eliminate the "string" form of ConstantArray::get, using
[oota-llvm.git] / tools / bugpoint / Miscompilation.cpp
1 //===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements optimizer and code generation miscompilation debugging
11 // support.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "BugDriver.h"
16 #include "ListReducer.h"
17 #include "ToolRunner.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Linker.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/Verifier.h"
25 #include "llvm/Transforms/Utils/Cloning.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/FileUtilities.h"
28 #include "llvm/Config/config.h"   // for HAVE_LINK_R
29 using namespace llvm;
30
31 namespace llvm {
32   extern cl::opt<std::string> OutputPrefix;
33   extern cl::list<std::string> InputArgv;
34 }
35
36 namespace {
37   static llvm::cl::opt<bool>
38     DisableLoopExtraction("disable-loop-extraction",
39         cl::desc("Don't extract loops when searching for miscompilations"),
40         cl::init(false));
41   static llvm::cl::opt<bool>
42     DisableBlockExtraction("disable-block-extraction",
43         cl::desc("Don't extract blocks when searching for miscompilations"),
44         cl::init(false));
45
46   class ReduceMiscompilingPasses : public ListReducer<std::string> {
47     BugDriver &BD;
48   public:
49     ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
50
51     virtual TestResult doTest(std::vector<std::string> &Prefix,
52                               std::vector<std::string> &Suffix,
53                               std::string &Error);
54   };
55 }
56
57 /// TestResult - After passes have been split into a test group and a control
58 /// group, see if they still break the program.
59 ///
60 ReduceMiscompilingPasses::TestResult
61 ReduceMiscompilingPasses::doTest(std::vector<std::string> &Prefix,
62                                  std::vector<std::string> &Suffix,
63                                  std::string &Error) {
64   // First, run the program with just the Suffix passes.  If it is still broken
65   // with JUST the kept passes, discard the prefix passes.
66   outs() << "Checking to see if '" << getPassesString(Suffix)
67          << "' compiles correctly: ";
68
69   std::string BitcodeResult;
70   if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false/*delete*/,
71                    true/*quiet*/)) {
72     errs() << " Error running this sequence of passes"
73            << " on the input program!\n";
74     BD.setPassesToRun(Suffix);
75     BD.EmitProgressBitcode(BD.getProgram(), "pass-error",  false);
76     exit(BD.debugOptimizerCrash());
77   }
78
79   // Check to see if the finished program matches the reference output...
80   bool Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
81                              true /*delete bitcode*/, &Error);
82   if (!Error.empty())
83     return InternalError;
84   if (Diff) {
85     outs() << " nope.\n";
86     if (Suffix.empty()) {
87       errs() << BD.getToolName() << ": I'm confused: the test fails when "
88              << "no passes are run, nondeterministic program?\n";
89       exit(1);
90     }
91     return KeepSuffix;         // Miscompilation detected!
92   }
93   outs() << " yup.\n";      // No miscompilation!
94
95   if (Prefix.empty()) return NoFailure;
96
97   // Next, see if the program is broken if we run the "prefix" passes first,
98   // then separately run the "kept" passes.
99   outs() << "Checking to see if '" << getPassesString(Prefix)
100          << "' compiles correctly: ";
101
102   // If it is not broken with the kept passes, it's possible that the prefix
103   // passes must be run before the kept passes to break it.  If the program
104   // WORKS after the prefix passes, but then fails if running the prefix AND
105   // kept passes, we can update our bitcode file to include the result of the
106   // prefix passes, then discard the prefix passes.
107   //
108   if (BD.runPasses(BD.getProgram(), Prefix, BitcodeResult, false/*delete*/,
109                    true/*quiet*/)) {
110     errs() << " Error running this sequence of passes"
111            << " on the input program!\n";
112     BD.setPassesToRun(Prefix);
113     BD.EmitProgressBitcode(BD.getProgram(), "pass-error",  false);
114     exit(BD.debugOptimizerCrash());
115   }
116
117   // If the prefix maintains the predicate by itself, only keep the prefix!
118   Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", false, &Error);
119   if (!Error.empty())
120     return InternalError;
121   if (Diff) {
122     outs() << " nope.\n";
123     sys::Path(BitcodeResult).eraseFromDisk();
124     return KeepPrefix;
125   }
126   outs() << " yup.\n";      // No miscompilation!
127
128   // Ok, so now we know that the prefix passes work, try running the suffix
129   // passes on the result of the prefix passes.
130   //
131   OwningPtr<Module> PrefixOutput(ParseInputFile(BitcodeResult,
132                                                 BD.getContext()));
133   if (PrefixOutput == 0) {
134     errs() << BD.getToolName() << ": Error reading bitcode file '"
135            << BitcodeResult << "'!\n";
136     exit(1);
137   }
138   sys::Path(BitcodeResult).eraseFromDisk();  // No longer need the file on disk
139
140   // Don't check if there are no passes in the suffix.
141   if (Suffix.empty())
142     return NoFailure;
143
144   outs() << "Checking to see if '" << getPassesString(Suffix)
145             << "' passes compile correctly after the '"
146             << getPassesString(Prefix) << "' passes: ";
147
148   OwningPtr<Module> OriginalInput(BD.swapProgramIn(PrefixOutput.take()));
149   if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false/*delete*/,
150                    true/*quiet*/)) {
151     errs() << " Error running this sequence of passes"
152            << " on the input program!\n";
153     BD.setPassesToRun(Suffix);
154     BD.EmitProgressBitcode(BD.getProgram(), "pass-error",  false);
155     exit(BD.debugOptimizerCrash());
156   }
157
158   // Run the result...
159   Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
160                         true /*delete bitcode*/, &Error);
161   if (!Error.empty())
162     return InternalError;
163   if (Diff) {
164     outs() << " nope.\n";
165     return KeepSuffix;
166   }
167
168   // Otherwise, we must not be running the bad pass anymore.
169   outs() << " yup.\n";      // No miscompilation!
170   // Restore orig program & free test.
171   delete BD.swapProgramIn(OriginalInput.take());
172   return NoFailure;
173 }
174
175 namespace {
176   class ReduceMiscompilingFunctions : public ListReducer<Function*> {
177     BugDriver &BD;
178     bool (*TestFn)(BugDriver &, Module *, Module *, std::string &);
179   public:
180     ReduceMiscompilingFunctions(BugDriver &bd,
181                                 bool (*F)(BugDriver &, Module *, Module *,
182                                           std::string &))
183       : BD(bd), TestFn(F) {}
184
185     virtual TestResult doTest(std::vector<Function*> &Prefix,
186                               std::vector<Function*> &Suffix,
187                               std::string &Error) {
188       if (!Suffix.empty()) {
189         bool Ret = TestFuncs(Suffix, Error);
190         if (!Error.empty())
191           return InternalError;
192         if (Ret)
193           return KeepSuffix;
194       }
195       if (!Prefix.empty()) {
196         bool Ret = TestFuncs(Prefix, Error);
197         if (!Error.empty())
198           return InternalError;
199         if (Ret)
200           return KeepPrefix;
201       }
202       return NoFailure;
203     }
204
205     bool TestFuncs(const std::vector<Function*> &Prefix, std::string &Error);
206   };
207 }
208
209 /// TestMergedProgram - Given two modules, link them together and run the
210 /// program, checking to see if the program matches the diff. If there is
211 /// an error, return NULL. If not, return the merged module. The Broken argument
212 /// will be set to true if the output is different. If the DeleteInputs
213 /// argument is set to true then this function deletes both input
214 /// modules before it returns.
215 ///
216 static Module *TestMergedProgram(const BugDriver &BD, Module *M1, Module *M2,
217                                  bool DeleteInputs, std::string &Error,
218                                  bool &Broken) {
219   // Link the two portions of the program back to together.
220   std::string ErrorMsg;
221   if (!DeleteInputs) {
222     M1 = CloneModule(M1);
223     M2 = CloneModule(M2);
224   }
225   if (Linker::LinkModules(M1, M2, Linker::DestroySource, &ErrorMsg)) {
226     errs() << BD.getToolName() << ": Error linking modules together:"
227            << ErrorMsg << '\n';
228     exit(1);
229   }
230   delete M2;   // We are done with this module.
231
232   // Execute the program.
233   Broken = BD.diffProgram(M1, "", "", false, &Error);
234   if (!Error.empty()) {
235     // Delete the linked module
236     delete M1;
237     return NULL;
238   }
239   return M1;
240 }
241
242 /// TestFuncs - split functions in a Module into two groups: those that are
243 /// under consideration for miscompilation vs. those that are not, and test
244 /// accordingly. Each group of functions becomes a separate Module.
245 ///
246 bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*> &Funcs,
247                                             std::string &Error) {
248   // Test to see if the function is misoptimized if we ONLY run it on the
249   // functions listed in Funcs.
250   outs() << "Checking to see if the program is misoptimized when "
251          << (Funcs.size()==1 ? "this function is" : "these functions are")
252          << " run through the pass"
253          << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
254   PrintFunctionList(Funcs);
255   outs() << '\n';
256
257   // Create a clone for two reasons:
258   // * If the optimization passes delete any function, the deleted function
259   //   will be in the clone and Funcs will still point to valid memory
260   // * If the optimization passes use interprocedural information to break
261   //   a function, we want to continue with the original function. Otherwise
262   //   we can conclude that a function triggers the bug when in fact one
263   //   needs a larger set of original functions to do so.
264   ValueToValueMapTy VMap;
265   Module *Clone = CloneModule(BD.getProgram(), VMap);
266   Module *Orig = BD.swapProgramIn(Clone);
267
268   std::vector<Function*> FuncsOnClone;
269   for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
270     Function *F = cast<Function>(VMap[Funcs[i]]);
271     FuncsOnClone.push_back(F);
272   }
273
274   // Split the module into the two halves of the program we want.
275   VMap.clear();
276   Module *ToNotOptimize = CloneModule(BD.getProgram(), VMap);
277   Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, FuncsOnClone,
278                                                  VMap);
279
280   // Run the predicate, note that the predicate will delete both input modules.
281   bool Broken = TestFn(BD, ToOptimize, ToNotOptimize, Error);
282
283   delete BD.swapProgramIn(Orig);
284
285   return Broken;
286 }
287
288 /// DisambiguateGlobalSymbols - Give anonymous global values names.
289 ///
290 static void DisambiguateGlobalSymbols(Module *M) {
291   for (Module::global_iterator I = M->global_begin(), E = M->global_end();
292        I != E; ++I)
293     if (!I->hasName())
294       I->setName("anon_global");
295   for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
296     if (!I->hasName())
297       I->setName("anon_fn");
298 }
299
300 /// ExtractLoops - Given a reduced list of functions that still exposed the bug,
301 /// check to see if we can extract the loops in the region without obscuring the
302 /// bug.  If so, it reduces the amount of code identified.
303 ///
304 static bool ExtractLoops(BugDriver &BD,
305                          bool (*TestFn)(BugDriver &, Module *, Module *,
306                                         std::string &),
307                          std::vector<Function*> &MiscompiledFunctions,
308                          std::string &Error) {
309   bool MadeChange = false;
310   while (1) {
311     if (BugpointIsInterrupted) return MadeChange;
312
313     ValueToValueMapTy VMap;
314     Module *ToNotOptimize = CloneModule(BD.getProgram(), VMap);
315     Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
316                                                    MiscompiledFunctions,
317                                                    VMap);
318     Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
319     if (!ToOptimizeLoopExtracted) {
320       // If the loop extractor crashed or if there were no extractible loops,
321       // then this chapter of our odyssey is over with.
322       delete ToNotOptimize;
323       delete ToOptimize;
324       return MadeChange;
325     }
326
327     errs() << "Extracted a loop from the breaking portion of the program.\n";
328
329     // Bugpoint is intentionally not very trusting of LLVM transformations.  In
330     // particular, we're not going to assume that the loop extractor works, so
331     // we're going to test the newly loop extracted program to make sure nothing
332     // has broken.  If something broke, then we'll inform the user and stop
333     // extraction.
334     AbstractInterpreter *AI = BD.switchToSafeInterpreter();
335     bool Failure;
336     Module *New = TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize,
337                                     false, Error, Failure);
338     if (!New)
339       return false;
340     // Delete the original and set the new program.
341     delete BD.swapProgramIn(New);
342     if (Failure) {
343       BD.switchToInterpreter(AI);
344
345       // Merged program doesn't work anymore!
346       errs() << "  *** ERROR: Loop extraction broke the program. :("
347              << " Please report a bug!\n";
348       errs() << "      Continuing on with un-loop-extracted version.\n";
349
350       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
351                             ToNotOptimize);
352       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
353                             ToOptimize);
354       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
355                             ToOptimizeLoopExtracted);
356
357       errs() << "Please submit the "
358              << OutputPrefix << "-loop-extract-fail-*.bc files.\n";
359       delete ToOptimize;
360       delete ToNotOptimize;
361       delete ToOptimizeLoopExtracted;
362       return MadeChange;
363     }
364     delete ToOptimize;
365     BD.switchToInterpreter(AI);
366
367     outs() << "  Testing after loop extraction:\n";
368     // Clone modules, the tester function will free them.
369     Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
370     Module *TNOBackup  = CloneModule(ToNotOptimize);
371     Failure = TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize, Error);
372     if (!Error.empty())
373       return false;
374     if (!Failure) {
375       outs() << "*** Loop extraction masked the problem.  Undoing.\n";
376       // If the program is not still broken, then loop extraction did something
377       // that masked the error.  Stop loop extraction now.
378       delete TOLEBackup;
379       delete TNOBackup;
380       return MadeChange;
381     }
382     ToOptimizeLoopExtracted = TOLEBackup;
383     ToNotOptimize = TNOBackup;
384
385     outs() << "*** Loop extraction successful!\n";
386
387     std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions;
388     for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
389            E = ToOptimizeLoopExtracted->end(); I != E; ++I)
390       if (!I->isDeclaration())
391         MisCompFunctions.push_back(std::make_pair(I->getName(),
392                                                   I->getFunctionType()));
393
394     // Okay, great!  Now we know that we extracted a loop and that loop
395     // extraction both didn't break the program, and didn't mask the problem.
396     // Replace the current program with the loop extracted version, and try to
397     // extract another loop.
398     std::string ErrorMsg;
399     if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, 
400                             Linker::DestroySource, &ErrorMsg)){
401       errs() << BD.getToolName() << ": Error linking modules together:"
402              << ErrorMsg << '\n';
403       exit(1);
404     }
405     delete ToOptimizeLoopExtracted;
406
407     // All of the Function*'s in the MiscompiledFunctions list are in the old
408     // module.  Update this list to include all of the functions in the
409     // optimized and loop extracted module.
410     MiscompiledFunctions.clear();
411     for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
412       Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
413
414       assert(NewF && "Function not found??");
415       MiscompiledFunctions.push_back(NewF);
416     }
417
418     BD.setNewProgram(ToNotOptimize);
419     MadeChange = true;
420   }
421 }
422
423 namespace {
424   class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
425     BugDriver &BD;
426     bool (*TestFn)(BugDriver &, Module *, Module *, std::string &);
427     std::vector<Function*> FunctionsBeingTested;
428   public:
429     ReduceMiscompiledBlocks(BugDriver &bd,
430                             bool (*F)(BugDriver &, Module *, Module *,
431                                       std::string &),
432                             const std::vector<Function*> &Fns)
433       : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
434
435     virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
436                               std::vector<BasicBlock*> &Suffix,
437                               std::string &Error) {
438       if (!Suffix.empty()) {
439         bool Ret = TestFuncs(Suffix, Error);
440         if (!Error.empty())
441           return InternalError;
442         if (Ret)
443           return KeepSuffix;
444       }
445       if (!Prefix.empty()) {
446         bool Ret = TestFuncs(Prefix, Error);
447         if (!Error.empty())
448           return InternalError;
449         if (Ret)
450           return KeepPrefix;
451       }
452       return NoFailure;
453     }
454
455     bool TestFuncs(const std::vector<BasicBlock*> &BBs, std::string &Error);
456   };
457 }
458
459 /// TestFuncs - Extract all blocks for the miscompiled functions except for the
460 /// specified blocks.  If the problem still exists, return true.
461 ///
462 bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs,
463                                         std::string &Error) {
464   // Test to see if the function is misoptimized if we ONLY run it on the
465   // functions listed in Funcs.
466   outs() << "Checking to see if the program is misoptimized when all ";
467   if (!BBs.empty()) {
468     outs() << "but these " << BBs.size() << " blocks are extracted: ";
469     for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
470       outs() << BBs[i]->getName() << " ";
471     if (BBs.size() > 10) outs() << "...";
472   } else {
473     outs() << "blocks are extracted.";
474   }
475   outs() << '\n';
476
477   // Split the module into the two halves of the program we want.
478   ValueToValueMapTy VMap;
479   Module *Clone = CloneModule(BD.getProgram(), VMap);
480   Module *Orig = BD.swapProgramIn(Clone);
481   std::vector<Function*> FuncsOnClone;
482   std::vector<BasicBlock*> BBsOnClone;
483   for (unsigned i = 0, e = FunctionsBeingTested.size(); i != e; ++i) {
484     Function *F = cast<Function>(VMap[FunctionsBeingTested[i]]);
485     FuncsOnClone.push_back(F);
486   }
487   for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
488     BasicBlock *BB = cast<BasicBlock>(VMap[BBs[i]]);
489     BBsOnClone.push_back(BB);
490   }
491   VMap.clear();
492
493   Module *ToNotOptimize = CloneModule(BD.getProgram(), VMap);
494   Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
495                                                  FuncsOnClone,
496                                                  VMap);
497
498   // Try the extraction.  If it doesn't work, then the block extractor crashed
499   // or something, in which case bugpoint can't chase down this possibility.
500   if (Module *New = BD.ExtractMappedBlocksFromModule(BBsOnClone, ToOptimize)) {
501     delete ToOptimize;
502     // Run the predicate,
503     // note that the predicate will delete both input modules.
504     bool Ret = TestFn(BD, New, ToNotOptimize, Error);
505     delete BD.swapProgramIn(Orig);
506     return Ret;
507   }
508   delete BD.swapProgramIn(Orig);
509   delete ToOptimize;
510   delete ToNotOptimize;
511   return false;
512 }
513
514
515 /// ExtractBlocks - Given a reduced list of functions that still expose the bug,
516 /// extract as many basic blocks from the region as possible without obscuring
517 /// the bug.
518 ///
519 static bool ExtractBlocks(BugDriver &BD,
520                           bool (*TestFn)(BugDriver &, Module *, Module *,
521                                          std::string &),
522                           std::vector<Function*> &MiscompiledFunctions,
523                           std::string &Error) {
524   if (BugpointIsInterrupted) return false;
525
526   std::vector<BasicBlock*> Blocks;
527   for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
528     for (Function::iterator I = MiscompiledFunctions[i]->begin(),
529            E = MiscompiledFunctions[i]->end(); I != E; ++I)
530       Blocks.push_back(I);
531
532   // Use the list reducer to identify blocks that can be extracted without
533   // obscuring the bug.  The Blocks list will end up containing blocks that must
534   // be retained from the original program.
535   unsigned OldSize = Blocks.size();
536
537   // Check to see if all blocks are extractible first.
538   bool Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
539                                   .TestFuncs(std::vector<BasicBlock*>(), Error);
540   if (!Error.empty())
541     return false;
542   if (Ret) {
543     Blocks.clear();
544   } else {
545     ReduceMiscompiledBlocks(BD, TestFn,
546                             MiscompiledFunctions).reduceList(Blocks, Error);
547     if (!Error.empty())
548       return false;
549     if (Blocks.size() == OldSize)
550       return false;
551   }
552
553   ValueToValueMapTy VMap;
554   Module *ProgClone = CloneModule(BD.getProgram(), VMap);
555   Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
556                                                 MiscompiledFunctions,
557                                                 VMap);
558   Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
559   if (Extracted == 0) {
560     // Weird, extraction should have worked.
561     errs() << "Nondeterministic problem extracting blocks??\n";
562     delete ProgClone;
563     delete ToExtract;
564     return false;
565   }
566
567   // Otherwise, block extraction succeeded.  Link the two program fragments back
568   // together.
569   delete ToExtract;
570
571   std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions;
572   for (Module::iterator I = Extracted->begin(), E = Extracted->end();
573        I != E; ++I)
574     if (!I->isDeclaration())
575       MisCompFunctions.push_back(std::make_pair(I->getName(),
576                                                 I->getFunctionType()));
577
578   std::string ErrorMsg;
579   if (Linker::LinkModules(ProgClone, Extracted, Linker::DestroySource, 
580                           &ErrorMsg)) {
581     errs() << BD.getToolName() << ": Error linking modules together:"
582            << ErrorMsg << '\n';
583     exit(1);
584   }
585   delete Extracted;
586
587   // Set the new program and delete the old one.
588   BD.setNewProgram(ProgClone);
589
590   // Update the list of miscompiled functions.
591   MiscompiledFunctions.clear();
592
593   for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
594     Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
595     assert(NewF && "Function not found??");
596     MiscompiledFunctions.push_back(NewF);
597   }
598
599   return true;
600 }
601
602
603 /// DebugAMiscompilation - This is a generic driver to narrow down
604 /// miscompilations, either in an optimization or a code generator.
605 ///
606 static std::vector<Function*>
607 DebugAMiscompilation(BugDriver &BD,
608                      bool (*TestFn)(BugDriver &, Module *, Module *,
609                                     std::string &),
610                      std::string &Error) {
611   // Okay, now that we have reduced the list of passes which are causing the
612   // failure, see if we can pin down which functions are being
613   // miscompiled... first build a list of all of the non-external functions in
614   // the program.
615   std::vector<Function*> MiscompiledFunctions;
616   Module *Prog = BD.getProgram();
617   for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
618     if (!I->isDeclaration())
619       MiscompiledFunctions.push_back(I);
620
621   // Do the reduction...
622   if (!BugpointIsInterrupted)
623     ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions,
624                                                        Error);
625   if (!Error.empty()) {
626     errs() << "\n***Cannot reduce functions: ";
627     return MiscompiledFunctions;
628   }
629   outs() << "\n*** The following function"
630          << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
631          << " being miscompiled: ";
632   PrintFunctionList(MiscompiledFunctions);
633   outs() << '\n';
634
635   // See if we can rip any loops out of the miscompiled functions and still
636   // trigger the problem.
637
638   if (!BugpointIsInterrupted && !DisableLoopExtraction) {
639     bool Ret = ExtractLoops(BD, TestFn, MiscompiledFunctions, Error);
640     if (!Error.empty())
641       return MiscompiledFunctions;
642     if (Ret) {
643       // Okay, we extracted some loops and the problem still appears.  See if
644       // we can eliminate some of the created functions from being candidates.
645       DisambiguateGlobalSymbols(BD.getProgram());
646
647       // Do the reduction...
648       if (!BugpointIsInterrupted)
649         ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions,
650                                                            Error);
651       if (!Error.empty())
652         return MiscompiledFunctions;
653
654       outs() << "\n*** The following function"
655              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
656              << " being miscompiled: ";
657       PrintFunctionList(MiscompiledFunctions);
658       outs() << '\n';
659     }
660   }
661
662   if (!BugpointIsInterrupted && !DisableBlockExtraction) {
663     bool Ret = ExtractBlocks(BD, TestFn, MiscompiledFunctions, Error);
664     if (!Error.empty())
665       return MiscompiledFunctions;
666     if (Ret) {
667       // Okay, we extracted some blocks and the problem still appears.  See if
668       // we can eliminate some of the created functions from being candidates.
669       DisambiguateGlobalSymbols(BD.getProgram());
670
671       // Do the reduction...
672       ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions,
673                                                          Error);
674       if (!Error.empty())
675         return MiscompiledFunctions;
676
677       outs() << "\n*** The following function"
678              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
679              << " being miscompiled: ";
680       PrintFunctionList(MiscompiledFunctions);
681       outs() << '\n';
682     }
683   }
684
685   return MiscompiledFunctions;
686 }
687
688 /// TestOptimizer - This is the predicate function used to check to see if the
689 /// "Test" portion of the program is misoptimized.  If so, return true.  In any
690 /// case, both module arguments are deleted.
691 ///
692 static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe,
693                           std::string &Error) {
694   // Run the optimization passes on ToOptimize, producing a transformed version
695   // of the functions being tested.
696   outs() << "  Optimizing functions being tested: ";
697   Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
698                                      /*AutoDebugCrashes*/true);
699   outs() << "done.\n";
700   delete Test;
701
702   outs() << "  Checking to see if the merged program executes correctly: ";
703   bool Broken;
704   Module *New = TestMergedProgram(BD, Optimized, Safe, true, Error, Broken);
705   if (New) {
706     outs() << (Broken ? " nope.\n" : " yup.\n");
707     // Delete the original and set the new program.
708     delete BD.swapProgramIn(New);
709   }
710   return Broken;
711 }
712
713
714 /// debugMiscompilation - This method is used when the passes selected are not
715 /// crashing, but the generated output is semantically different from the
716 /// input.
717 ///
718 void BugDriver::debugMiscompilation(std::string *Error) {
719   // Make sure something was miscompiled...
720   if (!BugpointIsInterrupted)
721     if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun, *Error)) {
722       if (Error->empty())
723         errs() << "*** Optimized program matches reference output!  No problem"
724                << " detected...\nbugpoint can't help you with your problem!\n";
725       return;
726     }
727
728   outs() << "\n*** Found miscompiling pass"
729          << (getPassesToRun().size() == 1 ? "" : "es") << ": "
730          << getPassesString(getPassesToRun()) << '\n';
731   EmitProgressBitcode(Program, "passinput");
732
733   std::vector<Function *> MiscompiledFunctions =
734     DebugAMiscompilation(*this, TestOptimizer, *Error);
735   if (!Error->empty())
736     return;
737
738   // Output a bunch of bitcode files for the user...
739   outs() << "Outputting reduced bitcode files which expose the problem:\n";
740   ValueToValueMapTy VMap;
741   Module *ToNotOptimize = CloneModule(getProgram(), VMap);
742   Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
743                                                  MiscompiledFunctions,
744                                                  VMap);
745
746   outs() << "  Non-optimized portion: ";
747   EmitProgressBitcode(ToNotOptimize, "tonotoptimize", true);
748   delete ToNotOptimize;  // Delete hacked module.
749
750   outs() << "  Portion that is input to optimizer: ";
751   EmitProgressBitcode(ToOptimize, "tooptimize");
752   delete ToOptimize;      // Delete hacked module.
753
754   return;
755 }
756
757 /// CleanupAndPrepareModules - Get the specified modules ready for code
758 /// generator testing.
759 ///
760 static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
761                                      Module *Safe) {
762   // Clean up the modules, removing extra cruft that we don't need anymore...
763   Test = BD.performFinalCleanups(Test);
764
765   // If we are executing the JIT, we have several nasty issues to take care of.
766   if (!BD.isExecutingJIT()) return;
767
768   // First, if the main function is in the Safe module, we must add a stub to
769   // the Test module to call into it.  Thus, we create a new function `main'
770   // which just calls the old one.
771   if (Function *oldMain = Safe->getFunction("main"))
772     if (!oldMain->isDeclaration()) {
773       // Rename it
774       oldMain->setName("llvm_bugpoint_old_main");
775       // Create a NEW `main' function with same type in the test module.
776       Function *newMain = Function::Create(oldMain->getFunctionType(),
777                                            GlobalValue::ExternalLinkage,
778                                            "main", Test);
779       // Create an `oldmain' prototype in the test module, which will
780       // corresponds to the real main function in the same module.
781       Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
782                                                 GlobalValue::ExternalLinkage,
783                                                 oldMain->getName(), Test);
784       // Set up and remember the argument list for the main function.
785       std::vector<Value*> args;
786       for (Function::arg_iterator
787              I = newMain->arg_begin(), E = newMain->arg_end(),
788              OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
789         I->setName(OI->getName());    // Copy argument names from oldMain
790         args.push_back(I);
791       }
792
793       // Call the old main function and return its result
794       BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
795       CallInst *call = CallInst::Create(oldMainProto, args, "", BB);
796
797       // If the type of old function wasn't void, return value of call
798       ReturnInst::Create(Safe->getContext(), call, BB);
799     }
800
801   // The second nasty issue we must deal with in the JIT is that the Safe
802   // module cannot directly reference any functions defined in the test
803   // module.  Instead, we use a JIT API call to dynamically resolve the
804   // symbol.
805
806   // Add the resolver to the Safe module.
807   // Prototype: void *getPointerToNamedFunction(const char* Name)
808   Constant *resolverFunc =
809     Safe->getOrInsertFunction("getPointerToNamedFunction",
810                     Type::getInt8PtrTy(Safe->getContext()),
811                     Type::getInt8PtrTy(Safe->getContext()),
812                        (Type *)0);
813
814   // Use the function we just added to get addresses of functions we need.
815   for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
816     if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
817         !F->isIntrinsic() /* ignore intrinsics */) {
818       Function *TestFn = Test->getFunction(F->getName());
819
820       // Don't forward functions which are external in the test module too.
821       if (TestFn && !TestFn->isDeclaration()) {
822         // 1. Add a string constant with its name to the global file
823         Constant *InitArray =
824           ConstantDataArray::getString(F->getContext(), F->getName());
825         GlobalVariable *funcName =
826           new GlobalVariable(*Safe, InitArray->getType(), true /*isConstant*/,
827                              GlobalValue::InternalLinkage, InitArray,
828                              F->getName() + "_name");
829
830         // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
831         // sbyte* so it matches the signature of the resolver function.
832
833         // GetElementPtr *funcName, ulong 0, ulong 0
834         std::vector<Constant*> GEPargs(2,
835                      Constant::getNullValue(Type::getInt32Ty(F->getContext())));
836         Value *GEP = ConstantExpr::getGetElementPtr(funcName, GEPargs);
837         std::vector<Value*> ResolverArgs;
838         ResolverArgs.push_back(GEP);
839
840         // Rewrite uses of F in global initializers, etc. to uses of a wrapper
841         // function that dynamically resolves the calls to F via our JIT API
842         if (!F->use_empty()) {
843           // Create a new global to hold the cached function pointer.
844           Constant *NullPtr = ConstantPointerNull::get(F->getType());
845           GlobalVariable *Cache =
846             new GlobalVariable(*F->getParent(), F->getType(),
847                                false, GlobalValue::InternalLinkage,
848                                NullPtr,F->getName()+".fpcache");
849
850           // Construct a new stub function that will re-route calls to F
851           FunctionType *FuncTy = F->getFunctionType();
852           Function *FuncWrapper = Function::Create(FuncTy,
853                                                    GlobalValue::InternalLinkage,
854                                                    F->getName() + "_wrapper",
855                                                    F->getParent());
856           BasicBlock *EntryBB  = BasicBlock::Create(F->getContext(),
857                                                     "entry", FuncWrapper);
858           BasicBlock *DoCallBB = BasicBlock::Create(F->getContext(),
859                                                     "usecache", FuncWrapper);
860           BasicBlock *LookupBB = BasicBlock::Create(F->getContext(),
861                                                     "lookupfp", FuncWrapper);
862
863           // Check to see if we already looked up the value.
864           Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
865           Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
866                                        NullPtr, "isNull");
867           BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
868
869           // Resolve the call to function F via the JIT API:
870           //
871           // call resolver(GetElementPtr...)
872           CallInst *Resolver =
873             CallInst::Create(resolverFunc, ResolverArgs, "resolver", LookupBB);
874
875           // Cast the result from the resolver to correctly-typed function.
876           CastInst *CastedResolver =
877             new BitCastInst(Resolver,
878                             PointerType::getUnqual(F->getFunctionType()),
879                             "resolverCast", LookupBB);
880
881           // Save the value in our cache.
882           new StoreInst(CastedResolver, Cache, LookupBB);
883           BranchInst::Create(DoCallBB, LookupBB);
884
885           PHINode *FuncPtr = PHINode::Create(NullPtr->getType(), 2,
886                                              "fp", DoCallBB);
887           FuncPtr->addIncoming(CastedResolver, LookupBB);
888           FuncPtr->addIncoming(CachedVal, EntryBB);
889
890           // Save the argument list.
891           std::vector<Value*> Args;
892           for (Function::arg_iterator i = FuncWrapper->arg_begin(),
893                  e = FuncWrapper->arg_end(); i != e; ++i)
894             Args.push_back(i);
895
896           // Pass on the arguments to the real function, return its result
897           if (F->getReturnType()->isVoidTy()) {
898             CallInst::Create(FuncPtr, Args, "", DoCallBB);
899             ReturnInst::Create(F->getContext(), DoCallBB);
900           } else {
901             CallInst *Call = CallInst::Create(FuncPtr, Args,
902                                               "retval", DoCallBB);
903             ReturnInst::Create(F->getContext(),Call, DoCallBB);
904           }
905
906           // Use the wrapper function instead of the old function
907           F->replaceAllUsesWith(FuncWrapper);
908         }
909       }
910     }
911   }
912
913   if (verifyModule(*Test) || verifyModule(*Safe)) {
914     errs() << "Bugpoint has a bug, which corrupted a module!!\n";
915     abort();
916   }
917 }
918
919
920
921 /// TestCodeGenerator - This is the predicate function used to check to see if
922 /// the "Test" portion of the program is miscompiled by the code generator under
923 /// test.  If so, return true.  In any case, both module arguments are deleted.
924 ///
925 static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe,
926                               std::string &Error) {
927   CleanupAndPrepareModules(BD, Test, Safe);
928
929   sys::Path TestModuleBC("bugpoint.test.bc");
930   std::string ErrMsg;
931   if (TestModuleBC.makeUnique(true, &ErrMsg)) {
932     errs() << BD.getToolName() << "Error making unique filename: "
933            << ErrMsg << "\n";
934     exit(1);
935   }
936   if (BD.writeProgramToFile(TestModuleBC.str(), Test)) {
937     errs() << "Error writing bitcode to `" << TestModuleBC.str()
938            << "'\nExiting.";
939     exit(1);
940   }
941   delete Test;
942
943   FileRemover TestModuleBCRemover(TestModuleBC.str(), !SaveTemps);
944
945   // Make the shared library
946   sys::Path SafeModuleBC("bugpoint.safe.bc");
947   if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
948     errs() << BD.getToolName() << "Error making unique filename: "
949            << ErrMsg << "\n";
950     exit(1);
951   }
952
953   if (BD.writeProgramToFile(SafeModuleBC.str(), Safe)) {
954     errs() << "Error writing bitcode to `" << SafeModuleBC.str()
955            << "'\nExiting.";
956     exit(1);
957   }
958
959   FileRemover SafeModuleBCRemover(SafeModuleBC.str(), !SaveTemps);
960
961   std::string SharedObject = BD.compileSharedObject(SafeModuleBC.str(), Error);
962   if (!Error.empty())
963     return false;
964   delete Safe;
965
966   FileRemover SharedObjectRemover(SharedObject, !SaveTemps);
967
968   // Run the code generator on the `Test' code, loading the shared library.
969   // The function returns whether or not the new output differs from reference.
970   bool Result = BD.diffProgram(BD.getProgram(), TestModuleBC.str(),
971                                SharedObject, false, &Error);
972   if (!Error.empty())
973     return false;
974
975   if (Result)
976     errs() << ": still failing!\n";
977   else
978     errs() << ": didn't fail.\n";
979
980   return Result;
981 }
982
983
984 /// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
985 ///
986 bool BugDriver::debugCodeGenerator(std::string *Error) {
987   if ((void*)SafeInterpreter == (void*)Interpreter) {
988     std::string Result = executeProgramSafely(Program, "bugpoint.safe.out",
989                                               Error);
990     if (Error->empty()) {
991       outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
992              << "the reference diff.  This may be due to a\n    front-end "
993              << "bug or a bug in the original program, but this can also "
994              << "happen if bugpoint isn't running the program with the "
995              << "right flags or input.\n    I left the result of executing "
996              << "the program with the \"safe\" backend in this file for "
997              << "you: '"
998              << Result << "'.\n";
999     }
1000     return true;
1001   }
1002
1003   DisambiguateGlobalSymbols(Program);
1004
1005   std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator,
1006                                                       *Error);
1007   if (!Error->empty())
1008     return true;
1009
1010   // Split the module into the two halves of the program we want.
1011   ValueToValueMapTy VMap;
1012   Module *ToNotCodeGen = CloneModule(getProgram(), VMap);
1013   Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs, VMap);
1014
1015   // Condition the modules
1016   CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
1017
1018   sys::Path TestModuleBC("bugpoint.test.bc");
1019   std::string ErrMsg;
1020   if (TestModuleBC.makeUnique(true, &ErrMsg)) {
1021     errs() << getToolName() << "Error making unique filename: "
1022            << ErrMsg << "\n";
1023     exit(1);
1024   }
1025
1026   if (writeProgramToFile(TestModuleBC.str(), ToCodeGen)) {
1027     errs() << "Error writing bitcode to `" << TestModuleBC.str()
1028            << "'\nExiting.";
1029     exit(1);
1030   }
1031   delete ToCodeGen;
1032
1033   // Make the shared library
1034   sys::Path SafeModuleBC("bugpoint.safe.bc");
1035   if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
1036     errs() << getToolName() << "Error making unique filename: "
1037            << ErrMsg << "\n";
1038     exit(1);
1039   }
1040
1041   if (writeProgramToFile(SafeModuleBC.str(), ToNotCodeGen)) {
1042     errs() << "Error writing bitcode to `" << SafeModuleBC.str()
1043            << "'\nExiting.";
1044     exit(1);
1045   }
1046   std::string SharedObject = compileSharedObject(SafeModuleBC.str(), *Error);
1047   if (!Error->empty())
1048     return true;
1049   delete ToNotCodeGen;
1050
1051   outs() << "You can reproduce the problem with the command line: \n";
1052   if (isExecutingJIT()) {
1053     outs() << "  lli -load " << SharedObject << " " << TestModuleBC.str();
1054   } else {
1055     outs() << "  llc " << TestModuleBC.str() << " -o " << TestModuleBC.str()
1056            << ".s\n";
1057     outs() << "  gcc " << SharedObject << " " << TestModuleBC.str()
1058               << ".s -o " << TestModuleBC.str() << ".exe";
1059 #if defined (HAVE_LINK_R)
1060     outs() << " -Wl,-R.";
1061 #endif
1062     outs() << "\n";
1063     outs() << "  " << TestModuleBC.str() << ".exe";
1064   }
1065   for (unsigned i = 0, e = InputArgv.size(); i != e; ++i)
1066     outs() << " " << InputArgv[i];
1067   outs() << '\n';
1068   outs() << "The shared object was created with:\n  llc -march=c "
1069          << SafeModuleBC.str() << " -o temporary.c\n"
1070          << "  gcc -xc temporary.c -O2 -o " << SharedObject;
1071   if (TargetTriple.getArch() == Triple::sparc)
1072     outs() << " -G";              // Compile a shared library, `-G' for Sparc
1073   else
1074     outs() << " -fPIC -shared";   // `-shared' for Linux/X86, maybe others
1075
1076   outs() << " -fno-strict-aliasing\n";
1077
1078   return false;
1079 }