Allow command-line overrides of the target triple with the Mach-O
[oota-llvm.git] / tools / llvm-objdump / MachODump.cpp
1 //===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachO-specific dumper for llvm-objdump.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm-objdump.h"
15 #include "MCFunction.h"
16 #include "llvm/Support/MachO.h"
17 #include "llvm/Object/MachO.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/DebugInfo/DIContext.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCDisassembler.h"
24 #include "llvm/MC/MCInst.h"
25 #include "llvm/MC/MCInstPrinter.h"
26 #include "llvm/MC/MCInstrAnalysis.h"
27 #include "llvm/MC/MCInstrDesc.h"
28 #include "llvm/MC/MCInstrInfo.h"
29 #include "llvm/MC/MCSubtargetInfo.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/GraphWriter.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include "llvm/Support/TargetSelect.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Support/system_error.h"
39 #include <algorithm>
40 #include <cstring>
41 using namespace llvm;
42 using namespace object;
43
44 static cl::opt<bool>
45   CFG("cfg", cl::desc("Create a CFG for every symbol in the object file and"
46                       "write it to a graphviz file (MachO-only)"));
47
48 static cl::opt<bool>
49   UseDbg("g", cl::desc("Print line information from debug info if available"));
50
51 static cl::opt<std::string>
52   DSYMFile("dsym", cl::desc("Use .dSYM file for debug info"));
53
54 static const Target *GetTarget(const MachOObject *MachOObj) {
55   // Figure out the target triple.
56   if (TripleName.empty()) {
57     llvm::Triple TT("unknown-unknown-unknown");
58     switch (MachOObj->getHeader().CPUType) {
59     case llvm::MachO::CPUTypeI386:
60       TT.setArch(Triple::ArchType(Triple::x86));
61       break;
62     case llvm::MachO::CPUTypeX86_64:
63       TT.setArch(Triple::ArchType(Triple::x86_64));
64       break;
65     case llvm::MachO::CPUTypeARM:
66       TT.setArch(Triple::ArchType(Triple::arm));
67       break;
68     case llvm::MachO::CPUTypePowerPC:
69       TT.setArch(Triple::ArchType(Triple::ppc));
70       break;
71     case llvm::MachO::CPUTypePowerPC64:
72       TT.setArch(Triple::ArchType(Triple::ppc64));
73       break;
74     }
75     TripleName = TT.str();
76   }
77
78   // Get the target specific parser.
79   std::string Error;
80   const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
81   if (TheTarget)
82     return TheTarget;
83
84   errs() << "llvm-objdump: error: unable to get target for '" << TripleName
85          << "', see --version and --triple.\n";
86   return 0;
87 }
88
89 struct SymbolSorter {
90   bool operator()(const SymbolRef &A, const SymbolRef &B) {
91     SymbolRef::Type AType, BType;
92     A.getType(AType);
93     B.getType(BType);
94
95     uint64_t AAddr, BAddr;
96     if (AType != SymbolRef::ST_Function)
97       AAddr = 0;
98     else
99       A.getAddress(AAddr);
100     if (BType != SymbolRef::ST_Function)
101       BAddr = 0;
102     else
103       B.getAddress(BAddr);
104     return AAddr < BAddr;
105   }
106 };
107
108 // Print additional information about an address, if available.
109 static void DumpAddress(uint64_t Address, ArrayRef<SectionRef> Sections,
110                         MachOObject *MachOObj, raw_ostream &OS) {
111   for (unsigned i = 0; i != Sections.size(); ++i) {
112     uint64_t SectAddr = 0, SectSize = 0;
113     Sections[i].getAddress(SectAddr);
114     Sections[i].getSize(SectSize);
115     uint64_t addr = SectAddr;
116     if (SectAddr <= Address &&
117         SectAddr + SectSize > Address) {
118       StringRef bytes, name;
119       Sections[i].getContents(bytes);
120       Sections[i].getName(name);
121       // Print constant strings.
122       if (!name.compare("__cstring"))
123         OS << '"' << bytes.substr(addr, bytes.find('\0', addr)) << '"';
124       // Print constant CFStrings.
125       if (!name.compare("__cfstring"))
126         OS << "@\"" << bytes.substr(addr, bytes.find('\0', addr)) << '"';
127     }
128   }
129 }
130
131 typedef std::map<uint64_t, MCFunction*> FunctionMapTy;
132 typedef SmallVector<MCFunction, 16> FunctionListTy;
133 static void createMCFunctionAndSaveCalls(StringRef Name,
134                                          const MCDisassembler *DisAsm,
135                                          MemoryObject &Object, uint64_t Start,
136                                          uint64_t End,
137                                          MCInstrAnalysis *InstrAnalysis,
138                                          uint64_t Address,
139                                          raw_ostream &DebugOut,
140                                          FunctionMapTy &FunctionMap,
141                                          FunctionListTy &Functions) {
142   SmallVector<uint64_t, 16> Calls;
143   MCFunction f =
144     MCFunction::createFunctionFromMC(Name, DisAsm, Object, Start, End,
145                                      InstrAnalysis, DebugOut, Calls);
146   Functions.push_back(f);
147   FunctionMap[Address] = &Functions.back();
148
149   // Add the gathered callees to the map.
150   for (unsigned i = 0, e = Calls.size(); i != e; ++i)
151     FunctionMap.insert(std::make_pair(Calls[i], (MCFunction*)0));
152 }
153
154 // Write a graphviz file for the CFG inside an MCFunction.
155 static void emitDOTFile(const char *FileName, const MCFunction &f,
156                         MCInstPrinter *IP) {
157   // Start a new dot file.
158   std::string Error;
159   raw_fd_ostream Out(FileName, Error);
160   if (!Error.empty()) {
161     errs() << "llvm-objdump: warning: " << Error << '\n';
162     return;
163   }
164
165   Out << "digraph " << f.getName() << " {\n";
166   Out << "graph [ rankdir = \"LR\" ];\n";
167   for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) {
168     bool hasPreds = false;
169     // Only print blocks that have predecessors.
170     // FIXME: Slow.
171     for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
172         ++pi)
173       if (pi->second.contains(i->first)) {
174         hasPreds = true;
175         break;
176       }
177
178     if (!hasPreds && i != f.begin())
179       continue;
180
181     Out << '"' << i->first << "\" [ label=\"<a>";
182     // Print instructions.
183     for (unsigned ii = 0, ie = i->second.getInsts().size(); ii != ie;
184         ++ii) {
185       // Escape special chars and print the instruction in mnemonic form.
186       std::string Str;
187       raw_string_ostream OS(Str);
188       IP->printInst(&i->second.getInsts()[ii].Inst, OS, "");
189       Out << DOT::EscapeString(OS.str()) << '|';
190     }
191     Out << "<o>\" shape=\"record\" ];\n";
192
193     // Add edges.
194     for (MCBasicBlock::succ_iterator si = i->second.succ_begin(),
195         se = i->second.succ_end(); si != se; ++si)
196       Out << i->first << ":o -> " << *si <<":a\n";
197   }
198   Out << "}\n";
199 }
200
201 static void getSectionsAndSymbols(const macho::Header &Header,
202                                   MachOObjectFile *MachOObj,
203                              InMemoryStruct<macho::SymtabLoadCommand> *SymtabLC,
204                                   std::vector<SectionRef> &Sections,
205                                   std::vector<SymbolRef> &Symbols,
206                                   SmallVectorImpl<uint64_t> &FoundFns) {
207   error_code ec;
208   for (symbol_iterator SI = MachOObj->begin_symbols(),
209        SE = MachOObj->end_symbols(); SI != SE; SI.increment(ec))
210     Symbols.push_back(*SI);
211
212   for (section_iterator SI = MachOObj->begin_sections(),
213        SE = MachOObj->end_sections(); SI != SE; SI.increment(ec)) {
214     SectionRef SR = *SI;
215     StringRef SectName;
216     SR.getName(SectName);
217     Sections.push_back(*SI);
218   }
219
220   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
221     const MachOObject::LoadCommandInfo &LCI =
222        MachOObj->getObject()->getLoadCommandInfo(i);
223     if (LCI.Command.Type == macho::LCT_FunctionStarts) {
224       // We found a function starts segment, parse the addresses for later
225       // consumption.
226       InMemoryStruct<macho::LinkeditDataLoadCommand> LLC;
227       MachOObj->getObject()->ReadLinkeditDataLoadCommand(LCI, LLC);
228
229       MachOObj->getObject()->ReadULEB128s(LLC->DataOffset, FoundFns);
230     }
231   }
232 }
233
234 void llvm::DisassembleInputMachO(StringRef Filename) {
235   OwningPtr<MemoryBuffer> Buff;
236
237   if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename, Buff)) {
238     errs() << "llvm-objdump: " << Filename << ": " << ec.message() << "\n";
239     return;
240   }
241
242   OwningPtr<MachOObjectFile> MachOOF(static_cast<MachOObjectFile*>(
243         ObjectFile::createMachOObjectFile(Buff.take())));
244   MachOObject *MachOObj = MachOOF->getObject();
245
246   const Target *TheTarget = GetTarget(MachOObj);
247   if (!TheTarget) {
248     // GetTarget prints out stuff.
249     return;
250   }
251   OwningPtr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
252   OwningPtr<MCInstrAnalysis>
253     InstrAnalysis(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
254
255   // Set up disassembler.
256   OwningPtr<const MCAsmInfo> AsmInfo(TheTarget->createMCAsmInfo(TripleName));
257   OwningPtr<const MCSubtargetInfo>
258     STI(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
259   OwningPtr<const MCDisassembler> DisAsm(TheTarget->createMCDisassembler(*STI));
260   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
261   OwningPtr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
262                               AsmPrinterVariant, *AsmInfo, *STI));
263
264   if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) {
265     errs() << "error: couldn't initialize disassembler for target "
266            << TripleName << '\n';
267     return;
268   }
269
270   outs() << '\n' << Filename << ":\n\n";
271
272   const macho::Header &Header = MachOObj->getHeader();
273
274   const MachOObject::LoadCommandInfo *SymtabLCI = 0;
275   // First, find the symbol table segment.
276   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
277     const MachOObject::LoadCommandInfo &LCI = MachOObj->getLoadCommandInfo(i);
278     if (LCI.Command.Type == macho::LCT_Symtab) {
279       SymtabLCI = &LCI;
280       break;
281     }
282   }
283
284   // Read and register the symbol table data.
285   InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
286   MachOObj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
287   MachOObj->RegisterStringTable(*SymtabLC);
288
289   std::vector<SectionRef> Sections;
290   std::vector<SymbolRef> Symbols;
291   SmallVector<uint64_t, 8> FoundFns;
292
293   getSectionsAndSymbols(Header, MachOOF.get(), &SymtabLC, Sections, Symbols,
294                         FoundFns);
295
296   // Make a copy of the unsorted symbol list. FIXME: duplication
297   std::vector<SymbolRef> UnsortedSymbols(Symbols);
298   // Sort the symbols by address, just in case they didn't come in that way.
299   std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
300
301 #ifndef NDEBUG
302   raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
303 #else
304   raw_ostream &DebugOut = nulls();
305 #endif
306
307   StringRef DebugAbbrevSection, DebugInfoSection, DebugArangesSection,
308             DebugLineSection, DebugStrSection;
309   OwningPtr<DIContext> diContext;
310   OwningPtr<MachOObjectFile> DSYMObj;
311   MachOObject *DbgInfoObj = MachOObj;
312   // Try to find debug info and set up the DIContext for it.
313   if (UseDbg) {
314     ArrayRef<SectionRef> DebugSections = Sections;
315     std::vector<SectionRef> DSYMSections;
316
317     // A separate DSym file path was specified, parse it as a macho file,
318     // get the sections and supply it to the section name parsing machinery.
319     if (!DSYMFile.empty()) {
320       OwningPtr<MemoryBuffer> Buf;
321       if (error_code ec = MemoryBuffer::getFileOrSTDIN(DSYMFile.c_str(), Buf)) {
322         errs() << "llvm-objdump: " << Filename << ": " << ec.message() << '\n';
323         return;
324       }
325       DSYMObj.reset(static_cast<MachOObjectFile*>(
326             ObjectFile::createMachOObjectFile(Buf.take())));
327       const macho::Header &Header = DSYMObj->getObject()->getHeader();
328
329       std::vector<SymbolRef> Symbols;
330       SmallVector<uint64_t, 8> FoundFns;
331       getSectionsAndSymbols(Header, DSYMObj.get(), 0, DSYMSections, Symbols,
332                             FoundFns);
333       DebugSections = DSYMSections;
334       DbgInfoObj = DSYMObj.get()->getObject();
335     }
336
337     // Find the named debug info sections.
338     for (unsigned SectIdx = 0; SectIdx != DebugSections.size(); SectIdx++) {
339       StringRef SectName;
340       if (!DebugSections[SectIdx].getName(SectName)) {
341         if (SectName.equals("__DWARF,__debug_abbrev"))
342           DebugSections[SectIdx].getContents(DebugAbbrevSection);
343         else if (SectName.equals("__DWARF,__debug_info"))
344           DebugSections[SectIdx].getContents(DebugInfoSection);
345         else if (SectName.equals("__DWARF,__debug_aranges"))
346           DebugSections[SectIdx].getContents(DebugArangesSection);
347         else if (SectName.equals("__DWARF,__debug_line"))
348           DebugSections[SectIdx].getContents(DebugLineSection);
349         else if (SectName.equals("__DWARF,__debug_str"))
350           DebugSections[SectIdx].getContents(DebugStrSection);
351       }
352     }
353
354     // Setup the DIContext.
355     diContext.reset(DIContext::getDWARFContext(DbgInfoObj->isLittleEndian(),
356                                                DebugInfoSection,
357                                                DebugAbbrevSection,
358                                                DebugArangesSection,
359                                                DebugLineSection,
360                                                DebugStrSection));
361   }
362
363   FunctionMapTy FunctionMap;
364   FunctionListTy Functions;
365
366   for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
367     StringRef SectName;
368     if (Sections[SectIdx].getName(SectName) ||
369         SectName.compare("__TEXT,__text"))
370       continue; // Skip non-text sections
371
372     // Insert the functions from the function starts segment into our map.
373     uint64_t VMAddr;
374     Sections[SectIdx].getAddress(VMAddr);
375     for (unsigned i = 0, e = FoundFns.size(); i != e; ++i) {
376       StringRef SectBegin;
377       Sections[SectIdx].getContents(SectBegin);
378       uint64_t Offset = (uint64_t)SectBegin.data();
379       FunctionMap.insert(std::make_pair(VMAddr + FoundFns[i]-Offset,
380                                         (MCFunction*)0));
381     }
382
383     StringRef Bytes;
384     Sections[SectIdx].getContents(Bytes);
385     StringRefMemoryObject memoryObject(Bytes);
386     bool symbolTableWorked = false;
387
388     // Parse relocations.
389     std::vector<std::pair<uint64_t, SymbolRef> > Relocs;
390     error_code ec;
391     for (relocation_iterator RI = Sections[SectIdx].begin_relocations(),
392          RE = Sections[SectIdx].end_relocations(); RI != RE; RI.increment(ec)) {
393       uint64_t RelocOffset, SectionAddress;
394       RI->getAddress(RelocOffset);
395       Sections[SectIdx].getAddress(SectionAddress);
396       RelocOffset -= SectionAddress;
397
398       SymbolRef RelocSym;
399       RI->getSymbol(RelocSym);
400
401       Relocs.push_back(std::make_pair(RelocOffset, RelocSym));
402     }
403     array_pod_sort(Relocs.begin(), Relocs.end());
404
405     // Disassemble symbol by symbol.
406     for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
407       StringRef SymName;
408       Symbols[SymIdx].getName(SymName);
409
410       SymbolRef::Type ST;
411       Symbols[SymIdx].getType(ST);
412       if (ST != SymbolRef::ST_Function)
413         continue;
414
415       // Make sure the symbol is defined in this section.
416       bool containsSym = false;
417       Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym);
418       if (!containsSym)
419         continue;
420
421       // Start at the address of the symbol relative to the section's address.
422       uint64_t SectionAddress = 0;
423       uint64_t Start = 0;
424       Sections[SectIdx].getAddress(SectionAddress);
425       Symbols[SymIdx].getAddress(Start);
426       Start -= SectionAddress;
427
428       // Stop disassembling either at the beginning of the next symbol or at
429       // the end of the section.
430       bool containsNextSym = true;
431       uint64_t NextSym = 0;
432       uint64_t NextSymIdx = SymIdx+1;
433       while (Symbols.size() > NextSymIdx) {
434         SymbolRef::Type NextSymType;
435         Symbols[NextSymIdx].getType(NextSymType);
436         if (NextSymType == SymbolRef::ST_Function) {
437           Sections[SectIdx].containsSymbol(Symbols[NextSymIdx],
438                                            containsNextSym);
439           Symbols[NextSymIdx].getAddress(NextSym);
440           NextSym -= SectionAddress;
441           break;
442         }
443         ++NextSymIdx;
444       }
445
446       uint64_t SectSize;
447       Sections[SectIdx].getSize(SectSize);
448       uint64_t End = containsNextSym ?  NextSym : SectSize;
449       uint64_t Size;
450
451       symbolTableWorked = true;
452
453       if (!CFG) {
454         // Normal disassembly, print addresses, bytes and mnemonic form.
455         StringRef SymName;
456         Symbols[SymIdx].getName(SymName);
457
458         outs() << SymName << ":\n";
459         DILineInfo lastLine;
460         for (uint64_t Index = Start; Index < End; Index += Size) {
461           MCInst Inst;
462
463           if (DisAsm->getInstruction(Inst, Size, memoryObject, Index,
464                                      DebugOut, nulls())) {
465             uint64_t SectAddress = 0;
466             Sections[SectIdx].getAddress(SectAddress);
467             outs() << format("%8" PRIx64 ":\t", SectAddress + Index);
468
469             DumpBytes(StringRef(Bytes.data() + Index, Size));
470             IP->printInst(&Inst, outs(), "");
471
472             // Print debug info.
473             if (diContext) {
474               DILineInfo dli =
475                 diContext->getLineInfoForAddress(SectAddress + Index);
476               // Print valid line info if it changed.
477               if (dli != lastLine && dli.getLine() != 0)
478                 outs() << "\t## " << dli.getFileName() << ':'
479                        << dli.getLine() << ':' << dli.getColumn();
480               lastLine = dli;
481             }
482             outs() << "\n";
483           } else {
484             errs() << "llvm-objdump: warning: invalid instruction encoding\n";
485             if (Size == 0)
486               Size = 1; // skip illegible bytes
487           }
488         }
489       } else {
490         // Create CFG and use it for disassembly.
491         StringRef SymName;
492         Symbols[SymIdx].getName(SymName);
493         createMCFunctionAndSaveCalls(
494             SymName, DisAsm.get(), memoryObject, Start, End,
495             InstrAnalysis.get(), Start, DebugOut, FunctionMap, Functions);
496       }
497     }
498
499     if (CFG) {
500       if (!symbolTableWorked) {
501         // Reading the symbol table didn't work, create a big __TEXT symbol.
502         uint64_t SectSize = 0, SectAddress = 0;
503         Sections[SectIdx].getSize(SectSize);
504         Sections[SectIdx].getAddress(SectAddress);
505         createMCFunctionAndSaveCalls("__TEXT", DisAsm.get(), memoryObject,
506                                      0, SectSize,
507                                      InstrAnalysis.get(),
508                                      SectAddress, DebugOut,
509                                      FunctionMap, Functions);
510       }
511       for (std::map<uint64_t, MCFunction*>::iterator mi = FunctionMap.begin(),
512            me = FunctionMap.end(); mi != me; ++mi)
513         if (mi->second == 0) {
514           // Create functions for the remaining callees we have gathered,
515           // but we didn't find a name for them.
516           uint64_t SectSize = 0;
517           Sections[SectIdx].getSize(SectSize);
518
519           SmallVector<uint64_t, 16> Calls;
520           MCFunction f =
521             MCFunction::createFunctionFromMC("unknown", DisAsm.get(),
522                                              memoryObject, mi->first,
523                                              SectSize,
524                                              InstrAnalysis.get(), DebugOut,
525                                              Calls);
526           Functions.push_back(f);
527           mi->second = &Functions.back();
528           for (unsigned i = 0, e = Calls.size(); i != e; ++i) {
529             std::pair<uint64_t, MCFunction*> p(Calls[i], (MCFunction*)0);
530             if (FunctionMap.insert(p).second)
531               mi = FunctionMap.begin();
532           }
533         }
534
535       DenseSet<uint64_t> PrintedBlocks;
536       for (unsigned ffi = 0, ffe = Functions.size(); ffi != ffe; ++ffi) {
537         MCFunction &f = Functions[ffi];
538         for (MCFunction::iterator fi = f.begin(), fe = f.end(); fi != fe; ++fi){
539           if (!PrintedBlocks.insert(fi->first).second)
540             continue; // We already printed this block.
541
542           // We assume a block has predecessors when it's the first block after
543           // a symbol.
544           bool hasPreds = FunctionMap.find(fi->first) != FunctionMap.end();
545
546           // See if this block has predecessors.
547           // FIXME: Slow.
548           for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
549               ++pi)
550             if (pi->second.contains(fi->first)) {
551               hasPreds = true;
552               break;
553             }
554
555           uint64_t SectSize = 0, SectAddress;
556           Sections[SectIdx].getSize(SectSize);
557           Sections[SectIdx].getAddress(SectAddress);
558
559           // No predecessors, this is a data block. Print as .byte directives.
560           if (!hasPreds) {
561             uint64_t End = llvm::next(fi) == fe ? SectSize :
562                                                   llvm::next(fi)->first;
563             outs() << "# " << End-fi->first << " bytes of data:\n";
564             for (unsigned pos = fi->first; pos != End; ++pos) {
565               outs() << format("%8x:\t", SectAddress + pos);
566               DumpBytes(StringRef(Bytes.data() + pos, 1));
567               outs() << format("\t.byte 0x%02x\n", (uint8_t)Bytes[pos]);
568             }
569             continue;
570           }
571
572           if (fi->second.contains(fi->first)) // Print a header for simple loops
573             outs() << "# Loop begin:\n";
574
575           DILineInfo lastLine;
576           // Walk over the instructions and print them.
577           for (unsigned ii = 0, ie = fi->second.getInsts().size(); ii != ie;
578                ++ii) {
579             const MCDecodedInst &Inst = fi->second.getInsts()[ii];
580
581             // If there's a symbol at this address, print its name.
582             if (FunctionMap.find(SectAddress + Inst.Address) !=
583                 FunctionMap.end())
584               outs() << FunctionMap[SectAddress + Inst.Address]-> getName()
585                      << ":\n";
586
587             outs() << format("%8" PRIx64 ":\t", SectAddress + Inst.Address);
588             DumpBytes(StringRef(Bytes.data() + Inst.Address, Inst.Size));
589
590             if (fi->second.contains(fi->first)) // Indent simple loops.
591               outs() << '\t';
592
593             IP->printInst(&Inst.Inst, outs(), "");
594
595             // Look for relocations inside this instructions, if there is one
596             // print its target and additional information if available.
597             for (unsigned j = 0; j != Relocs.size(); ++j)
598               if (Relocs[j].first >= SectAddress + Inst.Address &&
599                   Relocs[j].first < SectAddress + Inst.Address + Inst.Size) {
600                 StringRef SymName;
601                 uint64_t Addr;
602                 Relocs[j].second.getAddress(Addr);
603                 Relocs[j].second.getName(SymName);
604
605                 outs() << "\t# " << SymName << ' ';
606                 DumpAddress(Addr, Sections, MachOObj, outs());
607               }
608
609             // If this instructions contains an address, see if we can evaluate
610             // it and print additional information.
611             uint64_t targ = InstrAnalysis->evaluateBranch(Inst.Inst,
612                                                           Inst.Address,
613                                                           Inst.Size);
614             if (targ != -1ULL)
615               DumpAddress(targ, Sections, MachOObj, outs());
616
617             // Print debug info.
618             if (diContext) {
619               DILineInfo dli =
620                 diContext->getLineInfoForAddress(SectAddress + Inst.Address);
621               // Print valid line info if it changed.
622               if (dli != lastLine && dli.getLine() != 0)
623                 outs() << "\t## " << dli.getFileName() << ':'
624                        << dli.getLine() << ':' << dli.getColumn();
625               lastLine = dli;
626             }
627
628             outs() << '\n';
629           }
630         }
631
632         emitDOTFile((f.getName().str() + ".dot").c_str(), f, IP.get());
633       }
634     }
635   }
636 }