for the user defined assembly operand classes.
1444   buildOperandClasses();
1445
1446   // Build the information about matchables, now that we have fully formed
1447   // classes.
1448   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1449   for (auto &II : Matchables) {
1450     // Parse the tokens after the mnemonic.
1451     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1452     // don't precompute the loop bound.
1453     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1454       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1455       StringRef Token = Op.Token;
1456
1457       // Check for singleton registers.
1458       if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1459         Op.Class = RegisterClasses[RegRecord];
1460         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1461                "Unexpected class for singleton register");
1462         continue;
1463       }
1464
1465       // Check for simple tokens.
1466       if (Token[0] != '$') {
1467         Op.Class = getTokenClass(Token);
1468         continue;
1469       }
1470
1471       if (Token.size() > 1 && isdigit(Token[1])) {
1472         Op.Class = getTokenClass(Token);
1473         continue;
1474       }
1475
1476       // Otherwise this is an operand reference.
1477       StringRef OperandName;
1478       if (Token[1] == '{')
1479         OperandName = Token.substr(2, Token.size() - 3);
1480       else
1481         OperandName = Token.substr(1);
1482
1483       if (II->DefRec.is<const CodeGenInstruction*>())
1484         buildInstructionOperandReference(II.get(), OperandName, i);
1485       else
1486         buildAliasOperandReference(II.get(), OperandName, Op);
1487     }
1488
1489     if (II->DefRec.is<const CodeGenInstruction*>()) {
1490       II->buildInstructionResultOperands();
1491       // If the instruction has a two-operand alias, build up the
1492       // matchable here. We'll add them in bulk at the end to avoid
1493       // confusing this loop.
1494       std::string Constraint =
1495         II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1496       if (Constraint != "") {
1497         // Start by making a copy of the original matchable.
1498         auto AliasII = llvm::make_unique<MatchableInfo>(*II);
1499
1500         // Adjust it to be a two-operand alias.
1501         AliasII->formTwoOperandAlias(Constraint);
1502
1503         // Add the alias to the matchables list.
1504         NewMatchables.push_back(std::move(AliasII));
1505       }
1506     } else
1507       II->buildAliasResultOperands();
1508   }
1509   if (!NewMatchables.empty())
1510     Matchables.insert(Matchables.end(),
1511                       std::make_move_iterator(NewMatchables.begin()),
1512                       std::make_move_iterator(NewMatchables.end()));
1513
1514   // Process token alias definitions and set up the associated superclass
1515   // information.
1516   std::vector<Record*> AllTokenAliases =
1517     Records.getAllDerivedDefinitions("TokenAlias");
1518   for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1519     Record *Rec = AllTokenAliases[i];
1520     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1521     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1522     if (FromClass == ToClass)
1523       PrintFatalError(Rec->getLoc(),
1524                     "error: Destination value identical to source value.");
1525     FromClass->SuperClasses.push_back(ToClass);
1526   }
1527
1528   // Reorder classes so that classes precede super classes.
1529   Classes.sort();
1530 }
1531
1532 /// buildInstructionOperandReference - The specified operand is a reference to a
1533 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1534 void AsmMatcherInfo::
1535 buildInstructionOperandReference(MatchableInfo *II,
1536                                  StringRef OperandName,
1537                                  unsigned AsmOpIdx) {
1538   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1539   const CGIOperandList &Operands = CGI.Operands;
1540   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1541
1542   // Map this token to an operand.
1543   unsigned Idx;
1544   if (!Operands.hasOperandNamed(OperandName, Idx))
1545     PrintFatalError(II->TheDef->getLoc(),
1546                     "error: unable to find operand: '" + OperandName + "'");
1547
1548   // If the instruction operand has multiple suboperands, but the parser
1549   // match class for the asm operand is still the default "ImmAsmOperand",
1550   // then handle each suboperand separately.
1551   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1552     Record *Rec = Operands[Idx].Rec;
1553     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1554     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1555     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1556       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1557       StringRef Token = Op->Token; // save this in case Op gets moved
1558       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1559         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1560         NewAsmOp.SubOpIdx = SI;
1561         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1562       }
1563       // Replace Op with first suboperand.
1564       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1565       Op->SubOpIdx = 0;
1566     }
1567   }
1568
1569   // Set up the operand class.
1570   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1571
1572   // If the named operand is tied, canonicalize it to the untied operand.
1573   // For example, something like:
1574   //   (outs GPR:$dst), (ins GPR:$src)
1575   // with an asmstring of
1576   //   "inc $src"
1577   // we want to canonicalize to:
1578   //   "inc $dst"
1579   // so that we know how to provide the $dst operand when filling in the result.
1580   int OITied = -1;
1581   if (Operands[Idx].MINumOperands == 1)
1582     OITied = Operands[Idx].getTiedRegister();
1583   if (OITied != -1) {
1584     // The tied operand index is an MIOperand index, find the operand that
1585     // contains it.
1586     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1587     OperandName = Operands[Idx.first].Name;
1588     Op->SubOpIdx = Idx.second;
1589   }
1590
1591   Op->SrcOpName = OperandName;
1592 }
1593
1594 /// buildAliasOperandReference - When parsing an operand reference out of the
1595 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1596 /// operand reference is by looking it up in the result pattern definition.
1597 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1598                                                 StringRef OperandName,
1599                                                 MatchableInfo::AsmOperand &Op) {
1600   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1601
1602   // Set up the operand class.
1603   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1604     if (CGA.ResultOperands[i].isRecord() &&
1605         CGA.ResultOperands[i].getName() == OperandName) {
1606       // It's safe to go with the first one we find, because CodeGenInstAlias
1607       // validates that all operands with the same name have the same record.
1608       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1609       // Use the match class from the Alias definition, not the
1610       // destination instruction, as we may have an immediate that's
1611       // being munged by the match class.
1612       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1613                                  Op.SubOpIdx);
1614       Op.SrcOpName = OperandName;
1615       return;
1616     }
1617
1618   PrintFatalError(II->TheDef->getLoc(),
1619                   "error: unable to find operand: '" + OperandName + "'");
1620 }
1621
1622 void MatchableInfo::buildInstructionResultOperands() {
1623   const CodeGenInstruction *ResultInst = getResultInst();
1624
1625   // Loop over all operands of the result instruction, determining how to
1626   // populate them.
1627   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1628     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1629
1630     // If this is a tied operand, just copy from the previously handled operand.
1631     int TiedOp = -1;
1632     if (OpInfo.MINumOperands == 1)
1633       TiedOp = OpInfo.getTiedRegister();
1634     if (TiedOp != -1) {
1635       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1636       continue;
1637     }
1638
1639     // Find out what operand from the asmparser this MCInst operand comes from.
1640     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1641     if (OpInfo.Name.empty() || SrcOperand == -1) {
1642       // This may happen for operands that are tied to a suboperand of a
1643       // complex operand.  Simply use a dummy value here; nobody should
1644       // use this operand slot.
1645       // FIXME: The long term goal is for the MCOperand list to not contain
1646       // tied operands at all.
1647       ResOperands.push_back(ResOperand::getImmOp(0));
1648       continue;
1649     }
1650
1651     // Check if the one AsmOperand populates the entire operand.
1652     unsigned NumOperands = OpInfo.MINumOperands;
1653     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1654       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1655       continue;
1656     }
1657
1658     // Add a separate ResOperand for each suboperand.
1659     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1660       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1661              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1662              "unexpected AsmOperands for suboperands");
1663       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1664     }
1665   }
1666 }
1667
1668 void MatchableInfo::buildAliasResultOperands() {
1669   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1670   const CodeGenInstruction *ResultInst = getResultInst();
1671
1672   // Loop over all operands of the result instruction, determining how to
1673   // populate them.
1674   unsigned AliasOpNo = 0;
1675   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1676   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1677     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1678
1679     // If this is a tied operand, just copy from the previously handled operand.
1680     int TiedOp = -1;
1681     if (OpInfo->MINumOperands == 1)
1682       TiedOp = OpInfo->getTiedRegister();
1683     if (TiedOp != -1) {
1684       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1685       continue;
1686     }
1687
1688     // Handle all the suboperands for this operand.
1689     const std::string &OpName = OpInfo->Name;
1690     for ( ; AliasOpNo <  LastOpNo &&
1691             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1692       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1693
1694       // Find out what operand from the asmparser that this MCInst operand
1695       // comes from.
1696       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1697       case CodeGenInstAlias::ResultOperand::K_Record: {
1698         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1699         int SrcOperand = findAsmOperand(Name, SubIdx);
1700         if (SrcOperand == -1)
1701           PrintFatalError(TheDef->getLoc(), "Instruction '" +
1702                         TheDef->getName() + "' has operand '" + OpName +
1703                         "' that doesn't appear in asm string!");
1704         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1705         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1706                                                         NumOperands));
1707         break;
1708       }
1709       case CodeGenInstAlias::ResultOperand::K_Imm: {
1710         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1711         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1712         break;
1713       }
1714       case CodeGenInstAlias::ResultOperand::K_Reg: {
1715         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1716         ResOperands.push_back(ResOperand::getRegOp(Reg));
1717         break;
1718       }
1719       }
1720     }
1721   }
1722 }
1723
1724 static unsigned getConverterOperandID(const std::string &Name,
1725                                       SmallSetVector<std::string, 16> &Table,
1726                                       bool &IsNew) {
1727   IsNew = Table.insert(Name);
1728
1729   unsigned ID = IsNew ? Table.size() - 1 :
1730     std::find(Table.begin(), Table.end(), Name) - Table.begin();
1731
1732   assert(ID < Table.size());
1733
1734   return ID;
1735 }
1736
1737
1738 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1739                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1740                              raw_ostream &OS) {
1741   SmallSetVector<std::string, 16> OperandConversionKinds;
1742   SmallSetVector<std::string, 16> InstructionConversionKinds;
1743   std::vector<std::vector<uint8_t> > ConversionTable;
1744   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1745
1746   // TargetOperandClass - This is the target's operand class, like X86Operand.
1747   std::string TargetOperandClass = Target.getName() + "Operand";
1748
1749   // Write the convert function to a separate stream, so we can drop it after
1750   // the enum. We'll build up the conversion handlers for the individual
1751   // operand types opportunistically as we encounter them.
1752   std::string ConvertFnBody;
1753   raw_string_ostream CvtOS(ConvertFnBody);
1754   // Start the unified conversion function.
1755   CvtOS << "void " << Target.getName() << ClassName << "::\n"
1756         << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1757         << "unsigned Opcode,\n"
1758         << "                const OperandVector"
1759         << " &Operands) {\n"
1760         << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1761         << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1762         << "  Inst.setOpcode(Opcode);\n"
1763         << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1764         << "    switch (*p) {\n"
1765         << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1766         << "    case CVT_Reg:\n"
1767         << "      static_cast<" << TargetOperandClass
1768         << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n"
1769         << "      break;\n"
1770         << "    case CVT_Tied:\n"
1771         << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1772         << "      break;\n";
1773
1774   std::string OperandFnBody;
1775   raw_string_ostream OpOS(OperandFnBody);
1776   // Start the operand number lookup function.
1777   OpOS << "void " << Target.getName() << ClassName << "::\n"
1778        << "convertToMapAndConstraints(unsigned Kind,\n";
1779   OpOS.indent(27);
1780   OpOS << "const OperandVector &Operands) {\n"
1781        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1782        << "  unsigned NumMCOperands = 0;\n"
1783        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1784        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1785        << "    switch (*p) {\n"
1786        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1787        << "    case CVT_Reg:\n"
1788        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1789        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
1790        << "      ++NumMCOperands;\n"
1791        << "      break;\n"
1792        << "    case CVT_Tied:\n"
1793        << "      ++NumMCOperands;\n"
1794        << "      break;\n";
1795
1796   // Pre-populate the operand conversion kinds with the standard always
1797   // available entries.
1798   OperandConversionKinds.insert("CVT_Done");
1799   OperandConversionKinds.insert("CVT_Reg");
1800   OperandConversionKinds.insert("CVT_Tied");
1801   enum { CVT_Done, CVT_Reg, CVT_Tied };
1802
1803   for (auto &II : Infos) {
1804     // Check if we have a custom match function.
1805     std::string AsmMatchConverter =
1806       II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1807     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
1808       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1809       II->ConversionFnKind = Signature;
1810
1811       // Check if we have already generated this signature.
1812       if (!InstructionConversionKinds.insert(Signature))
1813         continue;
1814
1815       // Remember this converter for the kind enum.
1816       unsigned KindID = OperandConversionKinds.size();
1817       OperandConversionKinds.insert("CVT_" +
1818                                     getEnumNameForToken(AsmMatchConverter));
1819
1820       // Add the converter row for this instruction.
1821       ConversionTable.emplace_back();
1822       ConversionTable.back().push_back(KindID);
1823       ConversionTable.back().push_back(CVT_Done);
1824
1825       // Add the handler to the conversion driver function.
1826       CvtOS << "    case CVT_"
1827             << getEnumNameForToken(AsmMatchConverter) << ":\n"
1828             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
1829             << "      break;\n";
1830
1831       // FIXME: Handle the operand number lookup for custom match functions.
1832       continue;
1833     }
1834
1835     // Build the conversion function signature.
1836     std::string Signature = "Convert";
1837
1838     std::vector<uint8_t> ConversionRow;
1839
1840     // Compute the convert enum and the case body.
1841     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
1842
1843     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
1844       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
1845
1846       // Generate code to populate each result operand.
1847       switch (OpInfo.Kind) {
1848       case MatchableInfo::ResOperand::RenderAsmOperand: {
1849         // This comes from something we parsed.
1850         const MatchableInfo::AsmOperand &Op =
1851           II->AsmOperands[OpInfo.AsmOperandNum];
1852
1853         // Registers are always converted the same, don't duplicate the
1854         // conversion function based on them.
1855         Signature += "__";
1856         std::string Class;
1857         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1858         Signature += Class;
1859         Signature += utostr(OpInfo.MINumOperands);
1860         Signature += "_" + itostr(OpInfo.AsmOperandNum);
1861
1862         // Add the conversion kind, if necessary, and get the associated ID
1863         // the index of its entry in the vector).
1864         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1865                                      Op.Class->RenderMethod);
1866         Name = getEnumNameForToken(Name);
1867
1868         bool IsNewConverter = false;
1869         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1870                                             IsNewConverter);
1871
1872         // Add the operand entry to the instruction kind conversion row.
1873         ConversionRow.push_back(ID);
1874         ConversionRow.push_back(OpInfo.AsmOperandNum);
1875
1876         if (!IsNewConverter)
1877           break;
1878
1879         // This is a new operand kind. Add a handler for it to the
1880         // converter driver.
1881         CvtOS << "    case " << Name << ":\n"
1882               << "      static_cast<" << TargetOperandClass
1883               << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod
1884               << "(Inst, " << OpInfo.MINumOperands << ");\n"
1885               << "      break;\n";
1886
1887         // Add a handler for the operand number lookup.
1888         OpOS << "    case " << Name << ":\n"
1889              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
1890
1891         if (Op.Class->isRegisterClass())
1892           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
1893         else
1894           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
1895         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
1896              << "      break;\n";
1897         break;
1898       }
1899       case MatchableInfo::ResOperand::TiedOperand: {
1900         // If this operand is tied to a previous one, just copy the MCInst
1901         // operand from the earlier one.We can only tie single MCOperand values.
1902         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1903         unsigned TiedOp = OpInfo.TiedOperandNum;
1904         assert(i > TiedOp && "Tied operand precedes its target!");
1905         Signature += "__Tie" + utostr(TiedOp);
1906         ConversionRow.push_back(CVT_Tied);
1907         ConversionRow.push_back(TiedOp);
1908         break;
1909       }
1910       case MatchableInfo::ResOperand::ImmOperand: {
1911         int64_t Val = OpInfo.ImmVal;
1912         std::string Ty = "imm_" + itostr(Val);
1913         Ty = getEnumNameForToken(Ty);
1914         Signature += "__" + Ty;
1915
1916         std::string Name = "CVT_" + Ty;
1917         bool IsNewConverter = false;
1918         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1919                                             IsNewConverter);
1920         // Add the operand entry to the instruction kind conversion row.
1921         ConversionRow.push_back(ID);
1922         ConversionRow.push_back(0);
1923
1924         if (!IsNewConverter)
1925           break;
1926
1927         CvtOS << "    case " << Name << ":\n"
1928               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
1929               << "      break;\n";
1930
1931         OpOS << "    case " << Name << ":\n"
1932              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1933              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
1934              << "      ++NumMCOperands;\n"
1935              << "      break;\n";
1936         break;
1937       }
1938       case MatchableInfo::ResOperand::RegOperand: {
1939         std::string Reg, Name;
1940         if (!OpInfo.Register) {
1941           Name = "reg0";
1942           Reg = "0";
1943         } else {
1944           Reg = getQualifiedName(OpInfo.Register);
1945           Name = "reg" + OpInfo.Register->getName();
1946         }
1947         Signature += "__" + Name;
1948         Name = "CVT_" + Name;
1949         bool IsNewConverter = false;
1950         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1951                                             IsNewConverter);
1952         // Add the operand entry to the instruction kind conversion row.
1953         ConversionRow.push_back(ID);
1954         ConversionRow.push_back(0);
1955
1956         if (!IsNewConverter)
1957           break;
1958         CvtOS << "    case " << Name << ":\n"
1959               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
1960               << "      break;\n";
1961
1962         OpOS << "    case " << Name << ":\n"
1963              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1964              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
1965              << "      ++NumMCOperands;\n"
1966              << "      break;\n";
1967       }
1968       }
1969     }
1970
1971     // If there were no operands, add to the signature to that effect
1972     if (Signature == "Convert")
1973       Signature += "_NoOperands";
1974
1975     II->ConversionFnKind = Signature;
1976
1977     // Save the signature. If we already have it, don't add a new row
1978     // to the table.
1979     if (!InstructionConversionKinds.insert(Signature))
1980       continue;
1981
1982     // Add the row to the table.
1983     ConversionTable.push_back(std::move(ConversionRow));
1984   }
1985
1986   // Finish up the converter driver function.
1987   CvtOS << "    }\n  }\n}\n\n";
1988
1989   // Finish up the operand number lookup function.
1990   OpOS << "    }\n  }\n}\n\n";
1991
1992   OS << "namespace {\n";
1993
1994   // Output the operand conversion kind enum.
1995   OS << "enum OperatorConversionKind {\n";
1996   for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1997     OS << "  " << OperandConversionKinds[i] << ",\n";
1998   OS << "  CVT_NUM_CONVERTERS\n";
1999   OS << "};\n\n";
2000
2001   // Output the instruction conversion kind enum.
2002   OS << "enum InstructionConversionKind {\n";
2003   for (const std::string &Signature : InstructionConversionKinds)
2004     OS << "  " << Signature << ",\n";
2005   OS << "  CVT_NUM_SIGNATURES\n";
2006   OS << "};\n\n";
2007
2008
2009   OS << "} // end anonymous namespace\n\n";
2010
2011   // Output the conversion table.
2012   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2013      << MaxRowLength << "] = {\n";
2014
2015   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2016     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2017     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2018     OS << "  { ";
2019     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
2020       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
2021          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2022     OS << "CVT_Done },\n";
2023   }
2024
2025   OS << "};\n\n";
2026
2027   // Spit out the conversion driver function.
2028   OS << CvtOS.str();
2029
2030   // Spit out the operand number lookup function.
2031   OS << OpOS.str();
2032 }
2033
2034 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2035 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2036                                       std::forward_list<ClassInfo> &Infos,
2037                                       raw_ostream &OS) {
2038   OS << "namespace {\n\n";
2039
2040   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2041      << "/// instruction matching.\n";
2042   OS << "enum MatchClassKind {\n";
2043   OS << "  InvalidMatchClass = 0,\n";
2044   for (const auto &CI : Infos) {
2045     OS << "  " << CI.Name << ", // ";
2046     if (CI.Kind == ClassInfo::Token) {
2047       OS << "'" << CI.ValueName << "'\n";
2048     } else if (CI.isRegisterClass()) {
2049       if (!CI.ValueName.empty())
2050         OS << "register class '" << CI.ValueName << "'\n";
2051       else
2052         OS << "derived register class\n";
2053     } else {
2054       OS << "user defined class '" << CI.ValueName << "'\n";
2055     }
2056   }
2057   OS << "  NumMatchClassKinds\n";
2058   OS << "};\n\n";
2059
2060   OS << "}\n\n";
2061 }
2062
2063 /// emitValidateOperandClass - Emit the function to validate an operand class.
2064 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2065                                      raw_ostream &OS) {
2066   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2067      << "MatchClassKind Kind) {\n";
2068   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2069      << Info.Target.getName() << "Operand&)GOp;\n";
2070
2071   // The InvalidMatchClass is not to match any operand.
2072   OS << "  if (Kind == InvalidMatchClass)\n";
2073   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2074
2075   // Check for Token operands first.
2076   // FIXME: Use a more specific diagnostic type.
2077   OS << "  if (Operand.isToken())\n";
2078   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2079      << "             MCTargetAsmParser::Match_Success :\n"
2080      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2081
2082   // Check the user classes. We don't care what order since we're only
2083   // actually matching against one of them.
2084   for (const auto &CI : Info.Classes) {
2085     if (!CI.isUserClass())
2086       continue;
2087
2088     OS << "  // '" << CI.ClassName << "' class\n";
2089     OS << "  if (Kind == " << CI.Name << ") {\n";
2090     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2091     OS << "      return MCTargetAsmParser::Match_Success;\n";
2092     if (!CI.DiagnosticType.empty())
2093       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2094          << CI.DiagnosticType << ";\n";
2095     OS << "  }\n\n";
2096   }
2097
2098   // Check for register operands, including sub-classes.
2099   OS << "  if (Operand.isReg()) {\n";
2100   OS << "    MatchClassKind OpKind;\n";
2101   OS << "    switch (Operand.getReg()) {\n";
2102   OS << "    default: OpKind = InvalidMatchClass; break;\n";
2103   for (const auto &RC : Info.RegisterClasses)
2104     OS << "    case " << Info.Target.getName() << "::"
2105        << RC.first->getName() << ": OpKind = " << RC.second->Name
2106        << "; break;\n";
2107   OS << "    }\n";
2108   OS << "    return isSubclass(OpKind, Kind) ? "
2109      << "MCTargetAsmParser::Match_Success :\n                             "
2110      << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
2111
2112   // Generic fallthrough match failure case for operands that don't have
2113   // specialized diagnostic types.
2114   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2115   OS << "}\n\n";
2116 }
2117
2118 /// emitIsSubclass - Emit the subclass predicate function.
2119 static void emitIsSubclass(CodeGenTarget &Target,
2120                            std::forward_list<ClassInfo> &Infos,
2121                            raw_ostream &OS) {
2122   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2123   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2124   OS << "  if (A == B)\n";
2125   OS << "    return true;\n\n";
2126
2127   std::string OStr;
2128   raw_string_ostream SS(OStr);
2129   unsigned Count = 0;
2130   SS << "  switch (A) {\n";
2131   SS << "  default:\n";
2132   SS << "    return false;\n";
2133   for (const auto &A : Infos) {
2134     std::vector<StringRef> SuperClasses;
2135     for (const auto &B : Infos) {
2136       if (&A != &B && A.isSubsetOf(B))
2137         SuperClasses.push_back(B.Name);
2138     }
2139
2140     if (SuperClasses.empty())
2141       continue;
2142     ++Count;
2143
2144     SS << "\n  case " << A.Name << ":\n";
2145
2146     if (SuperClasses.size() == 1) {
2147       SS << "    return B == " << SuperClasses.back().str() << ";\n";
2148       continue;
2149     }
2150
2151     if (!SuperClasses.empty()) {
2152       SS << "    switch (B) {\n";
2153       SS << "    default: return false;\n";
2154       for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2155         SS << "    case " << SuperClasses[i].str() << ": return true;\n";
2156       SS << "    }\n";
2157     } else {
2158       // No case statement to emit
2159       SS << "    return false;\n";
2160     }
2161   }
2162   SS << "  }\n";
2163
2164   // If there were case statements emitted into the string stream, write them
2165   // to the output stream, otherwise write the default.
2166   if (Count)
2167     OS << SS.str();
2168   else
2169     OS << "  return false;\n";
2170
2171   OS << "}\n\n";
2172 }
2173
2174 /// emitMatchTokenString - Emit the function to match a token string to the
2175 /// appropriate match class value.
2176 static void emitMatchTokenString(CodeGenTarget &Target,
2177                                  std::forward_list<ClassInfo> &Infos,
2178                                  raw_ostream &OS) {
2179   // Construct the match list.
2180   std::vector<StringMatcher::StringPair> Matches;
2181   for (const auto &CI : Infos) {
2182     if (CI.Kind == ClassInfo::Token)
2183       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2184   }
2185
2186   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2187
2188   StringMatcher("Name", Matches, OS).Emit();
2189
2190   OS << "  return InvalidMatchClass;\n";
2191   OS << "}\n\n";
2192 }
2193
2194 /// emitMatchRegisterName - Emit the function to match a string to the target
2195 /// specific register enum.
2196 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2197                                   raw_ostream &OS) {
2198   // Construct the match list.
2199   std::vector<StringMatcher::StringPair> Matches;
2200   const auto &Regs = Target.getRegBank().getRegisters();
2201   for (const CodeGenRegister &Reg : Regs) {
2202     if (Reg.TheDef->getValueAsString("AsmName").empty())
2203       continue;
2204
2205     Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
2206                          "return " + utostr(Reg.EnumValue) + ";");
2207   }
2208
2209   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2210
2211   StringMatcher("Name", Matches, OS).Emit();
2212
2213   OS << "  return 0;\n";
2214   OS << "}\n\n";
2215 }
2216
2217 static const char *getMinimalTypeForRange(uint64_t Range) {
2218   assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
2219   if (Range > 0xFFFFFFFFULL)
2220     return "uint64_t";
2221   if (Range > 0xFFFF)
2222     return "uint32_t";
2223   if (Range > 0xFF)
2224     return "uint16_t";
2225   return "uint8_t";
2226 }
2227
2228 static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
2229   uint64_t MaxIndex = Info.SubtargetFeatures.size();
2230   if (MaxIndex > 0)
2231     MaxIndex--;
2232   return getMinimalTypeForRange(1ULL << MaxIndex);
2233 }
2234
2235 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2236 /// definitions.
2237 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2238                                                 raw_ostream &OS) {
2239   OS << "// Flags for subtarget features that participate in "
2240      << "instruction matching.\n";
2241   OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
2242      << " {\n";
2243   for (const auto &SF : Info.SubtargetFeatures) {
2244     const SubtargetFeatureInfo &SFI = SF.second;
2245     OS << "  " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
2246   }
2247   OS << "  Feature_None = 0\n";
2248   OS << "};\n\n";
2249 }
2250
2251 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2252 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2253   // Get the set of diagnostic types from all of the operand classes.
2254   std::set<StringRef> Types;
2255   for (std::map<Record*, ClassInfo*>::const_iterator
2256        I = Info.AsmOperandClasses.begin(),
2257        E = Info.AsmOperandClasses.end(); I != E; ++I) {
2258     if (!I->second->DiagnosticType.empty())
2259       Types.insert(I->second->DiagnosticType);
2260   }
2261
2262   if (Types.empty()) return;
2263
2264   // Now emit the enum entries.
2265   for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2266        I != E; ++I)
2267     OS << "  Match_" << *I << ",\n";
2268   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2269 }
2270
2271 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2272 /// user-level name for a subtarget feature.
2273 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2274   OS << "// User-level names for subtarget features that participate in\n"
2275      << "// instruction matching.\n"
2276      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2277   if (!Info.SubtargetFeatures.empty()) {
2278     OS << "  switch(Val) {\n";
2279     for (const auto &SF : Info.SubtargetFeatures) {
2280       const SubtargetFeatureInfo &SFI = SF.second;
2281       // FIXME: Totally just a placeholder name to get the algorithm working.
2282       OS << "  case " << SFI.getEnumName() << ": return \""
2283          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2284     }
2285     OS << "  default: return \"(unknown)\";\n";
2286     OS << "  }\n";
2287   } else {
2288     // Nothing to emit, so skip the switch
2289     OS << "  return \"(unknown)\";\n";
2290   }
2291   OS << "}\n\n";
2292 }
2293
2294 /// emitComputeAvailableFeatures - Emit the function to compute the list of
2295 /// available features given a subtarget.
2296 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2297                                          raw_ostream &OS) {
2298   std::string ClassName =
2299     Info.AsmParser->getValueAsString("AsmParserClassName");
2300
2301   OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
2302      << "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n";
2303   OS << "  uint64_t Features = 0;\n";
2304   for (const auto &SF : Info.SubtargetFeatures) {
2305     const SubtargetFeatureInfo &SFI = SF.second;
2306
2307     OS << "  if (";
2308     std::string CondStorage =
2309       SFI.TheDef->getValueAsString("AssemblerCondString");
2310     StringRef Conds = CondStorage;
2311     std::pair<StringRef,StringRef> Comma = Conds.split(',');
2312     bool First = true;
2313     do {
2314       if (!First)
2315         OS << " && ";
2316
2317       bool Neg = false;
2318       StringRef Cond = Comma.first;
2319       if (Cond[0] == '!') {
2320         Neg = true;
2321         Cond = Cond.substr(1);
2322       }
2323
2324       OS << "(";
2325       if (Neg)
2326         OS << "!";
2327       OS << "FB[" << Info.Target.getName() << "::" << Cond << "])";
2328
2329       if (Comma.second.empty())
2330         break;
2331
2332       First = false;
2333       Comma = Comma.second.split(',');
2334     } while (true);
2335
2336     OS << ")\n";
2337     OS << "    Features |= " << SFI.getEnumName() << ";\n";
2338   }
2339   OS << "  return Features;\n";
2340   OS << "}\n\n";
2341 }
2342
2343 static std::string GetAliasRequiredFeatures(Record *R,
2344                                             const AsmMatcherInfo &Info) {
2345   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2346   std::string Result;
2347   unsigned NumFeatures = 0;
2348   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2349     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2350
2351     if (!F)
2352       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2353                     "' is not marked as an AssemblerPredicate!");
2354
2355     if (NumFeatures)
2356       Result += '|';
2357
2358     Result += F->getEnumName();
2359     ++NumFeatures;
2360   }
2361
2362   if (NumFeatures > 1)
2363     Result = '(' + Result + ')';
2364   return Result;
2365 }
2366
2367 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2368                                      std::vector<Record*> &Aliases,
2369                                      unsigned Indent = 0,
2370                                   StringRef AsmParserVariantName = StringRef()){
2371   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2372   // iteration order of the map is stable.
2373   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2374
2375   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2376     Record *R = Aliases[i];
2377     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2378     std::string AsmVariantName = R->getValueAsString("AsmVariantName");
2379     if (AsmVariantName != AsmParserVariantName)
2380       continue;
2381     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2382   }
2383   if (AliasesFromMnemonic.empty())
2384     return;
2385
2386   // Process each alias a "from" mnemonic at a time, building the code executed
2387   // by the string remapper.
2388   std::vector<StringMatcher::StringPair> Cases;
2389   for (std::map<std::string, std::vector<Record*> >::iterator
2390        I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2391        I != E; ++I) {
2392     const std::vector<Record*> &ToVec = I->second;
2393
2394     // Loop through each alias and emit code that handles each case.  If there
2395     // are two instructions without predicates, emit an error.  If there is one,
2396     // emit it last.
2397     std::string MatchCode;
2398     int AliasWithNoPredicate = -1;
2399
2400     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2401       Record *R = ToVec[i];
2402       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2403
2404       // If this unconditionally matches, remember it for later and diagnose
2405       // duplicates.
2406       if (FeatureMask.empty()) {
2407         if (AliasWithNoPredicate != -1) {
2408           // We can't have two aliases from the same mnemonic with no predicate.
2409           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2410                      "two MnemonicAliases with the same 'from' mnemonic!");
2411           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2412         }
2413
2414         AliasWithNoPredicate = i;
2415         continue;
2416       }
2417       if (R->getValueAsString("ToMnemonic") == I->first)
2418         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2419
2420       if (!MatchCode.empty())
2421         MatchCode += "else ";
2422       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2423       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2424     }
2425
2426     if (AliasWithNoPredicate != -1) {
2427       Record *R = ToVec[AliasWithNoPredicate];
2428       if (!MatchCode.empty())
2429         MatchCode += "else\n  ";
2430       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2431     }
2432
2433     MatchCode += "return;";
2434
2435     Cases.push_back(std::make_pair(I->first, MatchCode));
2436   }
2437   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2438 }
2439
2440 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2441 /// emit a function for them and return true, otherwise return false.
2442 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2443                                 CodeGenTarget &Target) {
2444   // Ignore aliases when match-prefix is set.
2445   if (!MatchPrefix.empty())
2446     return false;
2447
2448   std::vector<Record*> Aliases =
2449     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2450   if (Aliases.empty()) return false;
2451
2452   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2453     "uint64_t Features, unsigned VariantID) {\n";
2454   OS << "  switch (VariantID) {\n";
2455   unsigned VariantCount = Target.getAsmParserVariantCount();
2456   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2457     Record *AsmVariant = Target.getAsmParserVariant(VC);
2458     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2459     std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
2460     OS << "    case " << AsmParserVariantNo << ":\n";
2461     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2462                              AsmParserVariantName);
2463     OS << "    break;\n";
2464   }
2465   OS << "  }\n";
2466
2467   // Emit aliases that apply to all variants.
2468   emitMnemonicAliasVariant(OS, Info, Aliases);
2469
2470   OS << "}\n\n";
2471
2472   return true;
2473 }
2474
2475 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2476                               const AsmMatcherInfo &Info, StringRef ClassName,
2477                               StringToOffsetTable &StringTable,
2478                               unsigned MaxMnemonicIndex) {
2479   unsigned MaxMask = 0;
2480   for (std::vector<OperandMatchEntry>::const_iterator it =
2481        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2482        it != ie; ++it) {
2483     MaxMask |= it->OperandMask;
2484   }
2485
2486   // Emit the static custom operand parsing table;
2487   OS << "namespace {\n";
2488   OS << "  struct OperandMatchEntry {\n";
2489   OS << "    " << getMinimalRequiredFeaturesType(Info)
2490                << " RequiredFeatures;\n";
2491   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2492                << " Mnemonic;\n";
2493   OS << "    " << getMinimalTypeForRange(std::distance(
2494                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2495   OS << "    " << getMinimalTypeForRange(MaxMask)
2496                << " OperandMask;\n\n";
2497   OS << "    StringRef getMnemonic() const {\n";
2498   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2499   OS << "                       MnemonicTable[Mnemonic]);\n";
2500   OS << "    }\n";
2501   OS << "  };\n\n";
2502
2503   OS << "  // Predicate for searching for an opcode.\n";
2504   OS << "  struct LessOpcodeOperand {\n";
2505   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2506   OS << "      return LHS.getMnemonic()  < RHS;\n";
2507   OS << "    }\n";
2508   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2509   OS << "      return LHS < RHS.getMnemonic();\n";
2510   OS << "    }\n";
2511   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2512   OS << " const OperandMatchEntry &RHS) {\n";
2513   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2514   OS << "    }\n";
2515   OS << "  };\n";
2516
2517   OS << "} // end anonymous namespace.\n\n";
2518
2519   OS << "static const OperandMatchEntry OperandMatchTable["
2520      << Info.OperandMatchInfo.size() << "] = {\n";
2521
2522   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2523   for (std::vector<OperandMatchEntry>::const_iterator it =
2524        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2525        it != ie; ++it) {
2526     const OperandMatchEntry &OMI = *it;
2527     const MatchableInfo &II = *OMI.MI;
2528
2529     OS << "  { ";
2530
2531     // Write the required features mask.
2532     if (!II.RequiredFeatures.empty()) {
2533       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2534         if (i) OS << "|";
2535         OS << II.RequiredFeatures[i]->getEnumName();
2536       }
2537     } else
2538       OS << "0";
2539
2540     // Store a pascal-style length byte in the mnemonic.
2541     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2542     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2543        << " /* " << II.Mnemonic << " */, ";
2544
2545     OS << OMI.CI->Name;
2546
2547     OS << ", " << OMI.OperandMask;
2548     OS << " /* ";
2549     bool printComma = false;
2550     for (int i = 0, e = 31; i !=e; ++i)
2551       if (OMI.OperandMask & (1 << i)) {
2552         if (printComma)
2553           OS << ", ";
2554         OS << i;
2555         printComma = true;
2556       }
2557     OS << " */";
2558
2559     OS << " },\n";
2560   }
2561   OS << "};\n\n";
2562
2563   // Emit the operand class switch to call the correct custom parser for
2564   // the found operand class.
2565   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2566      << Target.getName() << ClassName << "::\n"
2567      << "tryCustomParseOperand(OperandVector"
2568      << " &Operands,\n                      unsigned MCK) {\n\n"
2569      << "  switch(MCK) {\n";
2570
2571   for (const auto &CI : Info.Classes) {
2572     if (CI.ParserMethod.empty())
2573       continue;
2574     OS << "  case " << CI.Name << ":\n"
2575        << "    return " << CI.ParserMethod << "(Operands);\n";
2576   }
2577
2578   OS << "  default:\n";
2579   OS << "    return MatchOperand_NoMatch;\n";
2580   OS << "  }\n";
2581   OS << "  return MatchOperand_NoMatch;\n";
2582   OS << "}\n\n";
2583
2584   // Emit the static custom operand parser. This code is very similar with
2585   // the other matcher. Also use MatchResultTy here just in case we go for
2586   // a better error handling.
2587   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2588      << Target.getName() << ClassName << "::\n"
2589      << "MatchOperandParserImpl(OperandVector"
2590      << " &Operands,\n                       StringRef Mnemonic) {\n";
2591
2592   // Emit code to get the available features.
2593   OS << "  // Get the current feature set.\n";
2594   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2595
2596   OS << "  // Get the next operand index.\n";
2597   OS << "  unsigned NextOpNum = Operands.size();\n";
2598
2599   // Emit code to search the table.
2600   OS << "  // Search the table.\n";
2601   OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2602   OS << " MnemonicRange\n";
2603   OS << "       (OperandMatchTable, OperandMatchTable+";
2604   OS << Info.OperandMatchInfo.size() << ");\n";
2605   OS << "  if(!Mnemonic.empty())\n";
2606   OS << "    MnemonicRange = std::equal_range(OperandMatchTable,";
2607   OS << " OperandMatchTable+"
2608      << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2609      << "                     LessOpcodeOperand());\n\n";
2610
2611   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2612   OS << "    return MatchOperand_NoMatch;\n\n";
2613
2614   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2615      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2616
2617   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2618   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2619
2620   // Emit check that the required features are available.
2621   OS << "    // check if the available features match\n";
2622   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2623      << "!= it->RequiredFeatures) {\n";
2624   OS << "      continue;\n";
2625   OS << "    }\n\n";
2626
2627   // Emit check to ensure the operand number matches.
2628   OS << "    // check if the operand in question has a custom parser.\n";
2629   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2630   OS << "      continue;\n\n";
2631
2632   // Emit call to the custom parser method
2633   OS << "    // call custom parse method to handle the operand\n";
2634   OS << "    OperandMatchResultTy Result = ";
2635   OS << "tryCustomParseOperand(Operands, it->Class);\n";
2636   OS << "    if (Result != MatchOperand_NoMatch)\n";
2637   OS << "      return Result;\n";
2638   OS << "  }\n\n";
2639
2640   OS << "  // Okay, we had no match.\n";
2641   OS << "  return MatchOperand_NoMatch;\n";
2642   OS << "}\n\n";
2643 }
2644
2645 void AsmMatcherEmitter::run(raw_ostream &OS) {
2646   CodeGenTarget Target(Records);
2647   Record *AsmParser = Target.getAsmParser();
2648   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2649
2650   // Compute the information on the instructions to match.
2651   AsmMatcherInfo Info(AsmParser, Target, Records);
2652   Info.buildInfo();
2653
2654   // Sort the instruction table using the partial order on classes. We use
2655   // stable_sort to ensure that ambiguous instructions are still
2656   // deterministically ordered.
2657   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2658                    [](const std::unique_ptr<MatchableInfo> &a,
2659                       const std::unique_ptr<MatchableInfo> &b){
2660                      return *a < *b;});
2661
2662   DEBUG_WITH_TYPE("instruction_info", {
2663       for (const auto &MI : Info.Matchables)
2664         MI->dump();
2665     });
2666
2667   // Check for ambiguous matchables.
2668   DEBUG_WITH_TYPE("ambiguous_instrs", {
2669     unsigned NumAmbiguous = 0;
2670     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
2671          ++I) {
2672       for (auto J = std::next(I); J != E; ++J) {
2673         const MatchableInfo &A = **I;
2674         const MatchableInfo &B = **J;
2675
2676         if (A.couldMatchAmbiguouslyWith(B)) {
2677           errs() << "warning: ambiguous matchables:\n";
2678           A.dump();
2679           errs() << "\nis incomparable with:\n";
2680           B.dump();
2681           errs() << "\n\n";
2682           ++NumAmbiguous;
2683         }
2684       }
2685     }
2686     if (NumAmbiguous)
2687       errs() << "warning: " << NumAmbiguous
2688              << " ambiguous matchables!\n";
2689   });
2690
2691   // Compute the information on the custom operand parsing.
2692   Info.buildOperandMatchInfo();
2693
2694   // Write the output.
2695
2696   // Information for the class declaration.
2697   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2698   OS << "#undef GET_ASSEMBLER_HEADER\n";
2699   OS << "  // This should be included into the middle of the declaration of\n";
2700   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2701   OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
2702   OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2703      << "unsigned Opcode,\n"
2704      << "                       const OperandVector "
2705      << "&Operands);\n";
2706   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
2707   OS << "           const OperandVector &Operands) override;\n";
2708   OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n";
2709   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
2710      << "                                MCInst &Inst,\n"
2711      << "                                uint64_t &ErrorInfo,"
2712      << " bool matchingInlineAsm,\n"
2713      << "                                unsigned VariantID = 0);\n";
2714
2715   if (!Info.OperandMatchInfo.empty()) {
2716     OS << "\n  enum OperandMatchResultTy {\n";
2717     OS << "    MatchOperand_Success,    // operand matched successfully\n";
2718     OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2719     OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2720     OS << "  };\n";
2721     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2722     OS << "    OperandVector &Operands,\n";
2723     OS << "    StringRef Mnemonic);\n";
2724
2725     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2726     OS << "    OperandVector &Operands,\n";
2727     OS << "    unsigned MCK);\n\n";
2728   }
2729
2730   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2731
2732   // Emit the operand match diagnostic enum names.
2733   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2734   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2735   emitOperandDiagnosticTypes(Info, OS);
2736   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2737
2738
2739   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2740   OS << "#undef GET_REGISTER_MATCHER\n\n";
2741
2742   // Emit the subtarget feature enumeration.
2743   emitSubtargetFeatureFlagEnumeration(Info, OS);
2744
2745   // Emit the function to match a register name to number.
2746   // This should be omitted for Mips target
2747   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2748     emitMatchRegisterName(Target, AsmParser, OS);
2749
2750   OS << "#endif // GET_REGISTER_MATCHER\n\n";
2751
2752   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2753   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2754
2755   // Generate the helper function to get the names for subtarget features.
2756   emitGetSubtargetFeatureName(Info, OS);
2757
2758   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2759
2760   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2761   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2762
2763   // Generate the function that remaps for mnemonic aliases.
2764   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
2765
2766   // Generate the convertToMCInst function to convert operands into an MCInst.
2767   // Also, generate the convertToMapAndConstraints function for MS-style inline
2768   // assembly.  The latter doesn't actually generate a MCInst.
2769   emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
2770
2771   // Emit the enumeration for classes which participate in matching.
2772   emitMatchClassEnumeration(Target, Info.Classes, OS);
2773
2774   // Emit the routine to match token strings to their match class.
2775   emitMatchTokenString(Target, Info.Classes, OS);
2776
2777   // Emit the subclass predicate routine.
2778   emitIsSubclass(Target, Info.Classes, OS);
2779
2780   // Emit the routine to validate an operand against a match class.
2781   emitValidateOperandClass(Info, OS);
2782
2783   // Emit the available features compute function.
2784   emitComputeAvailableFeatures(Info, OS);
2785
2786
2787   StringToOffsetTable StringTable;
2788
2789   size_t MaxNumOperands = 0;
2790   unsigned MaxMnemonicIndex = 0;
2791   bool HasDeprecation = false;
2792   for (const auto &MI : Info.Matchables) {
2793     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
2794     HasDeprecation |= MI->HasDeprecation;
2795
2796     // Store a pascal-style length byte in the mnemonic.
2797     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
2798     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2799                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
2800   }
2801
2802   OS << "static const char *const MnemonicTable =\n";
2803   StringTable.EmitString(OS);
2804   OS << ";\n\n";
2805
2806   // Emit the static match table; unused classes get initalized to 0 which is
2807   // guaranteed to be InvalidMatchClass.
2808   //
2809   // FIXME: We can reduce the size of this table very easily. First, we change
2810   // it so that store the kinds in separate bit-fields for each index, which
2811   // only needs to be the max width used for classes at that index (we also need
2812   // to reject based on this during classification). If we then make sure to
2813   // order the match kinds appropriately (putting mnemonics last), then we
2814   // should only end up using a few bits for each class, especially the ones
2815   // following the mnemonic.
2816   OS << "namespace {\n";
2817   OS << "  struct MatchEntry {\n";
2818   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2819                << " Mnemonic;\n";
2820   OS << "    uint16_t Opcode;\n";
2821   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2822                << " ConvertFn;\n";
2823   OS << "    " << getMinimalRequiredFeaturesType(Info)
2824                << " RequiredFeatures;\n";
2825   OS << "    " << getMinimalTypeForRange(
2826                       std::distance(Info.Classes.begin(), Info.Classes.end()))
2827      << " Classes[" << MaxNumOperands << "];\n";
2828   OS << "    StringRef getMnemonic() const {\n";
2829   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2830   OS << "                       MnemonicTable[Mnemonic]);\n";
2831   OS << "    }\n";
2832   OS << "  };\n\n";
2833
2834   OS << "  // Predicate for searching for an opcode.\n";
2835   OS << "  struct LessOpcode {\n";
2836   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2837   OS << "      return LHS.getMnemonic() < RHS;\n";
2838   OS << "    }\n";
2839   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2840   OS << "      return LHS < RHS.getMnemonic();\n";
2841   OS << "    }\n";
2842   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2843   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2844   OS << "    }\n";
2845   OS << "  };\n";
2846
2847   OS << "} // end anonymous namespace.\n\n";
2848
2849   unsigned VariantCount = Target.getAsmParserVariantCount();
2850   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2851     Record *AsmVariant = Target.getAsmParserVariant(VC);
2852     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2853
2854     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
2855
2856     for (const auto &MI : Info.Matchables) {
2857       if (MI->AsmVariantID != AsmVariantNo)
2858         continue;
2859
2860       // Store a pascal-style length byte in the mnemonic.
2861       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
2862       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2863          << " /* " << MI->Mnemonic << " */, "
2864          << Target.getName() << "::"
2865          << MI->getResultInst()->TheDef->getName() << ", "
2866          << MI->ConversionFnKind << ", ";
2867
2868       // Write the required features mask.
2869       if (!MI->RequiredFeatures.empty()) {
2870         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
2871           if (i) OS << "|";
2872           OS << MI->RequiredFeatures[i]->getEnumName();
2873         }
2874       } else
2875         OS << "0";
2876
2877       OS << ", { ";
2878       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
2879         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
2880
2881         if (i) OS << ", ";
2882         OS << Op.Class->Name;
2883       }
2884       OS << " }, },\n";
2885     }
2886
2887     OS << "};\n\n";
2888   }
2889
2890   // A method to determine if a mnemonic is in the list.
2891   OS << "bool " << Target.getName() << ClassName << "::\n"
2892      << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
2893   OS << "  // Find the appropriate table for this asm variant.\n";
2894   OS << "  const MatchEntry *Start, *End;\n";
2895   OS << "  switch (VariantID) {\n";
2896   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
2897   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2898     Record *AsmVariant = Target.getAsmParserVariant(VC);
2899     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2900     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2901        << "); End = std::end(MatchTable" << VC << "); break;\n";
2902   }
2903   OS << "  }\n";
2904   OS << "  // Search the table.\n";
2905   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2906   OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
2907   OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2908   OS << "}\n\n";
2909
2910   // Finally, build the match function.
2911   OS << "unsigned " << Target.getName() << ClassName << "::\n"
2912      << "MatchInstructionImpl(const OperandVector &Operands,\n";
2913   OS << "                     MCInst &Inst, uint64_t &ErrorInfo,\n"
2914      << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
2915
2916   OS << "  // Eliminate obvious mismatches.\n";
2917   OS << "  if (Operands.size() > " << MaxNumOperands << ") {\n";
2918   OS << "    ErrorInfo = " << MaxNumOperands << ";\n";
2919   OS << "    return Match_InvalidOperand;\n";
2920   OS << "  }\n\n";
2921
2922   // Emit code to get the available features.
2923   OS << "  // Get the current feature set.\n";
2924   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2925
2926   OS << "  // Get the instruction mnemonic, which is the first token.\n";
2927   OS << "  StringRef Mnemonic;\n";
2928   OS << "  if (Operands[0]->isToken())\n";
2929   OS << "    Mnemonic = ((" << Target.getName()
2930      << "Operand&)*Operands[0]).getToken();\n\n";
2931
2932   if (HasMnemonicAliases) {
2933     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2934     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
2935   }
2936
2937   // Emit code to compute the class list for this operand vector.
2938   OS << "  // Some state to try to produce better error messages.\n";
2939   OS << "  bool HadMatchOtherThanFeatures = false;\n";
2940   OS << "  bool HadMatchOtherThanPredicate = false;\n";
2941   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2942   OS << "  uint64_t MissingFeatures = ~0ULL;\n";
2943   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2944   OS << "  // wrong for all instances of the instruction.\n";
2945   OS << "  ErrorInfo = ~0ULL;\n";
2946
2947   // Emit code to search the table.
2948   OS << "  // Find the appropriate table for this asm variant.\n";
2949   OS << "  const MatchEntry *Start, *End;\n";
2950   OS << "  switch (VariantID) {\n";
2951   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
2952   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2953     Record *AsmVariant = Target.getAsmParserVariant(VC);
2954     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2955     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2956        << "); End = std::end(MatchTable" << VC << "); break;\n";
2957   }
2958   OS << "  }\n";
2959   OS << "  // Search the table.\n";
2960   OS << "  std::pair<const MatchEntry*, const MatchEntry*>"
2961         "MnemonicRange(Start, End);\n";
2962   OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
2963   OS << "  if (!Mnemonic.empty())\n";
2964   OS << "    MnemonicRange = std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
2965
2966   OS << "  // Return a more specific error code if no mnemonics match.\n";
2967   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2968   OS << "    return Match_MnemonicFail;\n\n";
2969
2970   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2971      << "*ie = MnemonicRange.second;\n";
2972   OS << "       it != ie; ++it) {\n";
2973
2974   // Emit check that the subclasses match.
2975   OS << "    bool OperandsValid = true;\n";
2976   OS << "    for (unsigned i = SIndex; i != " << MaxNumOperands << "; ++i) {\n";
2977   OS << "      auto Formal = static_cast<MatchClassKind>(it->Classes[i]);\n";
2978   OS << "      if (i >= Operands.size()) {\n";
2979   OS << "        OperandsValid = (Formal == " <<"InvalidMatchClass);\n";
2980   OS << "        if (!OperandsValid) ErrorInfo = i;\n";
2981   OS << "        break;\n";
2982   OS << "      }\n";
2983   OS << "      MCParsedAsmOperand &Actual = *Operands[i];\n";
2984   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
2985   OS << "      if (Diag == Match_Success)\n";
2986   OS << "        continue;\n";
2987   OS << "      // If the generic handler indicates an invalid operand\n";
2988   OS << "      // failure, check for a special case.\n";
2989   OS << "      if (Diag == Match_InvalidOperand) {\n";
2990   OS << "        Diag = validateTargetOperandClass(Actual, Formal);\n";
2991   OS << "        if (Diag == Match_Success)\n";
2992   OS << "          continue;\n";
2993   OS << "      }\n";
2994   OS << "      // If this operand is broken for all of the instances of this\n";
2995   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2996   OS << "      // If we already had a match that only failed due to a\n";
2997   OS << "      // target predicate, that diagnostic is preferred.\n";
2998   OS << "      if (!HadMatchOtherThanPredicate &&\n";
2999   OS << "          (it == MnemonicRange.first || ErrorInfo <= i)) {\n";
3000   OS << "        ErrorInfo = i;\n";
3001   OS << "        // InvalidOperand is the default. Prefer specificity.\n";
3002   OS << "        if (Diag != Match_InvalidOperand)\n";
3003   OS << "          RetCode = Diag;\n";
3004   OS << "      }\n";
3005   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3006   OS << "      OperandsValid = false;\n";
3007   OS << "      break;\n";
3008   OS << "    }\n\n";
3009
3010   OS << "    if (!OperandsValid) continue;\n";
3011
3012   // Emit check that the required features are available.
3013   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
3014      << "!= it->RequiredFeatures) {\n";
3015   OS << "      HadMatchOtherThanFeatures = true;\n";
3016   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
3017         "~AvailableFeatures;\n";
3018   OS << "      if (countPopulation(NewMissingFeatures) <=\n"
3019         "          countPopulation(MissingFeatures))\n";
3020   OS << "        MissingFeatures = NewMissingFeatures;\n";
3021   OS << "      continue;\n";
3022   OS << "    }\n";
3023   OS << "\n";
3024   OS << "    Inst.clear();\n\n";
3025   OS << "    if (matchingInlineAsm) {\n";
3026   OS << "      Inst.setOpcode(it->Opcode);\n";
3027   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3028   OS << "      return Match_Success;\n";
3029   OS << "    }\n\n";
3030   OS << "    // We have selected a definite instruction, convert the parsed\n"
3031      << "    // operands into the appropriate MCInst.\n";
3032   OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3033   OS << "\n";
3034
3035   // Verify the instruction with the target-specific match predicate function.
3036   OS << "    // We have a potential match. Check the target predicate to\n"
3037      << "    // handle any context sensitive constraints.\n"
3038      << "    unsigned MatchResult;\n"
3039      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3040      << " Match_Success) {\n"
3041      << "      Inst.clear();\n"
3042      << "      RetCode = MatchResult;\n"
3043      << "      HadMatchOtherThanPredicate = true;\n"
3044      << "      continue;\n"
3045      << "    }\n\n";
3046
3047   // Call the post-processing function, if used.
3048   std::string InsnCleanupFn =
3049     AsmParser->getValueAsString("AsmParserInstCleanup");
3050   if (!InsnCleanupFn.empty())
3051     OS << "    " << InsnCleanupFn << "(Inst);\n";
3052
3053   if (HasDeprecation) {
3054     OS << "    std::string Info;\n";
3055     OS << "    if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3056     OS << "      SMLoc Loc = ((" << Target.getName()
3057        << "Operand&)*Operands[0]).getStartLoc();\n";
3058     OS << "      getParser().Warning(Loc, Info, None);\n";
3059     OS << "    }\n";
3060   }
3061
3062   OS << "    return Match_Success;\n";
3063   OS << "  }\n\n";
3064
3065   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3066   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3067   OS << "    return RetCode;\n\n";
3068   OS << "  // Missing feature matches return which features were missing\n";
3069   OS << "  ErrorInfo = MissingFeatures;\n";
3070   OS << "  return Match_MissingFeature;\n";
3071   OS << "}\n\n";
3072
3073   if (!Info.OperandMatchInfo.empty())
3074     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3075                              MaxMnemonicIndex);
3076
3077   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3078 }
3079
3080 namespace llvm {
3081
3082 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3083   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3084   AsmMatcherEmitter(RK).run(OS);
3085 }
3086
3087 } // End llvm namespace