Remove extra forward declarations and scrub includes for all in tree InstPrinters...
[oota-llvm.git] / tools / bugpoint / Miscompilation.cpp
1 //===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements optimizer and code generation miscompilation debugging
11 // support.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "BugDriver.h"
16 #include "ListReducer.h"
17 #include "ToolRunner.h"
18 #include "llvm/Config/config.h"   // for HAVE_LINK_R
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Verifier.h"
24 #include "llvm/Linker/Linker.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/FileUtilities.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
29 using namespace llvm;
30
31 namespace llvm {
32   extern cl::opt<std::string> OutputPrefix;
33   extern cl::list<std::string> InputArgv;
34 }
35
36 namespace {
37   static llvm::cl::opt<bool>
38     DisableLoopExtraction("disable-loop-extraction",
39         cl::desc("Don't extract loops when searching for miscompilations"),
40         cl::init(false));
41   static llvm::cl::opt<bool>
42     DisableBlockExtraction("disable-block-extraction",
43         cl::desc("Don't extract blocks when searching for miscompilations"),
44         cl::init(false));
45
46   class ReduceMiscompilingPasses : public ListReducer<std::string> {
47     BugDriver &BD;
48   public:
49     ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
50
51     TestResult doTest(std::vector<std::string> &Prefix,
52                       std::vector<std::string> &Suffix,
53                       std::string &Error) override;
54   };
55 }
56
57 /// TestResult - After passes have been split into a test group and a control
58 /// group, see if they still break the program.
59 ///
60 ReduceMiscompilingPasses::TestResult
61 ReduceMiscompilingPasses::doTest(std::vector<std::string> &Prefix,
62                                  std::vector<std::string> &Suffix,
63                                  std::string &Error) {
64   // First, run the program with just the Suffix passes.  If it is still broken
65   // with JUST the kept passes, discard the prefix passes.
66   outs() << "Checking to see if '" << getPassesString(Suffix)
67          << "' compiles correctly: ";
68
69   std::string BitcodeResult;
70   if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false/*delete*/,
71                    true/*quiet*/)) {
72     errs() << " Error running this sequence of passes"
73            << " on the input program!\n";
74     BD.setPassesToRun(Suffix);
75     BD.EmitProgressBitcode(BD.getProgram(), "pass-error",  false);
76     exit(BD.debugOptimizerCrash());
77   }
78
79   // Check to see if the finished program matches the reference output...
80   bool Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
81                              true /*delete bitcode*/, &Error);
82   if (!Error.empty())
83     return InternalError;
84   if (Diff) {
85     outs() << " nope.\n";
86     if (Suffix.empty()) {
87       errs() << BD.getToolName() << ": I'm confused: the test fails when "
88              << "no passes are run, nondeterministic program?\n";
89       exit(1);
90     }
91     return KeepSuffix;         // Miscompilation detected!
92   }
93   outs() << " yup.\n";      // No miscompilation!
94
95   if (Prefix.empty()) return NoFailure;
96
97   // Next, see if the program is broken if we run the "prefix" passes first,
98   // then separately run the "kept" passes.
99   outs() << "Checking to see if '" << getPassesString(Prefix)
100          << "' compiles correctly: ";
101
102   // If it is not broken with the kept passes, it's possible that the prefix
103   // passes must be run before the kept passes to break it.  If the program
104   // WORKS after the prefix passes, but then fails if running the prefix AND
105   // kept passes, we can update our bitcode file to include the result of the
106   // prefix passes, then discard the prefix passes.
107   //
108   if (BD.runPasses(BD.getProgram(), Prefix, BitcodeResult, false/*delete*/,
109                    true/*quiet*/)) {
110     errs() << " Error running this sequence of passes"
111            << " on the input program!\n";
112     BD.setPassesToRun(Prefix);
113     BD.EmitProgressBitcode(BD.getProgram(), "pass-error",  false);
114     exit(BD.debugOptimizerCrash());
115   }
116
117   // If the prefix maintains the predicate by itself, only keep the prefix!
118   Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", false, &Error);
119   if (!Error.empty())
120     return InternalError;
121   if (Diff) {
122     outs() << " nope.\n";
123     sys::fs::remove(BitcodeResult);
124     return KeepPrefix;
125   }
126   outs() << " yup.\n";      // No miscompilation!
127
128   // Ok, so now we know that the prefix passes work, try running the suffix
129   // passes on the result of the prefix passes.
130   //
131   std::unique_ptr<Module> PrefixOutput =
132       parseInputFile(BitcodeResult, BD.getContext());
133   if (!PrefixOutput) {
134     errs() << BD.getToolName() << ": Error reading bitcode file '"
135            << BitcodeResult << "'!\n";
136     exit(1);
137   }
138   sys::fs::remove(BitcodeResult);
139
140   // Don't check if there are no passes in the suffix.
141   if (Suffix.empty())
142     return NoFailure;
143
144   outs() << "Checking to see if '" << getPassesString(Suffix)
145             << "' passes compile correctly after the '"
146             << getPassesString(Prefix) << "' passes: ";
147
148   std::unique_ptr<Module> OriginalInput(
149       BD.swapProgramIn(PrefixOutput.release()));
150   if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false/*delete*/,
151                    true/*quiet*/)) {
152     errs() << " Error running this sequence of passes"
153            << " on the input program!\n";
154     BD.setPassesToRun(Suffix);
155     BD.EmitProgressBitcode(BD.getProgram(), "pass-error",  false);
156     exit(BD.debugOptimizerCrash());
157   }
158
159   // Run the result...
160   Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
161                         true /*delete bitcode*/, &Error);
162   if (!Error.empty())
163     return InternalError;
164   if (Diff) {
165     outs() << " nope.\n";
166     return KeepSuffix;
167   }
168
169   // Otherwise, we must not be running the bad pass anymore.
170   outs() << " yup.\n";      // No miscompilation!
171   // Restore orig program & free test.
172   delete BD.swapProgramIn(OriginalInput.release());
173   return NoFailure;
174 }
175
176 namespace {
177   class ReduceMiscompilingFunctions : public ListReducer<Function*> {
178     BugDriver &BD;
179     bool (*TestFn)(BugDriver &, std::unique_ptr<Module>,
180                    std::unique_ptr<Module>, std::string &);
181
182   public:
183     ReduceMiscompilingFunctions(BugDriver &bd,
184                                 bool (*F)(BugDriver &, std::unique_ptr<Module>,
185                                           std::unique_ptr<Module>,
186                                           std::string &))
187         : BD(bd), TestFn(F) {}
188
189     TestResult doTest(std::vector<Function*> &Prefix,
190                       std::vector<Function*> &Suffix,
191                       std::string &Error) override {
192       if (!Suffix.empty()) {
193         bool Ret = TestFuncs(Suffix, Error);
194         if (!Error.empty())
195           return InternalError;
196         if (Ret)
197           return KeepSuffix;
198       }
199       if (!Prefix.empty()) {
200         bool Ret = TestFuncs(Prefix, Error);
201         if (!Error.empty())
202           return InternalError;
203         if (Ret)
204           return KeepPrefix;
205       }
206       return NoFailure;
207     }
208
209     bool TestFuncs(const std::vector<Function*> &Prefix, std::string &Error);
210   };
211 }
212
213 /// Given two modules, link them together and run the program, checking to see
214 /// if the program matches the diff. If there is an error, return NULL. If not,
215 /// return the merged module. The Broken argument will be set to true if the
216 /// output is different. If the DeleteInputs argument is set to true then this
217 /// function deletes both input modules before it returns.
218 ///
219 static std::unique_ptr<Module> testMergedProgram(const BugDriver &BD,
220                                                  std::unique_ptr<Module> M1,
221                                                  std::unique_ptr<Module> M2,
222                                                  std::string &Error,
223                                                  bool &Broken) {
224   if (Linker::linkModules(*M1, std::move(M2)))
225     exit(1);
226
227   // Execute the program.
228   Broken = BD.diffProgram(M1.get(), "", "", false, &Error);
229   if (!Error.empty())
230     return nullptr;
231   return M1;
232 }
233
234 /// TestFuncs - split functions in a Module into two groups: those that are
235 /// under consideration for miscompilation vs. those that are not, and test
236 /// accordingly. Each group of functions becomes a separate Module.
237 ///
238 bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*> &Funcs,
239                                             std::string &Error) {
240   // Test to see if the function is misoptimized if we ONLY run it on the
241   // functions listed in Funcs.
242   outs() << "Checking to see if the program is misoptimized when "
243          << (Funcs.size()==1 ? "this function is" : "these functions are")
244          << " run through the pass"
245          << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
246   PrintFunctionList(Funcs);
247   outs() << '\n';
248
249   // Create a clone for two reasons:
250   // * If the optimization passes delete any function, the deleted function
251   //   will be in the clone and Funcs will still point to valid memory
252   // * If the optimization passes use interprocedural information to break
253   //   a function, we want to continue with the original function. Otherwise
254   //   we can conclude that a function triggers the bug when in fact one
255   //   needs a larger set of original functions to do so.
256   ValueToValueMapTy VMap;
257   Module *Clone = CloneModule(BD.getProgram(), VMap).release();
258   Module *Orig = BD.swapProgramIn(Clone);
259
260   std::vector<Function*> FuncsOnClone;
261   for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
262     Function *F = cast<Function>(VMap[Funcs[i]]);
263     FuncsOnClone.push_back(F);
264   }
265
266   // Split the module into the two halves of the program we want.
267   VMap.clear();
268   std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
269   std::unique_ptr<Module> ToOptimize =
270       SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);
271
272   bool Broken =
273       TestFn(BD, std::move(ToOptimize), std::move(ToNotOptimize), Error);
274
275   delete BD.swapProgramIn(Orig);
276
277   return Broken;
278 }
279
280 /// DisambiguateGlobalSymbols - Give anonymous global values names.
281 ///
282 static void DisambiguateGlobalSymbols(Module *M) {
283   for (Module::global_iterator I = M->global_begin(), E = M->global_end();
284        I != E; ++I)
285     if (!I->hasName())
286       I->setName("anon_global");
287   for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
288     if (!I->hasName())
289       I->setName("anon_fn");
290 }
291
292 /// Given a reduced list of functions that still exposed the bug, check to see
293 /// if we can extract the loops in the region without obscuring the bug.  If so,
294 /// it reduces the amount of code identified.
295 ///
296 static bool ExtractLoops(BugDriver &BD,
297                          bool (*TestFn)(BugDriver &, std::unique_ptr<Module>,
298                                         std::unique_ptr<Module>, std::string &),
299                          std::vector<Function *> &MiscompiledFunctions,
300                          std::string &Error) {
301   bool MadeChange = false;
302   while (1) {
303     if (BugpointIsInterrupted) return MadeChange;
304
305     ValueToValueMapTy VMap;
306     std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
307     Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize.get(),
308                                                    MiscompiledFunctions, VMap)
309                              .release();
310     std::unique_ptr<Module> ToOptimizeLoopExtracted =
311         BD.extractLoop(ToOptimize);
312     if (!ToOptimizeLoopExtracted) {
313       // If the loop extractor crashed or if there were no extractible loops,
314       // then this chapter of our odyssey is over with.
315       delete ToOptimize;
316       return MadeChange;
317     }
318
319     errs() << "Extracted a loop from the breaking portion of the program.\n";
320
321     // Bugpoint is intentionally not very trusting of LLVM transformations.  In
322     // particular, we're not going to assume that the loop extractor works, so
323     // we're going to test the newly loop extracted program to make sure nothing
324     // has broken.  If something broke, then we'll inform the user and stop
325     // extraction.
326     AbstractInterpreter *AI = BD.switchToSafeInterpreter();
327     bool Failure;
328     std::unique_ptr<Module> New =
329         testMergedProgram(BD, std::move(ToOptimizeLoopExtracted),
330                           std::move(ToNotOptimize), Error, Failure);
331     if (!New)
332       return false;
333
334     // Delete the original and set the new program.
335     Module *Old = BD.swapProgramIn(New.release());
336     for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
337       MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);
338     delete Old;
339
340     if (Failure) {
341       BD.switchToInterpreter(AI);
342
343       // Merged program doesn't work anymore!
344       errs() << "  *** ERROR: Loop extraction broke the program. :("
345              << " Please report a bug!\n";
346       errs() << "      Continuing on with un-loop-extracted version.\n";
347
348       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
349                             ToNotOptimize.get());
350       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
351                             ToOptimize);
352       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
353                             ToOptimizeLoopExtracted.get());
354
355       errs() << "Please submit the "
356              << OutputPrefix << "-loop-extract-fail-*.bc files.\n";
357       delete ToOptimize;
358       return MadeChange;
359     }
360     delete ToOptimize;
361     BD.switchToInterpreter(AI);
362
363     outs() << "  Testing after loop extraction:\n";
364     // Clone modules, the tester function will free them.
365     std::unique_ptr<Module> TOLEBackup =
366         CloneModule(ToOptimizeLoopExtracted.get(), VMap);
367     std::unique_ptr<Module> TNOBackup = CloneModule(ToNotOptimize.get(), VMap);
368
369     for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
370       MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);
371
372     Failure = TestFn(BD, std::move(ToOptimizeLoopExtracted),
373                      std::move(ToNotOptimize), Error);
374     if (!Error.empty())
375       return false;
376
377     ToOptimizeLoopExtracted = std::move(TOLEBackup);
378     ToNotOptimize = std::move(TNOBackup);
379
380     if (!Failure) {
381       outs() << "*** Loop extraction masked the problem.  Undoing.\n";
382       // If the program is not still broken, then loop extraction did something
383       // that masked the error.  Stop loop extraction now.
384
385       std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions;
386       for (Function *F : MiscompiledFunctions) {
387         MisCompFunctions.emplace_back(F->getName(), F->getFunctionType());
388       }
389
390       if (Linker::linkModules(*ToNotOptimize,
391                               std::move(ToOptimizeLoopExtracted)))
392         exit(1);
393
394       MiscompiledFunctions.clear();
395       for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
396         Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
397
398         assert(NewF && "Function not found??");
399         MiscompiledFunctions.push_back(NewF);
400       }
401
402       BD.setNewProgram(ToNotOptimize.release());
403       return MadeChange;
404     }
405
406     outs() << "*** Loop extraction successful!\n";
407
408     std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions;
409     for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
410            E = ToOptimizeLoopExtracted->end(); I != E; ++I)
411       if (!I->isDeclaration())
412         MisCompFunctions.emplace_back(I->getName(), I->getFunctionType());
413
414     // Okay, great!  Now we know that we extracted a loop and that loop
415     // extraction both didn't break the program, and didn't mask the problem.
416     // Replace the current program with the loop extracted version, and try to
417     // extract another loop.
418     if (Linker::linkModules(*ToNotOptimize, std::move(ToOptimizeLoopExtracted)))
419       exit(1);
420
421     // All of the Function*'s in the MiscompiledFunctions list are in the old
422     // module.  Update this list to include all of the functions in the
423     // optimized and loop extracted module.
424     MiscompiledFunctions.clear();
425     for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
426       Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
427
428       assert(NewF && "Function not found??");
429       MiscompiledFunctions.push_back(NewF);
430     }
431
432     BD.setNewProgram(ToNotOptimize.release());
433     MadeChange = true;
434   }
435 }
436
437 namespace {
438   class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
439     BugDriver &BD;
440     bool (*TestFn)(BugDriver &, std::unique_ptr<Module>,
441                    std::unique_ptr<Module>, std::string &);
442     std::vector<Function*> FunctionsBeingTested;
443   public:
444     ReduceMiscompiledBlocks(BugDriver &bd,
445                             bool (*F)(BugDriver &, std::unique_ptr<Module>,
446                                       std::unique_ptr<Module>, std::string &),
447                             const std::vector<Function *> &Fns)
448         : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
449
450     TestResult doTest(std::vector<BasicBlock*> &Prefix,
451                       std::vector<BasicBlock*> &Suffix,
452                       std::string &Error) override {
453       if (!Suffix.empty()) {
454         bool Ret = TestFuncs(Suffix, Error);
455         if (!Error.empty())
456           return InternalError;
457         if (Ret)
458           return KeepSuffix;
459       }
460       if (!Prefix.empty()) {
461         bool Ret = TestFuncs(Prefix, Error);
462         if (!Error.empty())
463           return InternalError;
464         if (Ret)
465           return KeepPrefix;
466       }
467       return NoFailure;
468     }
469
470     bool TestFuncs(const std::vector<BasicBlock*> &BBs, std::string &Error);
471   };
472 }
473
474 /// TestFuncs - Extract all blocks for the miscompiled functions except for the
475 /// specified blocks.  If the problem still exists, return true.
476 ///
477 bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs,
478                                         std::string &Error) {
479   // Test to see if the function is misoptimized if we ONLY run it on the
480   // functions listed in Funcs.
481   outs() << "Checking to see if the program is misoptimized when all ";
482   if (!BBs.empty()) {
483     outs() << "but these " << BBs.size() << " blocks are extracted: ";
484     for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
485       outs() << BBs[i]->getName() << " ";
486     if (BBs.size() > 10) outs() << "...";
487   } else {
488     outs() << "blocks are extracted.";
489   }
490   outs() << '\n';
491
492   // Split the module into the two halves of the program we want.
493   ValueToValueMapTy VMap;
494   Module *Clone = CloneModule(BD.getProgram(), VMap).release();
495   Module *Orig = BD.swapProgramIn(Clone);
496   std::vector<Function*> FuncsOnClone;
497   std::vector<BasicBlock*> BBsOnClone;
498   for (unsigned i = 0, e = FunctionsBeingTested.size(); i != e; ++i) {
499     Function *F = cast<Function>(VMap[FunctionsBeingTested[i]]);
500     FuncsOnClone.push_back(F);
501   }
502   for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
503     BasicBlock *BB = cast<BasicBlock>(VMap[BBs[i]]);
504     BBsOnClone.push_back(BB);
505   }
506   VMap.clear();
507
508   std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
509   std::unique_ptr<Module> ToOptimize =
510       SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);
511
512   // Try the extraction.  If it doesn't work, then the block extractor crashed
513   // or something, in which case bugpoint can't chase down this possibility.
514   if (std::unique_ptr<Module> New =
515           BD.extractMappedBlocksFromModule(BBsOnClone, ToOptimize.get())) {
516     bool Ret = TestFn(BD, std::move(New), std::move(ToNotOptimize), Error);
517     delete BD.swapProgramIn(Orig);
518     return Ret;
519   }
520   delete BD.swapProgramIn(Orig);
521   return false;
522 }
523
524 /// Given a reduced list of functions that still expose the bug, extract as many
525 /// basic blocks from the region as possible without obscuring the bug.
526 ///
527 static bool ExtractBlocks(BugDriver &BD,
528                           bool (*TestFn)(BugDriver &, std::unique_ptr<Module>,
529                                          std::unique_ptr<Module>,
530                                          std::string &),
531                           std::vector<Function *> &MiscompiledFunctions,
532                           std::string &Error) {
533   if (BugpointIsInterrupted) return false;
534
535   std::vector<BasicBlock*> Blocks;
536   for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
537     for (BasicBlock &BB : *MiscompiledFunctions[i])
538       Blocks.push_back(&BB);
539
540   // Use the list reducer to identify blocks that can be extracted without
541   // obscuring the bug.  The Blocks list will end up containing blocks that must
542   // be retained from the original program.
543   unsigned OldSize = Blocks.size();
544
545   // Check to see if all blocks are extractible first.
546   bool Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
547                                   .TestFuncs(std::vector<BasicBlock*>(), Error);
548   if (!Error.empty())
549     return false;
550   if (Ret) {
551     Blocks.clear();
552   } else {
553     ReduceMiscompiledBlocks(BD, TestFn,
554                             MiscompiledFunctions).reduceList(Blocks, Error);
555     if (!Error.empty())
556       return false;
557     if (Blocks.size() == OldSize)
558       return false;
559   }
560
561   ValueToValueMapTy VMap;
562   Module *ProgClone = CloneModule(BD.getProgram(), VMap).release();
563   Module *ToExtract =
564       SplitFunctionsOutOfModule(ProgClone, MiscompiledFunctions, VMap)
565           .release();
566   std::unique_ptr<Module> Extracted =
567       BD.extractMappedBlocksFromModule(Blocks, ToExtract);
568   if (!Extracted) {
569     // Weird, extraction should have worked.
570     errs() << "Nondeterministic problem extracting blocks??\n";
571     delete ProgClone;
572     delete ToExtract;
573     return false;
574   }
575
576   // Otherwise, block extraction succeeded.  Link the two program fragments back
577   // together.
578   delete ToExtract;
579
580   std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions;
581   for (Module::iterator I = Extracted->begin(), E = Extracted->end();
582        I != E; ++I)
583     if (!I->isDeclaration())
584       MisCompFunctions.emplace_back(I->getName(), I->getFunctionType());
585
586   if (Linker::linkModules(*ProgClone, std::move(Extracted)))
587     exit(1);
588
589   // Set the new program and delete the old one.
590   BD.setNewProgram(ProgClone);
591
592   // Update the list of miscompiled functions.
593   MiscompiledFunctions.clear();
594
595   for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
596     Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
597     assert(NewF && "Function not found??");
598     MiscompiledFunctions.push_back(NewF);
599   }
600
601   return true;
602 }
603
604 /// This is a generic driver to narrow down miscompilations, either in an
605 /// optimization or a code generator.
606 ///
607 static std::vector<Function *>
608 DebugAMiscompilation(BugDriver &BD,
609                      bool (*TestFn)(BugDriver &, std::unique_ptr<Module>,
610                                     std::unique_ptr<Module>, std::string &),
611                      std::string &Error) {
612   // Okay, now that we have reduced the list of passes which are causing the
613   // failure, see if we can pin down which functions are being
614   // miscompiled... first build a list of all of the non-external functions in
615   // the program.
616   std::vector<Function*> MiscompiledFunctions;
617   Module *Prog = BD.getProgram();
618   for (Function &F : *Prog)
619     if (!F.isDeclaration())
620       MiscompiledFunctions.push_back(&F);
621
622   // Do the reduction...
623   if (!BugpointIsInterrupted)
624     ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions,
625                                                        Error);
626   if (!Error.empty()) {
627     errs() << "\n***Cannot reduce functions: ";
628     return MiscompiledFunctions;
629   }
630   outs() << "\n*** The following function"
631          << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
632          << " being miscompiled: ";
633   PrintFunctionList(MiscompiledFunctions);
634   outs() << '\n';
635
636   // See if we can rip any loops out of the miscompiled functions and still
637   // trigger the problem.
638
639   if (!BugpointIsInterrupted && !DisableLoopExtraction) {
640     bool Ret = ExtractLoops(BD, TestFn, MiscompiledFunctions, Error);
641     if (!Error.empty())
642       return MiscompiledFunctions;
643     if (Ret) {
644       // Okay, we extracted some loops and the problem still appears.  See if
645       // we can eliminate some of the created functions from being candidates.
646       DisambiguateGlobalSymbols(BD.getProgram());
647
648       // Do the reduction...
649       if (!BugpointIsInterrupted)
650         ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions,
651                                                            Error);
652       if (!Error.empty())
653         return MiscompiledFunctions;
654
655       outs() << "\n*** The following function"
656              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
657              << " being miscompiled: ";
658       PrintFunctionList(MiscompiledFunctions);
659       outs() << '\n';
660     }
661   }
662
663   if (!BugpointIsInterrupted && !DisableBlockExtraction) {
664     bool Ret = ExtractBlocks(BD, TestFn, MiscompiledFunctions, Error);
665     if (!Error.empty())
666       return MiscompiledFunctions;
667     if (Ret) {
668       // Okay, we extracted some blocks and the problem still appears.  See if
669       // we can eliminate some of the created functions from being candidates.
670       DisambiguateGlobalSymbols(BD.getProgram());
671
672       // Do the reduction...
673       ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions,
674                                                          Error);
675       if (!Error.empty())
676         return MiscompiledFunctions;
677
678       outs() << "\n*** The following function"
679              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
680              << " being miscompiled: ";
681       PrintFunctionList(MiscompiledFunctions);
682       outs() << '\n';
683     }
684   }
685
686   return MiscompiledFunctions;
687 }
688
689 /// This is the predicate function used to check to see if the "Test" portion of
690 /// the program is misoptimized.  If so, return true.  In any case, both module
691 /// arguments are deleted.
692 ///
693 static bool TestOptimizer(BugDriver &BD, std::unique_ptr<Module> Test,
694                           std::unique_ptr<Module> Safe, std::string &Error) {
695   // Run the optimization passes on ToOptimize, producing a transformed version
696   // of the functions being tested.
697   outs() << "  Optimizing functions being tested: ";
698   std::unique_ptr<Module> Optimized =
699       BD.runPassesOn(Test.get(), BD.getPassesToRun(),
700                      /*AutoDebugCrashes*/ true);
701   outs() << "done.\n";
702
703   outs() << "  Checking to see if the merged program executes correctly: ";
704   bool Broken;
705   std::unique_ptr<Module> New = testMergedProgram(
706       BD, std::move(Optimized), std::move(Safe), Error, Broken);
707   if (New) {
708     outs() << (Broken ? " nope.\n" : " yup.\n");
709     // Delete the original and set the new program.
710     delete BD.swapProgramIn(New.release());
711   }
712   return Broken;
713 }
714
715
716 /// debugMiscompilation - This method is used when the passes selected are not
717 /// crashing, but the generated output is semantically different from the
718 /// input.
719 ///
720 void BugDriver::debugMiscompilation(std::string *Error) {
721   // Make sure something was miscompiled...
722   if (!BugpointIsInterrupted)
723     if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun, *Error)) {
724       if (Error->empty())
725         errs() << "*** Optimized program matches reference output!  No problem"
726                << " detected...\nbugpoint can't help you with your problem!\n";
727       return;
728     }
729
730   outs() << "\n*** Found miscompiling pass"
731          << (getPassesToRun().size() == 1 ? "" : "es") << ": "
732          << getPassesString(getPassesToRun()) << '\n';
733   EmitProgressBitcode(Program, "passinput");
734
735   std::vector<Function *> MiscompiledFunctions =
736     DebugAMiscompilation(*this, TestOptimizer, *Error);
737   if (!Error->empty())
738     return;
739
740   // Output a bunch of bitcode files for the user...
741   outs() << "Outputting reduced bitcode files which expose the problem:\n";
742   ValueToValueMapTy VMap;
743   Module *ToNotOptimize = CloneModule(getProgram(), VMap).release();
744   Module *ToOptimize =
745       SplitFunctionsOutOfModule(ToNotOptimize, MiscompiledFunctions, VMap)
746           .release();
747
748   outs() << "  Non-optimized portion: ";
749   EmitProgressBitcode(ToNotOptimize, "tonotoptimize", true);
750   delete ToNotOptimize;  // Delete hacked module.
751
752   outs() << "  Portion that is input to optimizer: ";
753   EmitProgressBitcode(ToOptimize, "tooptimize");
754   delete ToOptimize;      // Delete hacked module.
755
756   return;
757 }
758
759 /// Get the specified modules ready for code generator testing.
760 ///
761 static void CleanupAndPrepareModules(BugDriver &BD,
762                                      std::unique_ptr<Module> &Test,
763                                      Module *Safe) {
764   // Clean up the modules, removing extra cruft that we don't need anymore...
765   Test = BD.performFinalCleanups(Test.get());
766
767   // If we are executing the JIT, we have several nasty issues to take care of.
768   if (!BD.isExecutingJIT()) return;
769
770   // First, if the main function is in the Safe module, we must add a stub to
771   // the Test module to call into it.  Thus, we create a new function `main'
772   // which just calls the old one.
773   if (Function *oldMain = Safe->getFunction("main"))
774     if (!oldMain->isDeclaration()) {
775       // Rename it
776       oldMain->setName("llvm_bugpoint_old_main");
777       // Create a NEW `main' function with same type in the test module.
778       Function *newMain =
779           Function::Create(oldMain->getFunctionType(),
780                            GlobalValue::ExternalLinkage, "main", Test.get());
781       // Create an `oldmain' prototype in the test module, which will
782       // corresponds to the real main function in the same module.
783       Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
784                                                 GlobalValue::ExternalLinkage,
785                                                 oldMain->getName(), Test.get());
786       // Set up and remember the argument list for the main function.
787       std::vector<Value*> args;
788       for (Function::arg_iterator
789              I = newMain->arg_begin(), E = newMain->arg_end(),
790              OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
791         I->setName(OI->getName());    // Copy argument names from oldMain
792         args.push_back(&*I);
793       }
794
795       // Call the old main function and return its result
796       BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
797       CallInst *call = CallInst::Create(oldMainProto, args, "", BB);
798
799       // If the type of old function wasn't void, return value of call
800       ReturnInst::Create(Safe->getContext(), call, BB);
801     }
802
803   // The second nasty issue we must deal with in the JIT is that the Safe
804   // module cannot directly reference any functions defined in the test
805   // module.  Instead, we use a JIT API call to dynamically resolve the
806   // symbol.
807
808   // Add the resolver to the Safe module.
809   // Prototype: void *getPointerToNamedFunction(const char* Name)
810   Constant *resolverFunc =
811     Safe->getOrInsertFunction("getPointerToNamedFunction",
812                     Type::getInt8PtrTy(Safe->getContext()),
813                     Type::getInt8PtrTy(Safe->getContext()),
814                        (Type *)nullptr);
815
816   // Use the function we just added to get addresses of functions we need.
817   for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
818     if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
819         !F->isIntrinsic() /* ignore intrinsics */) {
820       Function *TestFn = Test->getFunction(F->getName());
821
822       // Don't forward functions which are external in the test module too.
823       if (TestFn && !TestFn->isDeclaration()) {
824         // 1. Add a string constant with its name to the global file
825         Constant *InitArray =
826           ConstantDataArray::getString(F->getContext(), F->getName());
827         GlobalVariable *funcName =
828           new GlobalVariable(*Safe, InitArray->getType(), true /*isConstant*/,
829                              GlobalValue::InternalLinkage, InitArray,
830                              F->getName() + "_name");
831
832         // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
833         // sbyte* so it matches the signature of the resolver function.
834
835         // GetElementPtr *funcName, ulong 0, ulong 0
836         std::vector<Constant*> GEPargs(2,
837                      Constant::getNullValue(Type::getInt32Ty(F->getContext())));
838         Value *GEP = ConstantExpr::getGetElementPtr(InitArray->getType(),
839                                                     funcName, GEPargs);
840         std::vector<Value*> ResolverArgs;
841         ResolverArgs.push_back(GEP);
842
843         // Rewrite uses of F in global initializers, etc. to uses of a wrapper
844         // function that dynamically resolves the calls to F via our JIT API
845         if (!F->use_empty()) {
846           // Create a new global to hold the cached function pointer.
847           Constant *NullPtr = ConstantPointerNull::get(F->getType());
848           GlobalVariable *Cache =
849             new GlobalVariable(*F->getParent(), F->getType(),
850                                false, GlobalValue::InternalLinkage,
851                                NullPtr,F->getName()+".fpcache");
852
853           // Construct a new stub function that will re-route calls to F
854           FunctionType *FuncTy = F->getFunctionType();
855           Function *FuncWrapper = Function::Create(FuncTy,
856                                                    GlobalValue::InternalLinkage,
857                                                    F->getName() + "_wrapper",
858                                                    F->getParent());
859           BasicBlock *EntryBB  = BasicBlock::Create(F->getContext(),
860                                                     "entry", FuncWrapper);
861           BasicBlock *DoCallBB = BasicBlock::Create(F->getContext(),
862                                                     "usecache", FuncWrapper);
863           BasicBlock *LookupBB = BasicBlock::Create(F->getContext(),
864                                                     "lookupfp", FuncWrapper);
865
866           // Check to see if we already looked up the value.
867           Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
868           Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
869                                        NullPtr, "isNull");
870           BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
871
872           // Resolve the call to function F via the JIT API:
873           //
874           // call resolver(GetElementPtr...)
875           CallInst *Resolver =
876             CallInst::Create(resolverFunc, ResolverArgs, "resolver", LookupBB);
877
878           // Cast the result from the resolver to correctly-typed function.
879           CastInst *CastedResolver =
880             new BitCastInst(Resolver,
881                             PointerType::getUnqual(F->getFunctionType()),
882                             "resolverCast", LookupBB);
883
884           // Save the value in our cache.
885           new StoreInst(CastedResolver, Cache, LookupBB);
886           BranchInst::Create(DoCallBB, LookupBB);
887
888           PHINode *FuncPtr = PHINode::Create(NullPtr->getType(), 2,
889                                              "fp", DoCallBB);
890           FuncPtr->addIncoming(CastedResolver, LookupBB);
891           FuncPtr->addIncoming(CachedVal, EntryBB);
892
893           // Save the argument list.
894           std::vector<Value*> Args;
895           for (Argument &A : FuncWrapper->args())
896             Args.push_back(&A);
897
898           // Pass on the arguments to the real function, return its result
899           if (F->getReturnType()->isVoidTy()) {
900             CallInst::Create(FuncPtr, Args, "", DoCallBB);
901             ReturnInst::Create(F->getContext(), DoCallBB);
902           } else {
903             CallInst *Call = CallInst::Create(FuncPtr, Args,
904                                               "retval", DoCallBB);
905             ReturnInst::Create(F->getContext(),Call, DoCallBB);
906           }
907
908           // Use the wrapper function instead of the old function
909           F->replaceAllUsesWith(FuncWrapper);
910         }
911       }
912     }
913   }
914
915   if (verifyModule(*Test) || verifyModule(*Safe)) {
916     errs() << "Bugpoint has a bug, which corrupted a module!!\n";
917     abort();
918   }
919 }
920
921 /// This is the predicate function used to check to see if the "Test" portion of
922 /// the program is miscompiled by the code generator under test.  If so, return
923 /// true.  In any case, both module arguments are deleted.
924 ///
925 static bool TestCodeGenerator(BugDriver &BD, std::unique_ptr<Module> Test,
926                               std::unique_ptr<Module> Safe,
927                               std::string &Error) {
928   CleanupAndPrepareModules(BD, Test, Safe.get());
929
930   SmallString<128> TestModuleBC;
931   int TestModuleFD;
932   std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
933                                                     TestModuleFD, TestModuleBC);
934   if (EC) {
935     errs() << BD.getToolName() << "Error making unique filename: "
936            << EC.message() << "\n";
937     exit(1);
938   }
939   if (BD.writeProgramToFile(TestModuleBC.str(), TestModuleFD, Test.get())) {
940     errs() << "Error writing bitcode to `" << TestModuleBC.str()
941            << "'\nExiting.";
942     exit(1);
943   }
944
945   FileRemover TestModuleBCRemover(TestModuleBC.str(), !SaveTemps);
946
947   // Make the shared library
948   SmallString<128> SafeModuleBC;
949   int SafeModuleFD;
950   EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
951                                     SafeModuleBC);
952   if (EC) {
953     errs() << BD.getToolName() << "Error making unique filename: "
954            << EC.message() << "\n";
955     exit(1);
956   }
957
958   if (BD.writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, Safe.get())) {
959     errs() << "Error writing bitcode to `" << SafeModuleBC
960            << "'\nExiting.";
961     exit(1);
962   }
963
964   FileRemover SafeModuleBCRemover(SafeModuleBC.str(), !SaveTemps);
965
966   std::string SharedObject = BD.compileSharedObject(SafeModuleBC.str(), Error);
967   if (!Error.empty())
968     return false;
969
970   FileRemover SharedObjectRemover(SharedObject, !SaveTemps);
971
972   // Run the code generator on the `Test' code, loading the shared library.
973   // The function returns whether or not the new output differs from reference.
974   bool Result = BD.diffProgram(BD.getProgram(), TestModuleBC.str(),
975                                SharedObject, false, &Error);
976   if (!Error.empty())
977     return false;
978
979   if (Result)
980     errs() << ": still failing!\n";
981   else
982     errs() << ": didn't fail.\n";
983
984   return Result;
985 }
986
987
988 /// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
989 ///
990 bool BugDriver::debugCodeGenerator(std::string *Error) {
991   if ((void*)SafeInterpreter == (void*)Interpreter) {
992     std::string Result = executeProgramSafely(Program, "bugpoint.safe.out",
993                                               Error);
994     if (Error->empty()) {
995       outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
996              << "the reference diff.  This may be due to a\n    front-end "
997              << "bug or a bug in the original program, but this can also "
998              << "happen if bugpoint isn't running the program with the "
999              << "right flags or input.\n    I left the result of executing "
1000              << "the program with the \"safe\" backend in this file for "
1001              << "you: '"
1002              << Result << "'.\n";
1003     }
1004     return true;
1005   }
1006
1007   DisambiguateGlobalSymbols(Program);
1008
1009   std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator,
1010                                                       *Error);
1011   if (!Error->empty())
1012     return true;
1013
1014   // Split the module into the two halves of the program we want.
1015   ValueToValueMapTy VMap;
1016   std::unique_ptr<Module> ToNotCodeGen = CloneModule(getProgram(), VMap);
1017   std::unique_ptr<Module> ToCodeGen =
1018       SplitFunctionsOutOfModule(ToNotCodeGen.get(), Funcs, VMap);
1019
1020   // Condition the modules
1021   CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen.get());
1022
1023   SmallString<128> TestModuleBC;
1024   int TestModuleFD;
1025   std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
1026                                                     TestModuleFD, TestModuleBC);
1027   if (EC) {
1028     errs() << getToolName() << "Error making unique filename: "
1029            << EC.message() << "\n";
1030     exit(1);
1031   }
1032
1033   if (writeProgramToFile(TestModuleBC.str(), TestModuleFD, ToCodeGen.get())) {
1034     errs() << "Error writing bitcode to `" << TestModuleBC
1035            << "'\nExiting.";
1036     exit(1);
1037   }
1038
1039   // Make the shared library
1040   SmallString<128> SafeModuleBC;
1041   int SafeModuleFD;
1042   EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
1043                                     SafeModuleBC);
1044   if (EC) {
1045     errs() << getToolName() << "Error making unique filename: "
1046            << EC.message() << "\n";
1047     exit(1);
1048   }
1049
1050   if (writeProgramToFile(SafeModuleBC.str(), SafeModuleFD,
1051                          ToNotCodeGen.get())) {
1052     errs() << "Error writing bitcode to `" << SafeModuleBC
1053            << "'\nExiting.";
1054     exit(1);
1055   }
1056   std::string SharedObject = compileSharedObject(SafeModuleBC.str(), *Error);
1057   if (!Error->empty())
1058     return true;
1059
1060   outs() << "You can reproduce the problem with the command line: \n";
1061   if (isExecutingJIT()) {
1062     outs() << "  lli -load " << SharedObject << " " << TestModuleBC;
1063   } else {
1064     outs() << "  llc " << TestModuleBC << " -o " << TestModuleBC
1065            << ".s\n";
1066     outs() << "  cc " << SharedObject << " " << TestModuleBC.str()
1067               << ".s -o " << TestModuleBC << ".exe";
1068 #if defined (HAVE_LINK_R)
1069     outs() << " -Wl,-R.";
1070 #endif
1071     outs() << "\n";
1072     outs() << "  " << TestModuleBC << ".exe";
1073   }
1074   for (unsigned i = 0, e = InputArgv.size(); i != e; ++i)
1075     outs() << " " << InputArgv[i];
1076   outs() << '\n';
1077   outs() << "The shared object was created with:\n  llc -march=c "
1078          << SafeModuleBC.str() << " -o temporary.c\n"
1079          << "  cc -xc temporary.c -O2 -o " << SharedObject;
1080   if (TargetTriple.getArch() == Triple::sparc)
1081     outs() << " -G";              // Compile a shared library, `-G' for Sparc
1082   else
1083     outs() << " -fPIC -shared";   // `-shared' for Linux/X86, maybe others
1084
1085   outs() << " -fno-strict-aliasing\n";
1086
1087   return false;
1088 }