Fixed a bug in llvm-objdump when disassembling using -macho option for a binary
[oota-llvm.git] / tools / llvm-objdump / MachODump.cpp
1 //===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachO-specific dumper for llvm-objdump.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm-objdump.h"
15 #include "MCFunction.h"
16 #include "llvm/Support/MachO.h"
17 #include "llvm/Object/MachO.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/DebugInfo/DIContext.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCDisassembler.h"
24 #include "llvm/MC/MCInst.h"
25 #include "llvm/MC/MCInstPrinter.h"
26 #include "llvm/MC/MCInstrAnalysis.h"
27 #include "llvm/MC/MCInstrDesc.h"
28 #include "llvm/MC/MCInstrInfo.h"
29 #include "llvm/MC/MCRegisterInfo.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
34 #include "llvm/Support/GraphWriter.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/TargetSelect.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Support/system_error.h"
40 #include <algorithm>
41 #include <cstring>
42 using namespace llvm;
43 using namespace object;
44
45 static cl::opt<bool>
46   CFG("cfg", cl::desc("Create a CFG for every symbol in the object file and"
47                       "write it to a graphviz file (MachO-only)"));
48
49 static cl::opt<bool>
50   UseDbg("g", cl::desc("Print line information from debug info if available"));
51
52 static cl::opt<std::string>
53   DSYMFile("dsym", cl::desc("Use .dSYM file for debug info"));
54
55 static const Target *GetTarget(const MachOObject *MachOObj) {
56   // Figure out the target triple.
57   if (TripleName.empty()) {
58     llvm::Triple TT("unknown-unknown-unknown");
59     switch (MachOObj->getHeader().CPUType) {
60     case llvm::MachO::CPUTypeI386:
61       TT.setArch(Triple::ArchType(Triple::x86));
62       break;
63     case llvm::MachO::CPUTypeX86_64:
64       TT.setArch(Triple::ArchType(Triple::x86_64));
65       break;
66     case llvm::MachO::CPUTypeARM:
67       TT.setArch(Triple::ArchType(Triple::arm));
68       break;
69     case llvm::MachO::CPUTypePowerPC:
70       TT.setArch(Triple::ArchType(Triple::ppc));
71       break;
72     case llvm::MachO::CPUTypePowerPC64:
73       TT.setArch(Triple::ArchType(Triple::ppc64));
74       break;
75     }
76     TripleName = TT.str();
77   }
78
79   // Get the target specific parser.
80   std::string Error;
81   const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
82   if (TheTarget)
83     return TheTarget;
84
85   errs() << "llvm-objdump: error: unable to get target for '" << TripleName
86          << "', see --version and --triple.\n";
87   return 0;
88 }
89
90 struct SymbolSorter {
91   bool operator()(const SymbolRef &A, const SymbolRef &B) {
92     SymbolRef::Type AType, BType;
93     A.getType(AType);
94     B.getType(BType);
95
96     uint64_t AAddr, BAddr;
97     if (AType != SymbolRef::ST_Function)
98       AAddr = 0;
99     else
100       A.getAddress(AAddr);
101     if (BType != SymbolRef::ST_Function)
102       BAddr = 0;
103     else
104       B.getAddress(BAddr);
105     return AAddr < BAddr;
106   }
107 };
108
109 // Print additional information about an address, if available.
110 static void DumpAddress(uint64_t Address, ArrayRef<SectionRef> Sections,
111                         MachOObject *MachOObj, raw_ostream &OS) {
112   for (unsigned i = 0; i != Sections.size(); ++i) {
113     uint64_t SectAddr = 0, SectSize = 0;
114     Sections[i].getAddress(SectAddr);
115     Sections[i].getSize(SectSize);
116     uint64_t addr = SectAddr;
117     if (SectAddr <= Address &&
118         SectAddr + SectSize > Address) {
119       StringRef bytes, name;
120       Sections[i].getContents(bytes);
121       Sections[i].getName(name);
122       // Print constant strings.
123       if (!name.compare("__cstring"))
124         OS << '"' << bytes.substr(addr, bytes.find('\0', addr)) << '"';
125       // Print constant CFStrings.
126       if (!name.compare("__cfstring"))
127         OS << "@\"" << bytes.substr(addr, bytes.find('\0', addr)) << '"';
128     }
129   }
130 }
131
132 typedef std::map<uint64_t, MCFunction*> FunctionMapTy;
133 typedef SmallVector<MCFunction, 16> FunctionListTy;
134 static void createMCFunctionAndSaveCalls(StringRef Name,
135                                          const MCDisassembler *DisAsm,
136                                          MemoryObject &Object, uint64_t Start,
137                                          uint64_t End,
138                                          MCInstrAnalysis *InstrAnalysis,
139                                          uint64_t Address,
140                                          raw_ostream &DebugOut,
141                                          FunctionMapTy &FunctionMap,
142                                          FunctionListTy &Functions) {
143   SmallVector<uint64_t, 16> Calls;
144   MCFunction f =
145     MCFunction::createFunctionFromMC(Name, DisAsm, Object, Start, End,
146                                      InstrAnalysis, DebugOut, Calls);
147   Functions.push_back(f);
148   FunctionMap[Address] = &Functions.back();
149
150   // Add the gathered callees to the map.
151   for (unsigned i = 0, e = Calls.size(); i != e; ++i)
152     FunctionMap.insert(std::make_pair(Calls[i], (MCFunction*)0));
153 }
154
155 // Write a graphviz file for the CFG inside an MCFunction.
156 static void emitDOTFile(const char *FileName, const MCFunction &f,
157                         MCInstPrinter *IP) {
158   // Start a new dot file.
159   std::string Error;
160   raw_fd_ostream Out(FileName, Error);
161   if (!Error.empty()) {
162     errs() << "llvm-objdump: warning: " << Error << '\n';
163     return;
164   }
165
166   Out << "digraph " << f.getName() << " {\n";
167   Out << "graph [ rankdir = \"LR\" ];\n";
168   for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) {
169     bool hasPreds = false;
170     // Only print blocks that have predecessors.
171     // FIXME: Slow.
172     for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
173         ++pi)
174       if (pi->second.contains(i->first)) {
175         hasPreds = true;
176         break;
177       }
178
179     if (!hasPreds && i != f.begin())
180       continue;
181
182     Out << '"' << i->first << "\" [ label=\"<a>";
183     // Print instructions.
184     for (unsigned ii = 0, ie = i->second.getInsts().size(); ii != ie;
185         ++ii) {
186       // Escape special chars and print the instruction in mnemonic form.
187       std::string Str;
188       raw_string_ostream OS(Str);
189       IP->printInst(&i->second.getInsts()[ii].Inst, OS, "");
190       Out << DOT::EscapeString(OS.str()) << '|';
191     }
192     Out << "<o>\" shape=\"record\" ];\n";
193
194     // Add edges.
195     for (MCBasicBlock::succ_iterator si = i->second.succ_begin(),
196         se = i->second.succ_end(); si != se; ++si)
197       Out << i->first << ":o -> " << *si <<":a\n";
198   }
199   Out << "}\n";
200 }
201
202 static void getSectionsAndSymbols(const macho::Header &Header,
203                                   MachOObjectFile *MachOObj,
204                              InMemoryStruct<macho::SymtabLoadCommand> *SymtabLC,
205                                   std::vector<SectionRef> &Sections,
206                                   std::vector<SymbolRef> &Symbols,
207                                   SmallVectorImpl<uint64_t> &FoundFns) {
208   error_code ec;
209   for (symbol_iterator SI = MachOObj->begin_symbols(),
210        SE = MachOObj->end_symbols(); SI != SE; SI.increment(ec))
211     Symbols.push_back(*SI);
212
213   for (section_iterator SI = MachOObj->begin_sections(),
214        SE = MachOObj->end_sections(); SI != SE; SI.increment(ec)) {
215     SectionRef SR = *SI;
216     StringRef SectName;
217     SR.getName(SectName);
218     Sections.push_back(*SI);
219   }
220
221   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
222     const MachOObject::LoadCommandInfo &LCI =
223        MachOObj->getObject()->getLoadCommandInfo(i);
224     if (LCI.Command.Type == macho::LCT_FunctionStarts) {
225       // We found a function starts segment, parse the addresses for later
226       // consumption.
227       InMemoryStruct<macho::LinkeditDataLoadCommand> LLC;
228       MachOObj->getObject()->ReadLinkeditDataLoadCommand(LCI, LLC);
229
230       MachOObj->getObject()->ReadULEB128s(LLC->DataOffset, FoundFns);
231     }
232   }
233 }
234
235 void llvm::DisassembleInputMachO(StringRef Filename) {
236   OwningPtr<MemoryBuffer> Buff;
237
238   if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename, Buff)) {
239     errs() << "llvm-objdump: " << Filename << ": " << ec.message() << "\n";
240     return;
241   }
242
243   OwningPtr<MachOObjectFile> MachOOF(static_cast<MachOObjectFile*>(
244         ObjectFile::createMachOObjectFile(Buff.take())));
245   MachOObject *MachOObj = MachOOF->getObject();
246
247   const Target *TheTarget = GetTarget(MachOObj);
248   if (!TheTarget) {
249     // GetTarget prints out stuff.
250     return;
251   }
252   OwningPtr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
253   OwningPtr<MCInstrAnalysis>
254     InstrAnalysis(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
255
256   // Set up disassembler.
257   OwningPtr<const MCAsmInfo> AsmInfo(TheTarget->createMCAsmInfo(TripleName));
258   OwningPtr<const MCSubtargetInfo>
259     STI(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
260   OwningPtr<const MCDisassembler> DisAsm(TheTarget->createMCDisassembler(*STI));
261   OwningPtr<const MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
262   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
263   OwningPtr<MCInstPrinter>
264     IP(TheTarget->createMCInstPrinter(AsmPrinterVariant, *AsmInfo, *InstrInfo,
265                                       *MRI, *STI));
266
267   if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) {
268     errs() << "error: couldn't initialize disassembler for target "
269            << TripleName << '\n';
270     return;
271   }
272
273   outs() << '\n' << Filename << ":\n\n";
274
275   const macho::Header &Header = MachOObj->getHeader();
276
277   const MachOObject::LoadCommandInfo *SymtabLCI = 0;
278   // First, find the symbol table segment.
279   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
280     const MachOObject::LoadCommandInfo &LCI = MachOObj->getLoadCommandInfo(i);
281     if (LCI.Command.Type == macho::LCT_Symtab) {
282       SymtabLCI = &LCI;
283       break;
284     }
285   }
286
287   // Read and register the symbol table data.
288   InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
289   MachOObj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
290   MachOObj->RegisterStringTable(*SymtabLC);
291
292   std::vector<SectionRef> Sections;
293   std::vector<SymbolRef> Symbols;
294   SmallVector<uint64_t, 8> FoundFns;
295
296   getSectionsAndSymbols(Header, MachOOF.get(), &SymtabLC, Sections, Symbols,
297                         FoundFns);
298
299   // Make a copy of the unsorted symbol list. FIXME: duplication
300   std::vector<SymbolRef> UnsortedSymbols(Symbols);
301   // Sort the symbols by address, just in case they didn't come in that way.
302   std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
303
304 #ifndef NDEBUG
305   raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
306 #else
307   raw_ostream &DebugOut = nulls();
308 #endif
309
310   StringRef DebugAbbrevSection, DebugInfoSection, DebugArangesSection,
311             DebugLineSection, DebugStrSection;
312   OwningPtr<DIContext> diContext;
313   OwningPtr<MachOObjectFile> DSYMObj;
314   MachOObject *DbgInfoObj = MachOObj;
315   // Try to find debug info and set up the DIContext for it.
316   if (UseDbg) {
317     ArrayRef<SectionRef> DebugSections = Sections;
318     std::vector<SectionRef> DSYMSections;
319
320     // A separate DSym file path was specified, parse it as a macho file,
321     // get the sections and supply it to the section name parsing machinery.
322     if (!DSYMFile.empty()) {
323       OwningPtr<MemoryBuffer> Buf;
324       if (error_code ec = MemoryBuffer::getFileOrSTDIN(DSYMFile.c_str(), Buf)) {
325         errs() << "llvm-objdump: " << Filename << ": " << ec.message() << '\n';
326         return;
327       }
328       DSYMObj.reset(static_cast<MachOObjectFile*>(
329             ObjectFile::createMachOObjectFile(Buf.take())));
330       const macho::Header &Header = DSYMObj->getObject()->getHeader();
331
332       std::vector<SymbolRef> Symbols;
333       SmallVector<uint64_t, 8> FoundFns;
334       getSectionsAndSymbols(Header, DSYMObj.get(), 0, DSYMSections, Symbols,
335                             FoundFns);
336       DebugSections = DSYMSections;
337       DbgInfoObj = DSYMObj.get()->getObject();
338     }
339
340     // Find the named debug info sections.
341     for (unsigned SectIdx = 0; SectIdx != DebugSections.size(); SectIdx++) {
342       StringRef SectName;
343       if (!DebugSections[SectIdx].getName(SectName)) {
344         if (SectName.equals("__DWARF,__debug_abbrev"))
345           DebugSections[SectIdx].getContents(DebugAbbrevSection);
346         else if (SectName.equals("__DWARF,__debug_info"))
347           DebugSections[SectIdx].getContents(DebugInfoSection);
348         else if (SectName.equals("__DWARF,__debug_aranges"))
349           DebugSections[SectIdx].getContents(DebugArangesSection);
350         else if (SectName.equals("__DWARF,__debug_line"))
351           DebugSections[SectIdx].getContents(DebugLineSection);
352         else if (SectName.equals("__DWARF,__debug_str"))
353           DebugSections[SectIdx].getContents(DebugStrSection);
354       }
355     }
356
357     // Setup the DIContext.
358     diContext.reset(DIContext::getDWARFContext(DbgInfoObj->isLittleEndian(),
359                                                DebugInfoSection,
360                                                DebugAbbrevSection,
361                                                DebugArangesSection,
362                                                DebugLineSection,
363                                                DebugStrSection));
364   }
365
366   FunctionMapTy FunctionMap;
367   FunctionListTy Functions;
368
369   for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
370     StringRef SectName;
371     if (Sections[SectIdx].getName(SectName) ||
372         SectName.compare("__TEXT,__text"))
373       continue; // Skip non-text sections
374
375     // Insert the functions from the function starts segment into our map.
376     uint64_t VMAddr;
377     Sections[SectIdx].getAddress(VMAddr);
378     for (unsigned i = 0, e = FoundFns.size(); i != e; ++i) {
379       StringRef SectBegin;
380       Sections[SectIdx].getContents(SectBegin);
381       uint64_t Offset = (uint64_t)SectBegin.data();
382       FunctionMap.insert(std::make_pair(VMAddr + FoundFns[i]-Offset,
383                                         (MCFunction*)0));
384     }
385
386     StringRef Bytes;
387     Sections[SectIdx].getContents(Bytes);
388     StringRefMemoryObject memoryObject(Bytes);
389     bool symbolTableWorked = false;
390
391     // Parse relocations.
392     std::vector<std::pair<uint64_t, SymbolRef> > Relocs;
393     error_code ec;
394     for (relocation_iterator RI = Sections[SectIdx].begin_relocations(),
395          RE = Sections[SectIdx].end_relocations(); RI != RE; RI.increment(ec)) {
396       uint64_t RelocOffset, SectionAddress;
397       RI->getAddress(RelocOffset);
398       Sections[SectIdx].getAddress(SectionAddress);
399       RelocOffset -= SectionAddress;
400
401       SymbolRef RelocSym;
402       RI->getSymbol(RelocSym);
403
404       Relocs.push_back(std::make_pair(RelocOffset, RelocSym));
405     }
406     array_pod_sort(Relocs.begin(), Relocs.end());
407
408     // Disassemble symbol by symbol.
409     for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
410       StringRef SymName;
411       Symbols[SymIdx].getName(SymName);
412
413       SymbolRef::Type ST;
414       Symbols[SymIdx].getType(ST);
415       if (ST != SymbolRef::ST_Function)
416         continue;
417
418       // Make sure the symbol is defined in this section.
419       bool containsSym = false;
420       Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym);
421       if (!containsSym)
422         continue;
423
424       // Start at the address of the symbol relative to the section's address.
425       uint64_t SectionAddress = 0;
426       uint64_t Start = 0;
427       Sections[SectIdx].getAddress(SectionAddress);
428       Symbols[SymIdx].getAddress(Start);
429       Start -= SectionAddress;
430
431       // Stop disassembling either at the beginning of the next symbol or at
432       // the end of the section.
433       bool containsNextSym = false;
434       uint64_t NextSym = 0;
435       uint64_t NextSymIdx = SymIdx+1;
436       while (Symbols.size() > NextSymIdx) {
437         SymbolRef::Type NextSymType;
438         Symbols[NextSymIdx].getType(NextSymType);
439         if (NextSymType == SymbolRef::ST_Function) {
440           Sections[SectIdx].containsSymbol(Symbols[NextSymIdx],
441                                            containsNextSym);
442           Symbols[NextSymIdx].getAddress(NextSym);
443           NextSym -= SectionAddress;
444           break;
445         }
446         ++NextSymIdx;
447       }
448
449       uint64_t SectSize;
450       Sections[SectIdx].getSize(SectSize);
451       uint64_t End = containsNextSym ?  NextSym : SectSize;
452       uint64_t Size;
453
454       symbolTableWorked = true;
455
456       if (!CFG) {
457         // Normal disassembly, print addresses, bytes and mnemonic form.
458         StringRef SymName;
459         Symbols[SymIdx].getName(SymName);
460
461         outs() << SymName << ":\n";
462         DILineInfo lastLine;
463         for (uint64_t Index = Start; Index < End; Index += Size) {
464           MCInst Inst;
465
466           if (DisAsm->getInstruction(Inst, Size, memoryObject, Index,
467                                      DebugOut, nulls())) {
468             uint64_t SectAddress = 0;
469             Sections[SectIdx].getAddress(SectAddress);
470             outs() << format("%8" PRIx64 ":\t", SectAddress + Index);
471
472             DumpBytes(StringRef(Bytes.data() + Index, Size));
473             IP->printInst(&Inst, outs(), "");
474
475             // Print debug info.
476             if (diContext) {
477               DILineInfo dli =
478                 diContext->getLineInfoForAddress(SectAddress + Index);
479               // Print valid line info if it changed.
480               if (dli != lastLine && dli.getLine() != 0)
481                 outs() << "\t## " << dli.getFileName() << ':'
482                        << dli.getLine() << ':' << dli.getColumn();
483               lastLine = dli;
484             }
485             outs() << "\n";
486           } else {
487             errs() << "llvm-objdump: warning: invalid instruction encoding\n";
488             if (Size == 0)
489               Size = 1; // skip illegible bytes
490           }
491         }
492       } else {
493         // Create CFG and use it for disassembly.
494         StringRef SymName;
495         Symbols[SymIdx].getName(SymName);
496         createMCFunctionAndSaveCalls(
497             SymName, DisAsm.get(), memoryObject, Start, End,
498             InstrAnalysis.get(), Start, DebugOut, FunctionMap, Functions);
499       }
500     }
501
502     if (CFG) {
503       if (!symbolTableWorked) {
504         // Reading the symbol table didn't work, create a big __TEXT symbol.
505         uint64_t SectSize = 0, SectAddress = 0;
506         Sections[SectIdx].getSize(SectSize);
507         Sections[SectIdx].getAddress(SectAddress);
508         createMCFunctionAndSaveCalls("__TEXT", DisAsm.get(), memoryObject,
509                                      0, SectSize,
510                                      InstrAnalysis.get(),
511                                      SectAddress, DebugOut,
512                                      FunctionMap, Functions);
513       }
514       for (std::map<uint64_t, MCFunction*>::iterator mi = FunctionMap.begin(),
515            me = FunctionMap.end(); mi != me; ++mi)
516         if (mi->second == 0) {
517           // Create functions for the remaining callees we have gathered,
518           // but we didn't find a name for them.
519           uint64_t SectSize = 0;
520           Sections[SectIdx].getSize(SectSize);
521
522           SmallVector<uint64_t, 16> Calls;
523           MCFunction f =
524             MCFunction::createFunctionFromMC("unknown", DisAsm.get(),
525                                              memoryObject, mi->first,
526                                              SectSize,
527                                              InstrAnalysis.get(), DebugOut,
528                                              Calls);
529           Functions.push_back(f);
530           mi->second = &Functions.back();
531           for (unsigned i = 0, e = Calls.size(); i != e; ++i) {
532             std::pair<uint64_t, MCFunction*> p(Calls[i], (MCFunction*)0);
533             if (FunctionMap.insert(p).second)
534               mi = FunctionMap.begin();
535           }
536         }
537
538       DenseSet<uint64_t> PrintedBlocks;
539       for (unsigned ffi = 0, ffe = Functions.size(); ffi != ffe; ++ffi) {
540         MCFunction &f = Functions[ffi];
541         for (MCFunction::iterator fi = f.begin(), fe = f.end(); fi != fe; ++fi){
542           if (!PrintedBlocks.insert(fi->first).second)
543             continue; // We already printed this block.
544
545           // We assume a block has predecessors when it's the first block after
546           // a symbol.
547           bool hasPreds = FunctionMap.find(fi->first) != FunctionMap.end();
548
549           // See if this block has predecessors.
550           // FIXME: Slow.
551           for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
552               ++pi)
553             if (pi->second.contains(fi->first)) {
554               hasPreds = true;
555               break;
556             }
557
558           uint64_t SectSize = 0, SectAddress;
559           Sections[SectIdx].getSize(SectSize);
560           Sections[SectIdx].getAddress(SectAddress);
561
562           // No predecessors, this is a data block. Print as .byte directives.
563           if (!hasPreds) {
564             uint64_t End = llvm::next(fi) == fe ? SectSize :
565                                                   llvm::next(fi)->first;
566             outs() << "# " << End-fi->first << " bytes of data:\n";
567             for (unsigned pos = fi->first; pos != End; ++pos) {
568               outs() << format("%8x:\t", SectAddress + pos);
569               DumpBytes(StringRef(Bytes.data() + pos, 1));
570               outs() << format("\t.byte 0x%02x\n", (uint8_t)Bytes[pos]);
571             }
572             continue;
573           }
574
575           if (fi->second.contains(fi->first)) // Print a header for simple loops
576             outs() << "# Loop begin:\n";
577
578           DILineInfo lastLine;
579           // Walk over the instructions and print them.
580           for (unsigned ii = 0, ie = fi->second.getInsts().size(); ii != ie;
581                ++ii) {
582             const MCDecodedInst &Inst = fi->second.getInsts()[ii];
583
584             // If there's a symbol at this address, print its name.
585             if (FunctionMap.find(SectAddress + Inst.Address) !=
586                 FunctionMap.end())
587               outs() << FunctionMap[SectAddress + Inst.Address]-> getName()
588                      << ":\n";
589
590             outs() << format("%8" PRIx64 ":\t", SectAddress + Inst.Address);
591             DumpBytes(StringRef(Bytes.data() + Inst.Address, Inst.Size));
592
593             if (fi->second.contains(fi->first)) // Indent simple loops.
594               outs() << '\t';
595
596             IP->printInst(&Inst.Inst, outs(), "");
597
598             // Look for relocations inside this instructions, if there is one
599             // print its target and additional information if available.
600             for (unsigned j = 0; j != Relocs.size(); ++j)
601               if (Relocs[j].first >= SectAddress + Inst.Address &&
602                   Relocs[j].first < SectAddress + Inst.Address + Inst.Size) {
603                 StringRef SymName;
604                 uint64_t Addr;
605                 Relocs[j].second.getAddress(Addr);
606                 Relocs[j].second.getName(SymName);
607
608                 outs() << "\t# " << SymName << ' ';
609                 DumpAddress(Addr, Sections, MachOObj, outs());
610               }
611
612             // If this instructions contains an address, see if we can evaluate
613             // it and print additional information.
614             uint64_t targ = InstrAnalysis->evaluateBranch(Inst.Inst,
615                                                           Inst.Address,
616                                                           Inst.Size);
617             if (targ != -1ULL)
618               DumpAddress(targ, Sections, MachOObj, outs());
619
620             // Print debug info.
621             if (diContext) {
622               DILineInfo dli =
623                 diContext->getLineInfoForAddress(SectAddress + Inst.Address);
624               // Print valid line info if it changed.
625               if (dli != lastLine && dli.getLine() != 0)
626                 outs() << "\t## " << dli.getFileName() << ':'
627                        << dli.getLine() << ':' << dli.getColumn();
628               lastLine = dli;
629             }
630
631             outs() << '\n';
632           }
633         }
634
635         emitDOTFile((f.getName().str() + ".dot").c_str(), f, IP.get());
636       }
637     }
638   }
639 }