Object: Provide a richer means of describing auxiliary symbols
[oota-llvm.git] / tools / yaml2obj / yaml2coff.cpp
1 //===- yaml2coff - Convert YAML to a COFF object file ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief The COFF component of yaml2obj.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "yaml2obj.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/Object/COFFYAML.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 #include "llvm/Support/SourceMgr.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <vector>
27
28 using namespace llvm;
29
30 /// This parses a yaml stream that represents a COFF object file.
31 /// See docs/yaml2obj for the yaml scheema.
32 struct COFFParser {
33   COFFParser(COFFYAML::Object &Obj) : Obj(Obj) {
34     // A COFF string table always starts with a 4 byte size field. Offsets into
35     // it include this size, so allocate it now.
36     StringTable.append(4, char(0));
37   }
38
39   bool parseSections() {
40     for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
41            e = Obj.Sections.end(); i != e; ++i) {
42       COFFYAML::Section &Sec = *i;
43
44       // If the name is less than 8 bytes, store it in place, otherwise
45       // store it in the string table.
46       StringRef Name = Sec.Name;
47
48       if (Name.size() <= COFF::NameSize) {
49         std::copy(Name.begin(), Name.end(), Sec.Header.Name);
50       } else {
51         // Add string to the string table and format the index for output.
52         unsigned Index = getStringIndex(Name);
53         std::string str = utostr(Index);
54         if (str.size() > 7) {
55           errs() << "String table got too large";
56           return false;
57         }
58         Sec.Header.Name[0] = '/';
59         std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
60       }
61
62       Sec.Header.Characteristics |= (Log2_32(Sec.Alignment) + 1) << 20;
63     }
64     return true;
65   }
66
67   bool parseSymbols() {
68     for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
69            e = Obj.Symbols.end(); i != e; ++i) {
70       COFFYAML::Symbol &Sym = *i;
71
72       // If the name is less than 8 bytes, store it in place, otherwise
73       // store it in the string table.
74       StringRef Name = Sym.Name;
75       if (Name.size() <= COFF::NameSize) {
76         std::copy(Name.begin(), Name.end(), Sym.Header.Name);
77       } else {
78         // Add string to the string table and format the index for output.
79         unsigned Index = getStringIndex(Name);
80         *reinterpret_cast<support::aligned_ulittle32_t*>(
81             Sym.Header.Name + 4) = Index;
82       }
83
84       Sym.Header.Type = Sym.SimpleType;
85       Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
86     }
87     return true;
88   }
89
90   bool parse() {
91     if (!parseSections())
92       return false;
93     if (!parseSymbols())
94       return false;
95     return true;
96   }
97
98   unsigned getStringIndex(StringRef Str) {
99     StringMap<unsigned>::iterator i = StringTableMap.find(Str);
100     if (i == StringTableMap.end()) {
101       unsigned Index = StringTable.size();
102       StringTable.append(Str.begin(), Str.end());
103       StringTable.push_back(0);
104       StringTableMap[Str] = Index;
105       return Index;
106     }
107     return i->second;
108   }
109
110   COFFYAML::Object &Obj;
111
112   StringMap<unsigned> StringTableMap;
113   std::string StringTable;
114 };
115
116 // Take a CP and assign addresses and sizes to everything. Returns false if the
117 // layout is not valid to do.
118 static bool layoutCOFF(COFFParser &CP) {
119   uint32_t SectionTableStart = 0;
120   uint32_t SectionTableSize  = 0;
121
122   // The section table starts immediately after the header, including the
123   // optional header.
124   SectionTableStart = sizeof(COFF::header) + CP.Obj.Header.SizeOfOptionalHeader;
125   SectionTableSize = sizeof(COFF::section) * CP.Obj.Sections.size();
126
127   uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize;
128
129   // Assign each section data address consecutively.
130   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
131                                                 e = CP.Obj.Sections.end();
132                                                 i != e; ++i) {
133     if (i->SectionData.binary_size() > 0) {
134       i->Header.SizeOfRawData = i->SectionData.binary_size();
135       i->Header.PointerToRawData = CurrentSectionDataOffset;
136       CurrentSectionDataOffset += i->Header.SizeOfRawData;
137       if (!i->Relocations.empty()) {
138         i->Header.PointerToRelocations = CurrentSectionDataOffset;
139         i->Header.NumberOfRelocations = i->Relocations.size();
140         CurrentSectionDataOffset += i->Header.NumberOfRelocations *
141           COFF::RelocationSize;
142       }
143       // TODO: Handle alignment.
144     } else {
145       i->Header.SizeOfRawData = 0;
146       i->Header.PointerToRawData = 0;
147     }
148   }
149
150   uint32_t SymbolTableStart = CurrentSectionDataOffset;
151
152   // Calculate number of symbols.
153   uint32_t NumberOfSymbols = 0;
154   for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(),
155                                                e = CP.Obj.Symbols.end();
156                                                i != e; ++i) {
157     uint32_t NumberOfAuxSymbols = 0;
158     if (i->FunctionDefinition)
159       NumberOfAuxSymbols += 1;
160     if (i->bfAndefSymbol)
161       NumberOfAuxSymbols += 1;
162     if (i->WeakExternal)
163       NumberOfAuxSymbols += 1;
164     if (!i->File.empty())
165       NumberOfAuxSymbols +=
166           (i->File.size() + COFF::SymbolSize - 1) / COFF::SymbolSize;
167     if (i->SectionDefinition)
168       NumberOfAuxSymbols += 1;
169     if (i->CLRToken)
170       NumberOfAuxSymbols += 1;
171     i->Header.NumberOfAuxSymbols = NumberOfAuxSymbols;
172     NumberOfSymbols += 1 + NumberOfAuxSymbols;
173   }
174
175   // Store all the allocated start addresses in the header.
176   CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size();
177   CP.Obj.Header.NumberOfSymbols = NumberOfSymbols;
178   CP.Obj.Header.PointerToSymbolTable = SymbolTableStart;
179
180   *reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
181     = CP.StringTable.size();
182
183   return true;
184 }
185
186 template <typename value_type>
187 struct binary_le_impl {
188   value_type Value;
189   binary_le_impl(value_type V) : Value(V) {}
190 };
191
192 template <typename value_type>
193 raw_ostream &operator <<( raw_ostream &OS
194                         , const binary_le_impl<value_type> &BLE) {
195   char Buffer[sizeof(BLE.Value)];
196   support::endian::write<value_type, support::little, support::unaligned>(
197     Buffer, BLE.Value);
198   OS.write(Buffer, sizeof(BLE.Value));
199   return OS;
200 }
201
202 template <typename value_type>
203 binary_le_impl<value_type> binary_le(value_type V) {
204   return binary_le_impl<value_type>(V);
205 }
206
207 template <size_t NumBytes>
208 struct zeros_impl {
209   zeros_impl() {}
210 };
211
212 template <size_t NumBytes>
213 raw_ostream &operator<<(raw_ostream &OS, const zeros_impl<NumBytes> &) {
214   char Buffer[NumBytes];
215   memset(Buffer, 0, sizeof(Buffer));
216   OS.write(Buffer, sizeof(Buffer));
217   return OS;
218 }
219
220 template <typename T>
221 zeros_impl<sizeof(T)> zeros(const T &) {
222   return zeros_impl<sizeof(T)>();
223 }
224
225 bool writeCOFF(COFFParser &CP, raw_ostream &OS) {
226   OS << binary_le(CP.Obj.Header.Machine)
227      << binary_le(CP.Obj.Header.NumberOfSections)
228      << binary_le(CP.Obj.Header.TimeDateStamp)
229      << binary_le(CP.Obj.Header.PointerToSymbolTable)
230      << binary_le(CP.Obj.Header.NumberOfSymbols)
231      << binary_le(CP.Obj.Header.SizeOfOptionalHeader)
232      << binary_le(CP.Obj.Header.Characteristics);
233
234   // Output section table.
235   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
236                                                 e = CP.Obj.Sections.end();
237                                                 i != e; ++i) {
238     OS.write(i->Header.Name, COFF::NameSize);
239     OS << binary_le(i->Header.VirtualSize)
240        << binary_le(i->Header.VirtualAddress)
241        << binary_le(i->Header.SizeOfRawData)
242        << binary_le(i->Header.PointerToRawData)
243        << binary_le(i->Header.PointerToRelocations)
244        << binary_le(i->Header.PointerToLineNumbers)
245        << binary_le(i->Header.NumberOfRelocations)
246        << binary_le(i->Header.NumberOfLineNumbers)
247        << binary_le(i->Header.Characteristics);
248   }
249
250   unsigned CurSymbol = 0;
251   StringMap<unsigned> SymbolTableIndexMap;
252   for (std::vector<COFFYAML::Symbol>::iterator I = CP.Obj.Symbols.begin(),
253                                                E = CP.Obj.Symbols.end();
254        I != E; ++I) {
255     SymbolTableIndexMap[I->Name] = CurSymbol;
256     CurSymbol += 1 + I->Header.NumberOfAuxSymbols;
257   }
258
259   // Output section data.
260   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
261                                                 e = CP.Obj.Sections.end();
262                                                 i != e; ++i) {
263     i->SectionData.writeAsBinary(OS);
264     for (unsigned I2 = 0, E2 = i->Relocations.size(); I2 != E2; ++I2) {
265       const COFFYAML::Relocation &R = i->Relocations[I2];
266       uint32_t SymbolTableIndex = SymbolTableIndexMap[R.SymbolName];
267       OS << binary_le(R.VirtualAddress)
268          << binary_le(SymbolTableIndex)
269          << binary_le(R.Type);
270     }
271   }
272
273   // Output symbol table.
274
275   for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(),
276                                                      e = CP.Obj.Symbols.end();
277                                                      i != e; ++i) {
278     OS.write(i->Header.Name, COFF::NameSize);
279     OS << binary_le(i->Header.Value)
280        << binary_le(i->Header.SectionNumber)
281        << binary_le(i->Header.Type)
282        << binary_le(i->Header.StorageClass)
283        << binary_le(i->Header.NumberOfAuxSymbols);
284
285     if (i->FunctionDefinition)
286       OS << binary_le(i->FunctionDefinition->TagIndex)
287          << binary_le(i->FunctionDefinition->TotalSize)
288          << binary_le(i->FunctionDefinition->PointerToLinenumber)
289          << binary_le(i->FunctionDefinition->PointerToNextFunction)
290          << zeros(i->FunctionDefinition->unused);
291     if (i->bfAndefSymbol)
292       OS << zeros(i->bfAndefSymbol->unused1)
293          << binary_le(i->bfAndefSymbol->Linenumber)
294          << zeros(i->bfAndefSymbol->unused2)
295          << binary_le(i->bfAndefSymbol->PointerToNextFunction)
296          << zeros(i->bfAndefSymbol->unused3);
297     if (i->WeakExternal)
298       OS << binary_le(i->WeakExternal->TagIndex)
299          << binary_le(i->WeakExternal->Characteristics)
300          << zeros(i->WeakExternal->unused);
301     if (!i->File.empty()) {
302       uint32_t NumberOfAuxRecords =
303           (i->File.size() + COFF::SymbolSize - 1) / COFF::SymbolSize;
304       uint32_t NumberOfAuxBytes = NumberOfAuxRecords * COFF::SymbolSize;
305       uint32_t NumZeros = NumberOfAuxBytes - i->File.size();
306       OS.write(i->File.data(), i->File.size());
307       for (uint32_t Padding = 0; Padding < NumZeros; ++Padding)
308         OS.write(0);
309     }
310     if (i->SectionDefinition)
311       OS << binary_le(i->SectionDefinition->Length)
312          << binary_le(i->SectionDefinition->NumberOfRelocations)
313          << binary_le(i->SectionDefinition->NumberOfLinenumbers)
314          << binary_le(i->SectionDefinition->CheckSum)
315          << binary_le(i->SectionDefinition->Number)
316          << binary_le(i->SectionDefinition->Selection)
317          << zeros(i->SectionDefinition->unused);
318     if (i->CLRToken)
319       OS << binary_le(i->CLRToken->AuxType)
320          << zeros(i->CLRToken->unused1)
321          << binary_le(i->CLRToken->SymbolTableIndex)
322          << zeros(i->CLRToken->unused2);
323   }
324
325   // Output string table.
326   OS.write(&CP.StringTable[0], CP.StringTable.size());
327   return true;
328 }
329
330 int yaml2coff(llvm::raw_ostream &Out, llvm::MemoryBuffer *Buf) {
331   yaml::Input YIn(Buf->getBuffer());
332   COFFYAML::Object Doc;
333   YIn >> Doc;
334   if (YIn.error()) {
335     errs() << "yaml2obj: Failed to parse YAML file!\n";
336     return 1;
337   }
338
339   COFFParser CP(Doc);
340   if (!CP.parse()) {
341     errs() << "yaml2obj: Failed to parse YAML file!\n";
342     return 1;
343   }
344
345   if (!layoutCOFF(CP)) {
346     errs() << "yaml2obj: Failed to layout COFF file!\n";
347     return 1;
348   }
349   if (!writeCOFF(CP, Out)) {
350     errs() << "yaml2obj: Failed to write COFF file!\n";
351     return 1;
352   }
353   return 0;
354 }