land David Blaikie's patch to de-constify Type, with a few tweaks.
[oota-llvm.git] / lib / VMCore / Constants.cpp
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Constants.h"
15 #include "LLVMContextImpl.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42
43 bool Constant::isNegativeZeroValue() const {
44   // Floating point values have an explicit -0.0 value.
45   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
46     return CFP->isZero() && CFP->isNegative();
47   
48   // Otherwise, just use +0.0.
49   return isNullValue();
50 }
51
52 bool Constant::isNullValue() const {
53   // 0 is null.
54   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
55     return CI->isZero();
56   
57   // +0.0 is null.
58   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
59     return CFP->isZero() && !CFP->isNegative();
60
61   // constant zero is zero for aggregates and cpnull is null for pointers.
62   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
63 }
64
65 // Constructor to create a '0' constant of arbitrary type...
66 Constant *Constant::getNullValue(Type *Ty) {
67   switch (Ty->getTypeID()) {
68   case Type::IntegerTyID:
69     return ConstantInt::get(Ty, 0);
70   case Type::FloatTyID:
71     return ConstantFP::get(Ty->getContext(),
72                            APFloat::getZero(APFloat::IEEEsingle));
73   case Type::DoubleTyID:
74     return ConstantFP::get(Ty->getContext(),
75                            APFloat::getZero(APFloat::IEEEdouble));
76   case Type::X86_FP80TyID:
77     return ConstantFP::get(Ty->getContext(),
78                            APFloat::getZero(APFloat::x87DoubleExtended));
79   case Type::FP128TyID:
80     return ConstantFP::get(Ty->getContext(),
81                            APFloat::getZero(APFloat::IEEEquad));
82   case Type::PPC_FP128TyID:
83     return ConstantFP::get(Ty->getContext(),
84                            APFloat(APInt::getNullValue(128)));
85   case Type::PointerTyID:
86     return ConstantPointerNull::get(cast<PointerType>(Ty));
87   case Type::StructTyID:
88   case Type::ArrayTyID:
89   case Type::VectorTyID:
90     return ConstantAggregateZero::get(Ty);
91   default:
92     // Function, Label, or Opaque type?
93     assert(!"Cannot create a null constant of that type!");
94     return 0;
95   }
96 }
97
98 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
99   Type *ScalarTy = Ty->getScalarType();
100
101   // Create the base integer constant.
102   Constant *C = ConstantInt::get(Ty->getContext(), V);
103
104   // Convert an integer to a pointer, if necessary.
105   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
106     C = ConstantExpr::getIntToPtr(C, PTy);
107
108   // Broadcast a scalar to a vector, if necessary.
109   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
110     C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
111
112   return C;
113 }
114
115 Constant *Constant::getAllOnesValue(Type *Ty) {
116   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
117     return ConstantInt::get(Ty->getContext(),
118                             APInt::getAllOnesValue(ITy->getBitWidth()));
119
120   if (Ty->isFloatingPointTy()) {
121     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
122                                           !Ty->isPPC_FP128Ty());
123     return ConstantFP::get(Ty->getContext(), FL);
124   }
125
126   SmallVector<Constant*, 16> Elts;
127   VectorType *VTy = cast<VectorType>(Ty);
128   Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
129   assert(Elts[0] && "Not a vector integer type!");
130   return cast<ConstantVector>(ConstantVector::get(Elts));
131 }
132
133 void Constant::destroyConstantImpl() {
134   // When a Constant is destroyed, there may be lingering
135   // references to the constant by other constants in the constant pool.  These
136   // constants are implicitly dependent on the module that is being deleted,
137   // but they don't know that.  Because we only find out when the CPV is
138   // deleted, we must now notify all of our users (that should only be
139   // Constants) that they are, in fact, invalid now and should be deleted.
140   //
141   while (!use_empty()) {
142     Value *V = use_back();
143 #ifndef NDEBUG      // Only in -g mode...
144     if (!isa<Constant>(V)) {
145       dbgs() << "While deleting: " << *this
146              << "\n\nUse still stuck around after Def is destroyed: "
147              << *V << "\n\n";
148     }
149 #endif
150     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
151     Constant *CV = cast<Constant>(V);
152     CV->destroyConstant();
153
154     // The constant should remove itself from our use list...
155     assert((use_empty() || use_back() != V) && "Constant not removed!");
156   }
157
158   // Value has no outstanding references it is safe to delete it now...
159   delete this;
160 }
161
162 /// canTrap - Return true if evaluation of this constant could trap.  This is
163 /// true for things like constant expressions that could divide by zero.
164 bool Constant::canTrap() const {
165   assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
166   // The only thing that could possibly trap are constant exprs.
167   const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
168   if (!CE) return false;
169   
170   // ConstantExpr traps if any operands can trap. 
171   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
172     if (CE->getOperand(i)->canTrap()) 
173       return true;
174
175   // Otherwise, only specific operations can trap.
176   switch (CE->getOpcode()) {
177   default:
178     return false;
179   case Instruction::UDiv:
180   case Instruction::SDiv:
181   case Instruction::FDiv:
182   case Instruction::URem:
183   case Instruction::SRem:
184   case Instruction::FRem:
185     // Div and rem can trap if the RHS is not known to be non-zero.
186     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
187       return true;
188     return false;
189   }
190 }
191
192 /// isConstantUsed - Return true if the constant has users other than constant
193 /// exprs and other dangling things.
194 bool Constant::isConstantUsed() const {
195   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
196     const Constant *UC = dyn_cast<Constant>(*UI);
197     if (UC == 0 || isa<GlobalValue>(UC))
198       return true;
199     
200     if (UC->isConstantUsed())
201       return true;
202   }
203   return false;
204 }
205
206
207
208 /// getRelocationInfo - This method classifies the entry according to
209 /// whether or not it may generate a relocation entry.  This must be
210 /// conservative, so if it might codegen to a relocatable entry, it should say
211 /// so.  The return values are:
212 /// 
213 ///  NoRelocation: This constant pool entry is guaranteed to never have a
214 ///     relocation applied to it (because it holds a simple constant like
215 ///     '4').
216 ///  LocalRelocation: This entry has relocations, but the entries are
217 ///     guaranteed to be resolvable by the static linker, so the dynamic
218 ///     linker will never see them.
219 ///  GlobalRelocations: This entry may have arbitrary relocations.
220 ///
221 /// FIXME: This really should not be in VMCore.
222 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
223   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
224     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
225       return LocalRelocation;  // Local to this file/library.
226     return GlobalRelocations;    // Global reference.
227   }
228   
229   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
230     return BA->getFunction()->getRelocationInfo();
231   
232   // While raw uses of blockaddress need to be relocated, differences between
233   // two of them don't when they are for labels in the same function.  This is a
234   // common idiom when creating a table for the indirect goto extension, so we
235   // handle it efficiently here.
236   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
237     if (CE->getOpcode() == Instruction::Sub) {
238       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
239       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
240       if (LHS && RHS &&
241           LHS->getOpcode() == Instruction::PtrToInt &&
242           RHS->getOpcode() == Instruction::PtrToInt &&
243           isa<BlockAddress>(LHS->getOperand(0)) &&
244           isa<BlockAddress>(RHS->getOperand(0)) &&
245           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
246             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
247         return NoRelocation;
248     }
249   
250   PossibleRelocationsTy Result = NoRelocation;
251   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
252     Result = std::max(Result,
253                       cast<Constant>(getOperand(i))->getRelocationInfo());
254   
255   return Result;
256 }
257
258
259 /// getVectorElements - This method, which is only valid on constant of vector
260 /// type, returns the elements of the vector in the specified smallvector.
261 /// This handles breaking down a vector undef into undef elements, etc.  For
262 /// constant exprs and other cases we can't handle, we return an empty vector.
263 void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
264   assert(getType()->isVectorTy() && "Not a vector constant!");
265   
266   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
267     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
268       Elts.push_back(CV->getOperand(i));
269     return;
270   }
271   
272   VectorType *VT = cast<VectorType>(getType());
273   if (isa<ConstantAggregateZero>(this)) {
274     Elts.assign(VT->getNumElements(), 
275                 Constant::getNullValue(VT->getElementType()));
276     return;
277   }
278   
279   if (isa<UndefValue>(this)) {
280     Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
281     return;
282   }
283   
284   // Unknown type, must be constant expr etc.
285 }
286
287
288 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
289 /// it.  This involves recursively eliminating any dead users of the
290 /// constantexpr.
291 static bool removeDeadUsersOfConstant(const Constant *C) {
292   if (isa<GlobalValue>(C)) return false; // Cannot remove this
293   
294   while (!C->use_empty()) {
295     const Constant *User = dyn_cast<Constant>(C->use_back());
296     if (!User) return false; // Non-constant usage;
297     if (!removeDeadUsersOfConstant(User))
298       return false; // Constant wasn't dead
299   }
300   
301   const_cast<Constant*>(C)->destroyConstant();
302   return true;
303 }
304
305
306 /// removeDeadConstantUsers - If there are any dead constant users dangling
307 /// off of this constant, remove them.  This method is useful for clients
308 /// that want to check to see if a global is unused, but don't want to deal
309 /// with potentially dead constants hanging off of the globals.
310 void Constant::removeDeadConstantUsers() const {
311   Value::const_use_iterator I = use_begin(), E = use_end();
312   Value::const_use_iterator LastNonDeadUser = E;
313   while (I != E) {
314     const Constant *User = dyn_cast<Constant>(*I);
315     if (User == 0) {
316       LastNonDeadUser = I;
317       ++I;
318       continue;
319     }
320     
321     if (!removeDeadUsersOfConstant(User)) {
322       // If the constant wasn't dead, remember that this was the last live use
323       // and move on to the next constant.
324       LastNonDeadUser = I;
325       ++I;
326       continue;
327     }
328     
329     // If the constant was dead, then the iterator is invalidated.
330     if (LastNonDeadUser == E) {
331       I = use_begin();
332       if (I == E) break;
333     } else {
334       I = LastNonDeadUser;
335       ++I;
336     }
337   }
338 }
339
340
341
342 //===----------------------------------------------------------------------===//
343 //                                ConstantInt
344 //===----------------------------------------------------------------------===//
345
346 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
347   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
348   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
349 }
350
351 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
352   LLVMContextImpl *pImpl = Context.pImpl;
353   if (!pImpl->TheTrueVal)
354     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
355   return pImpl->TheTrueVal;
356 }
357
358 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
359   LLVMContextImpl *pImpl = Context.pImpl;
360   if (!pImpl->TheFalseVal)
361     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
362   return pImpl->TheFalseVal;
363 }
364
365 Constant *ConstantInt::getTrue(Type *Ty) {
366   VectorType *VTy = dyn_cast<VectorType>(Ty);
367   if (!VTy) {
368     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
369     return ConstantInt::getTrue(Ty->getContext());
370   }
371   assert(VTy->getElementType()->isIntegerTy(1) &&
372          "True must be vector of i1 or i1.");
373   SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
374                                    ConstantInt::getTrue(Ty->getContext()));
375   return ConstantVector::get(Splat);
376 }
377
378 Constant *ConstantInt::getFalse(Type *Ty) {
379   VectorType *VTy = dyn_cast<VectorType>(Ty);
380   if (!VTy) {
381     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
382     return ConstantInt::getFalse(Ty->getContext());
383   }
384   assert(VTy->getElementType()->isIntegerTy(1) &&
385          "False must be vector of i1 or i1.");
386   SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
387                                    ConstantInt::getFalse(Ty->getContext()));
388   return ConstantVector::get(Splat);
389 }
390
391
392 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
393 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
394 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
395 // compare APInt's of different widths, which would violate an APInt class
396 // invariant which generates an assertion.
397 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
398   // Get the corresponding integer type for the bit width of the value.
399   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
400   // get an existing value or the insertion position
401   DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
402   ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; 
403   if (!Slot) Slot = new ConstantInt(ITy, V);
404   return Slot;
405 }
406
407 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
408   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
409
410   // For vectors, broadcast the value.
411   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
412     return ConstantVector::get(SmallVector<Constant*,
413                                            16>(VTy->getNumElements(), C));
414
415   return C;
416 }
417
418 ConstantInt* ConstantInt::get(IntegerType* Ty, uint64_t V, 
419                               bool isSigned) {
420   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
421 }
422
423 ConstantInt* ConstantInt::getSigned(IntegerType* Ty, int64_t V) {
424   return get(Ty, V, true);
425 }
426
427 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
428   return get(Ty, V, true);
429 }
430
431 Constant *ConstantInt::get(Type* Ty, const APInt& V) {
432   ConstantInt *C = get(Ty->getContext(), V);
433   assert(C->getType() == Ty->getScalarType() &&
434          "ConstantInt type doesn't match the type implied by its value!");
435
436   // For vectors, broadcast the value.
437   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
438     return ConstantVector::get(
439       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
440
441   return C;
442 }
443
444 ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str,
445                               uint8_t radix) {
446   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
447 }
448
449 //===----------------------------------------------------------------------===//
450 //                                ConstantFP
451 //===----------------------------------------------------------------------===//
452
453 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
454   if (Ty->isFloatTy())
455     return &APFloat::IEEEsingle;
456   if (Ty->isDoubleTy())
457     return &APFloat::IEEEdouble;
458   if (Ty->isX86_FP80Ty())
459     return &APFloat::x87DoubleExtended;
460   else if (Ty->isFP128Ty())
461     return &APFloat::IEEEquad;
462   
463   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
464   return &APFloat::PPCDoubleDouble;
465 }
466
467 /// get() - This returns a constant fp for the specified value in the
468 /// specified type.  This should only be used for simple constant values like
469 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
470 Constant *ConstantFP::get(Type* Ty, double V) {
471   LLVMContext &Context = Ty->getContext();
472   
473   APFloat FV(V);
474   bool ignored;
475   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
476              APFloat::rmNearestTiesToEven, &ignored);
477   Constant *C = get(Context, FV);
478
479   // For vectors, broadcast the value.
480   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
481     return ConstantVector::get(
482       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
483
484   return C;
485 }
486
487
488 Constant *ConstantFP::get(Type* Ty, StringRef Str) {
489   LLVMContext &Context = Ty->getContext();
490
491   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
492   Constant *C = get(Context, FV);
493
494   // For vectors, broadcast the value.
495   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
496     return ConstantVector::get(
497       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
498
499   return C; 
500 }
501
502
503 ConstantFP* ConstantFP::getNegativeZero(Type* Ty) {
504   LLVMContext &Context = Ty->getContext();
505   APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
506   apf.changeSign();
507   return get(Context, apf);
508 }
509
510
511 Constant *ConstantFP::getZeroValueForNegation(Type* Ty) {
512   if (VectorType *PTy = dyn_cast<VectorType>(Ty))
513     if (PTy->getElementType()->isFloatingPointTy()) {
514       SmallVector<Constant*, 16> zeros(PTy->getNumElements(),
515                            getNegativeZero(PTy->getElementType()));
516       return ConstantVector::get(zeros);
517     }
518
519   if (Ty->isFloatingPointTy()) 
520     return getNegativeZero(Ty);
521
522   return Constant::getNullValue(Ty);
523 }
524
525
526 // ConstantFP accessors.
527 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
528   DenseMapAPFloatKeyInfo::KeyTy Key(V);
529   
530   LLVMContextImpl* pImpl = Context.pImpl;
531   
532   ConstantFP *&Slot = pImpl->FPConstants[Key];
533     
534   if (!Slot) {
535     Type *Ty;
536     if (&V.getSemantics() == &APFloat::IEEEsingle)
537       Ty = Type::getFloatTy(Context);
538     else if (&V.getSemantics() == &APFloat::IEEEdouble)
539       Ty = Type::getDoubleTy(Context);
540     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
541       Ty = Type::getX86_FP80Ty(Context);
542     else if (&V.getSemantics() == &APFloat::IEEEquad)
543       Ty = Type::getFP128Ty(Context);
544     else {
545       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
546              "Unknown FP format");
547       Ty = Type::getPPC_FP128Ty(Context);
548     }
549     Slot = new ConstantFP(Ty, V);
550   }
551   
552   return Slot;
553 }
554
555 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
556   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
557   return ConstantFP::get(Ty->getContext(),
558                          APFloat::getInf(Semantics, Negative));
559 }
560
561 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
562   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
563   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
564          "FP type Mismatch");
565 }
566
567 bool ConstantFP::isExactlyValue(const APFloat &V) const {
568   return Val.bitwiseIsEqual(V);
569 }
570
571 //===----------------------------------------------------------------------===//
572 //                            ConstantXXX Classes
573 //===----------------------------------------------------------------------===//
574
575
576 ConstantArray::ConstantArray(ArrayType *T,
577                              const std::vector<Constant*> &V)
578   : Constant(T, ConstantArrayVal,
579              OperandTraits<ConstantArray>::op_end(this) - V.size(),
580              V.size()) {
581   assert(V.size() == T->getNumElements() &&
582          "Invalid initializer vector for constant array");
583   Use *OL = OperandList;
584   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
585        I != E; ++I, ++OL) {
586     Constant *C = *I;
587     assert(C->getType() == T->getElementType() &&
588            "Initializer for array element doesn't match array element type!");
589     *OL = C;
590   }
591 }
592
593 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
594   for (unsigned i = 0, e = V.size(); i != e; ++i) {
595     assert(V[i]->getType() == Ty->getElementType() &&
596            "Wrong type in array element initializer");
597   }
598   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
599   // If this is an all-zero array, return a ConstantAggregateZero object
600   if (!V.empty()) {
601     Constant *C = V[0];
602     if (!C->isNullValue())
603       return pImpl->ArrayConstants.getOrCreate(Ty, V);
604     
605     for (unsigned i = 1, e = V.size(); i != e; ++i)
606       if (V[i] != C)
607         return pImpl->ArrayConstants.getOrCreate(Ty, V);
608   }
609   
610   return ConstantAggregateZero::get(Ty);
611 }
612
613 /// ConstantArray::get(const string&) - Return an array that is initialized to
614 /// contain the specified string.  If length is zero then a null terminator is 
615 /// added to the specified string so that it may be used in a natural way. 
616 /// Otherwise, the length parameter specifies how much of the string to use 
617 /// and it won't be null terminated.
618 ///
619 Constant *ConstantArray::get(LLVMContext &Context, StringRef Str,
620                              bool AddNull) {
621   std::vector<Constant*> ElementVals;
622   ElementVals.reserve(Str.size() + size_t(AddNull));
623   for (unsigned i = 0; i < Str.size(); ++i)
624     ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
625
626   // Add a null terminator to the string...
627   if (AddNull) {
628     ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
629   }
630
631   ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
632   return get(ATy, ElementVals);
633 }
634
635 /// getTypeForElements - Return an anonymous struct type to use for a constant
636 /// with the specified set of elements.  The list must not be empty.
637 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
638                                                ArrayRef<Constant*> V,
639                                                bool Packed) {
640   SmallVector<Type*, 16> EltTypes;
641   for (unsigned i = 0, e = V.size(); i != e; ++i)
642     EltTypes.push_back(V[i]->getType());
643   
644   return StructType::get(Context, EltTypes, Packed);
645 }
646
647
648 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
649                                                bool Packed) {
650   assert(!V.empty() &&
651          "ConstantStruct::getTypeForElements cannot be called on empty list");
652   return getTypeForElements(V[0]->getContext(), V, Packed);
653 }
654
655
656 ConstantStruct::ConstantStruct(StructType *T,
657                                const std::vector<Constant*> &V)
658   : Constant(T, ConstantStructVal,
659              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
660              V.size()) {
661   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
662          "Invalid initializer vector for constant structure");
663   Use *OL = OperandList;
664   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
665        I != E; ++I, ++OL) {
666     Constant *C = *I;
667     assert((T->isOpaque() || C->getType() == T->getElementType(I-V.begin())) &&
668            "Initializer for struct element doesn't match struct element type!");
669     *OL = C;
670   }
671 }
672
673 // ConstantStruct accessors.
674 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
675   // Create a ConstantAggregateZero value if all elements are zeros.
676   for (unsigned i = 0, e = V.size(); i != e; ++i)
677     if (!V[i]->isNullValue())
678       return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
679
680   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
681          "Incorrect # elements specified to ConstantStruct::get");
682   return ConstantAggregateZero::get(ST);
683 }
684
685 Constant* ConstantStruct::get(StructType *T, ...) {
686   va_list ap;
687   SmallVector<Constant*, 8> Values;
688   va_start(ap, T);
689   while (Constant *Val = va_arg(ap, llvm::Constant*))
690     Values.push_back(Val);
691   va_end(ap);
692   return get(T, Values);
693 }
694
695 ConstantVector::ConstantVector(VectorType *T,
696                                const std::vector<Constant*> &V)
697   : Constant(T, ConstantVectorVal,
698              OperandTraits<ConstantVector>::op_end(this) - V.size(),
699              V.size()) {
700   Use *OL = OperandList;
701   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
702        I != E; ++I, ++OL) {
703     Constant *C = *I;
704     assert(C->getType() == T->getElementType() &&
705            "Initializer for vector element doesn't match vector element type!");
706     *OL = C;
707   }
708 }
709
710 // ConstantVector accessors.
711 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
712   assert(!V.empty() && "Vectors can't be empty");
713   VectorType *T = VectorType::get(V.front()->getType(), V.size());
714   LLVMContextImpl *pImpl = T->getContext().pImpl;
715
716   // If this is an all-undef or all-zero vector, return a
717   // ConstantAggregateZero or UndefValue.
718   Constant *C = V[0];
719   bool isZero = C->isNullValue();
720   bool isUndef = isa<UndefValue>(C);
721
722   if (isZero || isUndef) {
723     for (unsigned i = 1, e = V.size(); i != e; ++i)
724       if (V[i] != C) {
725         isZero = isUndef = false;
726         break;
727       }
728   }
729   
730   if (isZero)
731     return ConstantAggregateZero::get(T);
732   if (isUndef)
733     return UndefValue::get(T);
734     
735   return pImpl->VectorConstants.getOrCreate(T, V);
736 }
737
738 // Utility function for determining if a ConstantExpr is a CastOp or not. This
739 // can't be inline because we don't want to #include Instruction.h into
740 // Constant.h
741 bool ConstantExpr::isCast() const {
742   return Instruction::isCast(getOpcode());
743 }
744
745 bool ConstantExpr::isCompare() const {
746   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
747 }
748
749 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
750   if (getOpcode() != Instruction::GetElementPtr) return false;
751
752   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
753   User::const_op_iterator OI = llvm::next(this->op_begin());
754
755   // Skip the first index, as it has no static limit.
756   ++GEPI;
757   ++OI;
758
759   // The remaining indices must be compile-time known integers within the
760   // bounds of the corresponding notional static array types.
761   for (; GEPI != E; ++GEPI, ++OI) {
762     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
763     if (!CI) return false;
764     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
765       if (CI->getValue().getActiveBits() > 64 ||
766           CI->getZExtValue() >= ATy->getNumElements())
767         return false;
768   }
769
770   // All the indices checked out.
771   return true;
772 }
773
774 bool ConstantExpr::hasIndices() const {
775   return getOpcode() == Instruction::ExtractValue ||
776          getOpcode() == Instruction::InsertValue;
777 }
778
779 ArrayRef<unsigned> ConstantExpr::getIndices() const {
780   if (const ExtractValueConstantExpr *EVCE =
781         dyn_cast<ExtractValueConstantExpr>(this))
782     return EVCE->Indices;
783
784   return cast<InsertValueConstantExpr>(this)->Indices;
785 }
786
787 unsigned ConstantExpr::getPredicate() const {
788   assert(isCompare());
789   return ((const CompareConstantExpr*)this)->predicate;
790 }
791
792 /// getWithOperandReplaced - Return a constant expression identical to this
793 /// one, but with the specified operand set to the specified value.
794 Constant *
795 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
796   assert(OpNo < getNumOperands() && "Operand num is out of range!");
797   assert(Op->getType() == getOperand(OpNo)->getType() &&
798          "Replacing operand with value of different type!");
799   if (getOperand(OpNo) == Op)
800     return const_cast<ConstantExpr*>(this);
801   
802   Constant *Op0, *Op1, *Op2;
803   switch (getOpcode()) {
804   case Instruction::Trunc:
805   case Instruction::ZExt:
806   case Instruction::SExt:
807   case Instruction::FPTrunc:
808   case Instruction::FPExt:
809   case Instruction::UIToFP:
810   case Instruction::SIToFP:
811   case Instruction::FPToUI:
812   case Instruction::FPToSI:
813   case Instruction::PtrToInt:
814   case Instruction::IntToPtr:
815   case Instruction::BitCast:
816     return ConstantExpr::getCast(getOpcode(), Op, getType());
817   case Instruction::Select:
818     Op0 = (OpNo == 0) ? Op : getOperand(0);
819     Op1 = (OpNo == 1) ? Op : getOperand(1);
820     Op2 = (OpNo == 2) ? Op : getOperand(2);
821     return ConstantExpr::getSelect(Op0, Op1, Op2);
822   case Instruction::InsertElement:
823     Op0 = (OpNo == 0) ? Op : getOperand(0);
824     Op1 = (OpNo == 1) ? Op : getOperand(1);
825     Op2 = (OpNo == 2) ? Op : getOperand(2);
826     return ConstantExpr::getInsertElement(Op0, Op1, Op2);
827   case Instruction::ExtractElement:
828     Op0 = (OpNo == 0) ? Op : getOperand(0);
829     Op1 = (OpNo == 1) ? Op : getOperand(1);
830     return ConstantExpr::getExtractElement(Op0, Op1);
831   case Instruction::ShuffleVector:
832     Op0 = (OpNo == 0) ? Op : getOperand(0);
833     Op1 = (OpNo == 1) ? Op : getOperand(1);
834     Op2 = (OpNo == 2) ? Op : getOperand(2);
835     return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
836   case Instruction::GetElementPtr: {
837     SmallVector<Constant*, 8> Ops;
838     Ops.resize(getNumOperands()-1);
839     for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
840       Ops[i-1] = getOperand(i);
841     if (OpNo == 0)
842       return cast<GEPOperator>(this)->isInBounds() ?
843         ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
844         ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
845     Ops[OpNo-1] = Op;
846     return cast<GEPOperator>(this)->isInBounds() ?
847       ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()):
848       ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
849   }
850   default:
851     assert(getNumOperands() == 2 && "Must be binary operator?");
852     Op0 = (OpNo == 0) ? Op : getOperand(0);
853     Op1 = (OpNo == 1) ? Op : getOperand(1);
854     return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
855   }
856 }
857
858 /// getWithOperands - This returns the current constant expression with the
859 /// operands replaced with the specified values.  The specified array must
860 /// have the same number of operands as our current one.
861 Constant *ConstantExpr::
862 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
863   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
864   bool AnyChange = Ty != getType();
865   for (unsigned i = 0; i != Ops.size(); ++i)
866     AnyChange |= Ops[i] != getOperand(i);
867   
868   if (!AnyChange)  // No operands changed, return self.
869     return const_cast<ConstantExpr*>(this);
870
871   switch (getOpcode()) {
872   case Instruction::Trunc:
873   case Instruction::ZExt:
874   case Instruction::SExt:
875   case Instruction::FPTrunc:
876   case Instruction::FPExt:
877   case Instruction::UIToFP:
878   case Instruction::SIToFP:
879   case Instruction::FPToUI:
880   case Instruction::FPToSI:
881   case Instruction::PtrToInt:
882   case Instruction::IntToPtr:
883   case Instruction::BitCast:
884     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
885   case Instruction::Select:
886     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
887   case Instruction::InsertElement:
888     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
889   case Instruction::ExtractElement:
890     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
891   case Instruction::ShuffleVector:
892     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
893   case Instruction::GetElementPtr:
894     return cast<GEPOperator>(this)->isInBounds() ?
895       ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], Ops.size()-1) :
896       ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1);
897   case Instruction::ICmp:
898   case Instruction::FCmp:
899     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
900   default:
901     assert(getNumOperands() == 2 && "Must be binary operator?");
902     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
903   }
904 }
905
906
907 //===----------------------------------------------------------------------===//
908 //                      isValueValidForType implementations
909
910 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
911   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
912   if (Ty == Type::getInt1Ty(Ty->getContext()))
913     return Val == 0 || Val == 1;
914   if (NumBits >= 64)
915     return true; // always true, has to fit in largest type
916   uint64_t Max = (1ll << NumBits) - 1;
917   return Val <= Max;
918 }
919
920 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
921   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
922   if (Ty == Type::getInt1Ty(Ty->getContext()))
923     return Val == 0 || Val == 1 || Val == -1;
924   if (NumBits >= 64)
925     return true; // always true, has to fit in largest type
926   int64_t Min = -(1ll << (NumBits-1));
927   int64_t Max = (1ll << (NumBits-1)) - 1;
928   return (Val >= Min && Val <= Max);
929 }
930
931 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
932   // convert modifies in place, so make a copy.
933   APFloat Val2 = APFloat(Val);
934   bool losesInfo;
935   switch (Ty->getTypeID()) {
936   default:
937     return false;         // These can't be represented as floating point!
938
939   // FIXME rounding mode needs to be more flexible
940   case Type::FloatTyID: {
941     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
942       return true;
943     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
944     return !losesInfo;
945   }
946   case Type::DoubleTyID: {
947     if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
948         &Val2.getSemantics() == &APFloat::IEEEdouble)
949       return true;
950     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
951     return !losesInfo;
952   }
953   case Type::X86_FP80TyID:
954     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
955            &Val2.getSemantics() == &APFloat::IEEEdouble ||
956            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
957   case Type::FP128TyID:
958     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
959            &Val2.getSemantics() == &APFloat::IEEEdouble ||
960            &Val2.getSemantics() == &APFloat::IEEEquad;
961   case Type::PPC_FP128TyID:
962     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
963            &Val2.getSemantics() == &APFloat::IEEEdouble ||
964            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
965   }
966 }
967
968 //===----------------------------------------------------------------------===//
969 //                      Factory Function Implementation
970
971 ConstantAggregateZero* ConstantAggregateZero::get(Type* Ty) {
972   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
973          "Cannot create an aggregate zero of non-aggregate type!");
974   
975   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
976   return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
977 }
978
979 /// destroyConstant - Remove the constant from the constant table...
980 ///
981 void ConstantAggregateZero::destroyConstant() {
982   getType()->getContext().pImpl->AggZeroConstants.remove(this);
983   destroyConstantImpl();
984 }
985
986 /// destroyConstant - Remove the constant from the constant table...
987 ///
988 void ConstantArray::destroyConstant() {
989   getType()->getContext().pImpl->ArrayConstants.remove(this);
990   destroyConstantImpl();
991 }
992
993 /// isString - This method returns true if the array is an array of i8, and 
994 /// if the elements of the array are all ConstantInt's.
995 bool ConstantArray::isString() const {
996   // Check the element type for i8...
997   if (!getType()->getElementType()->isIntegerTy(8))
998     return false;
999   // Check the elements to make sure they are all integers, not constant
1000   // expressions.
1001   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1002     if (!isa<ConstantInt>(getOperand(i)))
1003       return false;
1004   return true;
1005 }
1006
1007 /// isCString - This method returns true if the array is a string (see
1008 /// isString) and it ends in a null byte \\0 and does not contains any other
1009 /// null bytes except its terminator.
1010 bool ConstantArray::isCString() const {
1011   // Check the element type for i8...
1012   if (!getType()->getElementType()->isIntegerTy(8))
1013     return false;
1014
1015   // Last element must be a null.
1016   if (!getOperand(getNumOperands()-1)->isNullValue())
1017     return false;
1018   // Other elements must be non-null integers.
1019   for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
1020     if (!isa<ConstantInt>(getOperand(i)))
1021       return false;
1022     if (getOperand(i)->isNullValue())
1023       return false;
1024   }
1025   return true;
1026 }
1027
1028
1029 /// convertToString - Helper function for getAsString() and getAsCString().
1030 static std::string convertToString(const User *U, unsigned len) {
1031   std::string Result;
1032   Result.reserve(len);
1033   for (unsigned i = 0; i != len; ++i)
1034     Result.push_back((char)cast<ConstantInt>(U->getOperand(i))->getZExtValue());
1035   return Result;
1036 }
1037
1038 /// getAsString - If this array is isString(), then this method converts the
1039 /// array to an std::string and returns it.  Otherwise, it asserts out.
1040 ///
1041 std::string ConstantArray::getAsString() const {
1042   assert(isString() && "Not a string!");
1043   return convertToString(this, getNumOperands());
1044 }
1045
1046
1047 /// getAsCString - If this array is isCString(), then this method converts the
1048 /// array (without the trailing null byte) to an std::string and returns it.
1049 /// Otherwise, it asserts out.
1050 ///
1051 std::string ConstantArray::getAsCString() const {
1052   assert(isCString() && "Not a string!");
1053   return convertToString(this, getNumOperands() - 1);
1054 }
1055
1056
1057 //---- ConstantStruct::get() implementation...
1058 //
1059
1060 // destroyConstant - Remove the constant from the constant table...
1061 //
1062 void ConstantStruct::destroyConstant() {
1063   getType()->getContext().pImpl->StructConstants.remove(this);
1064   destroyConstantImpl();
1065 }
1066
1067 // destroyConstant - Remove the constant from the constant table...
1068 //
1069 void ConstantVector::destroyConstant() {
1070   getType()->getContext().pImpl->VectorConstants.remove(this);
1071   destroyConstantImpl();
1072 }
1073
1074 /// This function will return true iff every element in this vector constant
1075 /// is set to all ones.
1076 /// @returns true iff this constant's elements are all set to all ones.
1077 /// @brief Determine if the value is all ones.
1078 bool ConstantVector::isAllOnesValue() const {
1079   // Check out first element.
1080   const Constant *Elt = getOperand(0);
1081   const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1082   if (!CI || !CI->isAllOnesValue()) return false;
1083   // Then make sure all remaining elements point to the same value.
1084   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1085     if (getOperand(I) != Elt)
1086       return false;
1087   
1088   return true;
1089 }
1090
1091 /// getSplatValue - If this is a splat constant, where all of the
1092 /// elements have the same value, return that value. Otherwise return null.
1093 Constant *ConstantVector::getSplatValue() const {
1094   // Check out first element.
1095   Constant *Elt = getOperand(0);
1096   // Then make sure all remaining elements point to the same value.
1097   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1098     if (getOperand(I) != Elt)
1099       return 0;
1100   return Elt;
1101 }
1102
1103 //---- ConstantPointerNull::get() implementation.
1104 //
1105
1106 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1107   return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
1108 }
1109
1110 // destroyConstant - Remove the constant from the constant table...
1111 //
1112 void ConstantPointerNull::destroyConstant() {
1113   getType()->getContext().pImpl->NullPtrConstants.remove(this);
1114   destroyConstantImpl();
1115 }
1116
1117
1118 //---- UndefValue::get() implementation.
1119 //
1120
1121 UndefValue *UndefValue::get(Type *Ty) {
1122   return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
1123 }
1124
1125 // destroyConstant - Remove the constant from the constant table.
1126 //
1127 void UndefValue::destroyConstant() {
1128   getType()->getContext().pImpl->UndefValueConstants.remove(this);
1129   destroyConstantImpl();
1130 }
1131
1132 //---- BlockAddress::get() implementation.
1133 //
1134
1135 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1136   assert(BB->getParent() != 0 && "Block must have a parent");
1137   return get(BB->getParent(), BB);
1138 }
1139
1140 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1141   BlockAddress *&BA =
1142     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1143   if (BA == 0)
1144     BA = new BlockAddress(F, BB);
1145   
1146   assert(BA->getFunction() == F && "Basic block moved between functions");
1147   return BA;
1148 }
1149
1150 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1151 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1152            &Op<0>(), 2) {
1153   setOperand(0, F);
1154   setOperand(1, BB);
1155   BB->AdjustBlockAddressRefCount(1);
1156 }
1157
1158
1159 // destroyConstant - Remove the constant from the constant table.
1160 //
1161 void BlockAddress::destroyConstant() {
1162   getFunction()->getType()->getContext().pImpl
1163     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1164   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1165   destroyConstantImpl();
1166 }
1167
1168 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1169   // This could be replacing either the Basic Block or the Function.  In either
1170   // case, we have to remove the map entry.
1171   Function *NewF = getFunction();
1172   BasicBlock *NewBB = getBasicBlock();
1173   
1174   if (U == &Op<0>())
1175     NewF = cast<Function>(To);
1176   else
1177     NewBB = cast<BasicBlock>(To);
1178   
1179   // See if the 'new' entry already exists, if not, just update this in place
1180   // and return early.
1181   BlockAddress *&NewBA =
1182     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1183   if (NewBA == 0) {
1184     getBasicBlock()->AdjustBlockAddressRefCount(-1);
1185     
1186     // Remove the old entry, this can't cause the map to rehash (just a
1187     // tombstone will get added).
1188     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1189                                                             getBasicBlock()));
1190     NewBA = this;
1191     setOperand(0, NewF);
1192     setOperand(1, NewBB);
1193     getBasicBlock()->AdjustBlockAddressRefCount(1);
1194     return;
1195   }
1196
1197   // Otherwise, I do need to replace this with an existing value.
1198   assert(NewBA != this && "I didn't contain From!");
1199   
1200   // Everyone using this now uses the replacement.
1201   replaceAllUsesWith(NewBA);
1202   
1203   destroyConstant();
1204 }
1205
1206 //---- ConstantExpr::get() implementations.
1207 //
1208
1209 /// This is a utility function to handle folding of casts and lookup of the
1210 /// cast in the ExprConstants map. It is used by the various get* methods below.
1211 static inline Constant *getFoldedCast(
1212   Instruction::CastOps opc, Constant *C, Type *Ty) {
1213   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1214   // Fold a few common cases
1215   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1216     return FC;
1217
1218   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1219
1220   // Look up the constant in the table first to ensure uniqueness
1221   std::vector<Constant*> argVec(1, C);
1222   ExprMapKeyType Key(opc, argVec);
1223   
1224   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1225 }
1226  
1227 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1228   Instruction::CastOps opc = Instruction::CastOps(oc);
1229   assert(Instruction::isCast(opc) && "opcode out of range");
1230   assert(C && Ty && "Null arguments to getCast");
1231   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1232
1233   switch (opc) {
1234   default:
1235     llvm_unreachable("Invalid cast opcode");
1236     break;
1237   case Instruction::Trunc:    return getTrunc(C, Ty);
1238   case Instruction::ZExt:     return getZExt(C, Ty);
1239   case Instruction::SExt:     return getSExt(C, Ty);
1240   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1241   case Instruction::FPExt:    return getFPExtend(C, Ty);
1242   case Instruction::UIToFP:   return getUIToFP(C, Ty);
1243   case Instruction::SIToFP:   return getSIToFP(C, Ty);
1244   case Instruction::FPToUI:   return getFPToUI(C, Ty);
1245   case Instruction::FPToSI:   return getFPToSI(C, Ty);
1246   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1247   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1248   case Instruction::BitCast:  return getBitCast(C, Ty);
1249   }
1250   return 0;
1251
1252
1253 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1254   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1255     return getBitCast(C, Ty);
1256   return getZExt(C, Ty);
1257 }
1258
1259 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1260   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1261     return getBitCast(C, Ty);
1262   return getSExt(C, Ty);
1263 }
1264
1265 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1266   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1267     return getBitCast(C, Ty);
1268   return getTrunc(C, Ty);
1269 }
1270
1271 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1272   assert(S->getType()->isPointerTy() && "Invalid cast");
1273   assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
1274
1275   if (Ty->isIntegerTy())
1276     return getPtrToInt(S, Ty);
1277   return getBitCast(S, Ty);
1278 }
1279
1280 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, 
1281                                        bool isSigned) {
1282   assert(C->getType()->isIntOrIntVectorTy() &&
1283          Ty->isIntOrIntVectorTy() && "Invalid cast");
1284   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1285   unsigned DstBits = Ty->getScalarSizeInBits();
1286   Instruction::CastOps opcode =
1287     (SrcBits == DstBits ? Instruction::BitCast :
1288      (SrcBits > DstBits ? Instruction::Trunc :
1289       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1290   return getCast(opcode, C, Ty);
1291 }
1292
1293 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1294   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1295          "Invalid cast");
1296   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1297   unsigned DstBits = Ty->getScalarSizeInBits();
1298   if (SrcBits == DstBits)
1299     return C; // Avoid a useless cast
1300   Instruction::CastOps opcode =
1301     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1302   return getCast(opcode, C, Ty);
1303 }
1304
1305 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1306 #ifndef NDEBUG
1307   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1308   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1309 #endif
1310   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1311   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1312   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1313   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1314          "SrcTy must be larger than DestTy for Trunc!");
1315
1316   return getFoldedCast(Instruction::Trunc, C, Ty);
1317 }
1318
1319 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1320 #ifndef NDEBUG
1321   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1322   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1323 #endif
1324   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1325   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1326   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1327   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1328          "SrcTy must be smaller than DestTy for SExt!");
1329
1330   return getFoldedCast(Instruction::SExt, C, Ty);
1331 }
1332
1333 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1334 #ifndef NDEBUG
1335   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1336   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1337 #endif
1338   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1339   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1340   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1341   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1342          "SrcTy must be smaller than DestTy for ZExt!");
1343
1344   return getFoldedCast(Instruction::ZExt, C, Ty);
1345 }
1346
1347 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1348 #ifndef NDEBUG
1349   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1350   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1351 #endif
1352   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1353   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1354          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1355          "This is an illegal floating point truncation!");
1356   return getFoldedCast(Instruction::FPTrunc, C, Ty);
1357 }
1358
1359 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1360 #ifndef NDEBUG
1361   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1362   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1363 #endif
1364   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1365   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1366          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1367          "This is an illegal floating point extension!");
1368   return getFoldedCast(Instruction::FPExt, C, Ty);
1369 }
1370
1371 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1372 #ifndef NDEBUG
1373   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1374   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1375 #endif
1376   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1377   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1378          "This is an illegal uint to floating point cast!");
1379   return getFoldedCast(Instruction::UIToFP, C, Ty);
1380 }
1381
1382 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1383 #ifndef NDEBUG
1384   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1385   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1386 #endif
1387   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1388   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1389          "This is an illegal sint to floating point cast!");
1390   return getFoldedCast(Instruction::SIToFP, C, Ty);
1391 }
1392
1393 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1394 #ifndef NDEBUG
1395   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1396   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1397 #endif
1398   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1399   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1400          "This is an illegal floating point to uint cast!");
1401   return getFoldedCast(Instruction::FPToUI, C, Ty);
1402 }
1403
1404 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1405 #ifndef NDEBUG
1406   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1407   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1408 #endif
1409   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1410   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1411          "This is an illegal floating point to sint cast!");
1412   return getFoldedCast(Instruction::FPToSI, C, Ty);
1413 }
1414
1415 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1416   assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
1417   assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
1418   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1419 }
1420
1421 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1422   assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
1423   assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
1424   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1425 }
1426
1427 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1428   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1429          "Invalid constantexpr bitcast!");
1430   
1431   // It is common to ask for a bitcast of a value to its own type, handle this
1432   // speedily.
1433   if (C->getType() == DstTy) return C;
1434   
1435   return getFoldedCast(Instruction::BitCast, C, DstTy);
1436 }
1437
1438 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1439                             unsigned Flags) {
1440   // Check the operands for consistency first.
1441   assert(Opcode >= Instruction::BinaryOpsBegin &&
1442          Opcode <  Instruction::BinaryOpsEnd   &&
1443          "Invalid opcode in binary constant expression");
1444   assert(C1->getType() == C2->getType() &&
1445          "Operand types in binary constant expression should match");
1446   
1447 #ifndef NDEBUG
1448   switch (Opcode) {
1449   case Instruction::Add:
1450   case Instruction::Sub:
1451   case Instruction::Mul:
1452     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1453     assert(C1->getType()->isIntOrIntVectorTy() &&
1454            "Tried to create an integer operation on a non-integer type!");
1455     break;
1456   case Instruction::FAdd:
1457   case Instruction::FSub:
1458   case Instruction::FMul:
1459     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1460     assert(C1->getType()->isFPOrFPVectorTy() &&
1461            "Tried to create a floating-point operation on a "
1462            "non-floating-point type!");
1463     break;
1464   case Instruction::UDiv: 
1465   case Instruction::SDiv: 
1466     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1467     assert(C1->getType()->isIntOrIntVectorTy() &&
1468            "Tried to create an arithmetic operation on a non-arithmetic type!");
1469     break;
1470   case Instruction::FDiv:
1471     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1472     assert(C1->getType()->isFPOrFPVectorTy() &&
1473            "Tried to create an arithmetic operation on a non-arithmetic type!");
1474     break;
1475   case Instruction::URem: 
1476   case Instruction::SRem: 
1477     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1478     assert(C1->getType()->isIntOrIntVectorTy() &&
1479            "Tried to create an arithmetic operation on a non-arithmetic type!");
1480     break;
1481   case Instruction::FRem:
1482     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1483     assert(C1->getType()->isFPOrFPVectorTy() &&
1484            "Tried to create an arithmetic operation on a non-arithmetic type!");
1485     break;
1486   case Instruction::And:
1487   case Instruction::Or:
1488   case Instruction::Xor:
1489     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1490     assert(C1->getType()->isIntOrIntVectorTy() &&
1491            "Tried to create a logical operation on a non-integral type!");
1492     break;
1493   case Instruction::Shl:
1494   case Instruction::LShr:
1495   case Instruction::AShr:
1496     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1497     assert(C1->getType()->isIntOrIntVectorTy() &&
1498            "Tried to create a shift operation on a non-integer type!");
1499     break;
1500   default:
1501     break;
1502   }
1503 #endif
1504
1505   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1506     return FC;          // Fold a few common cases.
1507   
1508   std::vector<Constant*> argVec(1, C1);
1509   argVec.push_back(C2);
1510   ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1511   
1512   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1513   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1514 }
1515
1516 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1517   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1518   // Note that a non-inbounds gep is used, as null isn't within any object.
1519   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1520   Constant *GEP = getGetElementPtr(
1521                  Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
1522   return getPtrToInt(GEP, 
1523                      Type::getInt64Ty(Ty->getContext()));
1524 }
1525
1526 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1527   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1528   // Note that a non-inbounds gep is used, as null isn't within any object.
1529   Type *AligningTy = 
1530     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1531   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1532   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1533   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1534   Constant *Indices[2] = { Zero, One };
1535   Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
1536   return getPtrToInt(GEP,
1537                      Type::getInt64Ty(Ty->getContext()));
1538 }
1539
1540 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1541   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1542                                            FieldNo));
1543 }
1544
1545 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1546   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1547   // Note that a non-inbounds gep is used, as null isn't within any object.
1548   Constant *GEPIdx[] = {
1549     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1550     FieldNo
1551   };
1552   Constant *GEP = getGetElementPtr(
1553                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2);
1554   return getPtrToInt(GEP,
1555                      Type::getInt64Ty(Ty->getContext()));
1556 }
1557
1558 Constant *ConstantExpr::getCompare(unsigned short Predicate, 
1559                                    Constant *C1, Constant *C2) {
1560   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1561   
1562   switch (Predicate) {
1563   default: llvm_unreachable("Invalid CmpInst predicate");
1564   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1565   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1566   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1567   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1568   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1569   case CmpInst::FCMP_TRUE:
1570     return getFCmp(Predicate, C1, C2);
1571     
1572   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1573   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1574   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1575   case CmpInst::ICMP_SLE:
1576     return getICmp(Predicate, C1, C2);
1577   }
1578 }
1579
1580 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1581   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1582
1583   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1584     return SC;        // Fold common cases
1585
1586   std::vector<Constant*> argVec(3, C);
1587   argVec[1] = V1;
1588   argVec[2] = V2;
1589   ExprMapKeyType Key(Instruction::Select, argVec);
1590   
1591   LLVMContextImpl *pImpl = C->getContext().pImpl;
1592   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1593 }
1594
1595 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
1596                                          unsigned NumIdx, bool InBounds) {
1597   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs, NumIdx))
1598     return FC;          // Fold a few common cases.
1599
1600   // Get the result type of the getelementptr!
1601   Type *Ty = 
1602     GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
1603   assert(Ty && "GEP indices invalid!");
1604   unsigned AS = cast<PointerType>(C->getType())->getAddressSpace();
1605   Type *ReqTy = Ty->getPointerTo(AS);
1606   
1607   assert(C->getType()->isPointerTy() &&
1608          "Non-pointer type for constant GetElementPtr expression");
1609   // Look up the constant in the table first to ensure uniqueness
1610   std::vector<Constant*> ArgVec;
1611   ArgVec.reserve(NumIdx+1);
1612   ArgVec.push_back(C);
1613   for (unsigned i = 0; i != NumIdx; ++i)
1614     ArgVec.push_back(cast<Constant>(Idxs[i]));
1615   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1616                            InBounds ? GEPOperator::IsInBounds : 0);
1617   
1618   LLVMContextImpl *pImpl = C->getContext().pImpl;
1619   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1620 }
1621
1622 Constant *
1623 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1624   assert(LHS->getType() == RHS->getType());
1625   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
1626          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1627
1628   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1629     return FC;          // Fold a few common cases...
1630
1631   // Look up the constant in the table first to ensure uniqueness
1632   std::vector<Constant*> ArgVec;
1633   ArgVec.push_back(LHS);
1634   ArgVec.push_back(RHS);
1635   // Get the key type with both the opcode and predicate
1636   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1637
1638   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1639   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1640     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1641
1642   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1643   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1644 }
1645
1646 Constant *
1647 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1648   assert(LHS->getType() == RHS->getType());
1649   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1650
1651   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1652     return FC;          // Fold a few common cases...
1653
1654   // Look up the constant in the table first to ensure uniqueness
1655   std::vector<Constant*> ArgVec;
1656   ArgVec.push_back(LHS);
1657   ArgVec.push_back(RHS);
1658   // Get the key type with both the opcode and predicate
1659   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1660
1661   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1662   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1663     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1664
1665   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1666   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1667 }
1668
1669 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1670   assert(Val->getType()->isVectorTy() &&
1671          "Tried to create extractelement operation on non-vector type!");
1672   assert(Idx->getType()->isIntegerTy(32) &&
1673          "Extractelement index must be i32 type!");
1674   
1675   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1676     return FC;          // Fold a few common cases.
1677   
1678   // Look up the constant in the table first to ensure uniqueness
1679   std::vector<Constant*> ArgVec(1, Val);
1680   ArgVec.push_back(Idx);
1681   const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1682   
1683   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1684   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
1685   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1686 }
1687
1688 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
1689                                          Constant *Idx) {
1690   assert(Val->getType()->isVectorTy() &&
1691          "Tried to create insertelement operation on non-vector type!");
1692   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1693          && "Insertelement types must match!");
1694   assert(Idx->getType()->isIntegerTy(32) &&
1695          "Insertelement index must be i32 type!");
1696
1697   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1698     return FC;          // Fold a few common cases.
1699   // Look up the constant in the table first to ensure uniqueness
1700   std::vector<Constant*> ArgVec(1, Val);
1701   ArgVec.push_back(Elt);
1702   ArgVec.push_back(Idx);
1703   const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1704   
1705   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1706   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1707 }
1708
1709 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
1710                                          Constant *Mask) {
1711   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1712          "Invalid shuffle vector constant expr operands!");
1713
1714   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1715     return FC;          // Fold a few common cases.
1716
1717   unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
1718   Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
1719   Type *ShufTy = VectorType::get(EltTy, NElts);
1720
1721   // Look up the constant in the table first to ensure uniqueness
1722   std::vector<Constant*> ArgVec(1, V1);
1723   ArgVec.push_back(V2);
1724   ArgVec.push_back(Mask);
1725   const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1726   
1727   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1728   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1729 }
1730
1731 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1732                                        ArrayRef<unsigned> Idxs) {
1733   assert(ExtractValueInst::getIndexedType(Agg->getType(),
1734                                           Idxs) == Val->getType() &&
1735          "insertvalue indices invalid!");
1736   assert(Agg->getType()->isFirstClassType() &&
1737          "Non-first-class type for constant insertvalue expression");
1738   Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1739   assert(FC && "insertvalue constant expr couldn't be folded!");
1740   return FC;
1741 }
1742
1743 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1744                                         ArrayRef<unsigned> Idxs) {
1745   assert(Agg->getType()->isFirstClassType() &&
1746          "Tried to create extractelement operation on non-first-class type!");
1747
1748   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1749   (void)ReqTy;
1750   assert(ReqTy && "extractvalue indices invalid!");
1751   
1752   assert(Agg->getType()->isFirstClassType() &&
1753          "Non-first-class type for constant extractvalue expression");
1754   Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1755   assert(FC && "ExtractValue constant expr couldn't be folded!");
1756   return FC;
1757 }
1758
1759 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1760   assert(C->getType()->isIntOrIntVectorTy() &&
1761          "Cannot NEG a nonintegral value!");
1762   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1763                 C, HasNUW, HasNSW);
1764 }
1765
1766 Constant *ConstantExpr::getFNeg(Constant *C) {
1767   assert(C->getType()->isFPOrFPVectorTy() &&
1768          "Cannot FNEG a non-floating-point value!");
1769   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1770 }
1771
1772 Constant *ConstantExpr::getNot(Constant *C) {
1773   assert(C->getType()->isIntOrIntVectorTy() &&
1774          "Cannot NOT a nonintegral value!");
1775   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1776 }
1777
1778 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1779                                bool HasNUW, bool HasNSW) {
1780   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1781                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1782   return get(Instruction::Add, C1, C2, Flags);
1783 }
1784
1785 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
1786   return get(Instruction::FAdd, C1, C2);
1787 }
1788
1789 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
1790                                bool HasNUW, bool HasNSW) {
1791   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1792                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1793   return get(Instruction::Sub, C1, C2, Flags);
1794 }
1795
1796 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
1797   return get(Instruction::FSub, C1, C2);
1798 }
1799
1800 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
1801                                bool HasNUW, bool HasNSW) {
1802   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1803                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1804   return get(Instruction::Mul, C1, C2, Flags);
1805 }
1806
1807 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
1808   return get(Instruction::FMul, C1, C2);
1809 }
1810
1811 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
1812   return get(Instruction::UDiv, C1, C2,
1813              isExact ? PossiblyExactOperator::IsExact : 0);
1814 }
1815
1816 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
1817   return get(Instruction::SDiv, C1, C2,
1818              isExact ? PossiblyExactOperator::IsExact : 0);
1819 }
1820
1821 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
1822   return get(Instruction::FDiv, C1, C2);
1823 }
1824
1825 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
1826   return get(Instruction::URem, C1, C2);
1827 }
1828
1829 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
1830   return get(Instruction::SRem, C1, C2);
1831 }
1832
1833 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
1834   return get(Instruction::FRem, C1, C2);
1835 }
1836
1837 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
1838   return get(Instruction::And, C1, C2);
1839 }
1840
1841 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
1842   return get(Instruction::Or, C1, C2);
1843 }
1844
1845 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
1846   return get(Instruction::Xor, C1, C2);
1847 }
1848
1849 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
1850                                bool HasNUW, bool HasNSW) {
1851   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1852                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1853   return get(Instruction::Shl, C1, C2, Flags);
1854 }
1855
1856 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
1857   return get(Instruction::LShr, C1, C2,
1858              isExact ? PossiblyExactOperator::IsExact : 0);
1859 }
1860
1861 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
1862   return get(Instruction::AShr, C1, C2,
1863              isExact ? PossiblyExactOperator::IsExact : 0);
1864 }
1865
1866 // destroyConstant - Remove the constant from the constant table...
1867 //
1868 void ConstantExpr::destroyConstant() {
1869   getType()->getContext().pImpl->ExprConstants.remove(this);
1870   destroyConstantImpl();
1871 }
1872
1873 const char *ConstantExpr::getOpcodeName() const {
1874   return Instruction::getOpcodeName(getOpcode());
1875 }
1876
1877
1878
1879 GetElementPtrConstantExpr::
1880 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
1881                           Type *DestTy)
1882   : ConstantExpr(DestTy, Instruction::GetElementPtr,
1883                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
1884                  - (IdxList.size()+1), IdxList.size()+1) {
1885   OperandList[0] = C;
1886   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
1887     OperandList[i+1] = IdxList[i];
1888 }
1889
1890
1891 //===----------------------------------------------------------------------===//
1892 //                replaceUsesOfWithOnConstant implementations
1893
1894 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1895 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
1896 /// etc.
1897 ///
1898 /// Note that we intentionally replace all uses of From with To here.  Consider
1899 /// a large array that uses 'From' 1000 times.  By handling this case all here,
1900 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1901 /// single invocation handles all 1000 uses.  Handling them one at a time would
1902 /// work, but would be really slow because it would have to unique each updated
1903 /// array instance.
1904 ///
1905 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1906                                                 Use *U) {
1907   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1908   Constant *ToC = cast<Constant>(To);
1909
1910   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
1911
1912   std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
1913   Lookup.first.first = cast<ArrayType>(getType());
1914   Lookup.second = this;
1915
1916   std::vector<Constant*> &Values = Lookup.first.second;
1917   Values.reserve(getNumOperands());  // Build replacement array.
1918
1919   // Fill values with the modified operands of the constant array.  Also, 
1920   // compute whether this turns into an all-zeros array.
1921   bool isAllZeros = false;
1922   unsigned NumUpdated = 0;
1923   if (!ToC->isNullValue()) {
1924     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1925       Constant *Val = cast<Constant>(O->get());
1926       if (Val == From) {
1927         Val = ToC;
1928         ++NumUpdated;
1929       }
1930       Values.push_back(Val);
1931     }
1932   } else {
1933     isAllZeros = true;
1934     for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
1935       Constant *Val = cast<Constant>(O->get());
1936       if (Val == From) {
1937         Val = ToC;
1938         ++NumUpdated;
1939       }
1940       Values.push_back(Val);
1941       if (isAllZeros) isAllZeros = Val->isNullValue();
1942     }
1943   }
1944   
1945   Constant *Replacement = 0;
1946   if (isAllZeros) {
1947     Replacement = ConstantAggregateZero::get(getType());
1948   } else {
1949     // Check to see if we have this array type already.
1950     bool Exists;
1951     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
1952       pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
1953     
1954     if (Exists) {
1955       Replacement = I->second;
1956     } else {
1957       // Okay, the new shape doesn't exist in the system yet.  Instead of
1958       // creating a new constant array, inserting it, replaceallusesof'ing the
1959       // old with the new, then deleting the old... just update the current one
1960       // in place!
1961       pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
1962       
1963       // Update to the new value.  Optimize for the case when we have a single
1964       // operand that we're changing, but handle bulk updates efficiently.
1965       if (NumUpdated == 1) {
1966         unsigned OperandToUpdate = U - OperandList;
1967         assert(getOperand(OperandToUpdate) == From &&
1968                "ReplaceAllUsesWith broken!");
1969         setOperand(OperandToUpdate, ToC);
1970       } else {
1971         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1972           if (getOperand(i) == From)
1973             setOperand(i, ToC);
1974       }
1975       return;
1976     }
1977   }
1978  
1979   // Otherwise, I do need to replace this with an existing value.
1980   assert(Replacement != this && "I didn't contain From!");
1981   
1982   // Everyone using this now uses the replacement.
1983   replaceAllUsesWith(Replacement);
1984   
1985   // Delete the old constant!
1986   destroyConstant();
1987 }
1988
1989 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
1990                                                  Use *U) {
1991   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1992   Constant *ToC = cast<Constant>(To);
1993
1994   unsigned OperandToUpdate = U-OperandList;
1995   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
1996
1997   std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
1998   Lookup.first.first = cast<StructType>(getType());
1999   Lookup.second = this;
2000   std::vector<Constant*> &Values = Lookup.first.second;
2001   Values.reserve(getNumOperands());  // Build replacement struct.
2002   
2003   
2004   // Fill values with the modified operands of the constant struct.  Also, 
2005   // compute whether this turns into an all-zeros struct.
2006   bool isAllZeros = false;
2007   if (!ToC->isNullValue()) {
2008     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2009       Values.push_back(cast<Constant>(O->get()));
2010   } else {
2011     isAllZeros = true;
2012     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2013       Constant *Val = cast<Constant>(O->get());
2014       Values.push_back(Val);
2015       if (isAllZeros) isAllZeros = Val->isNullValue();
2016     }
2017   }
2018   Values[OperandToUpdate] = ToC;
2019   
2020   LLVMContextImpl *pImpl = getContext().pImpl;
2021   
2022   Constant *Replacement = 0;
2023   if (isAllZeros) {
2024     Replacement = ConstantAggregateZero::get(getType());
2025   } else {
2026     // Check to see if we have this struct type already.
2027     bool Exists;
2028     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2029       pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
2030     
2031     if (Exists) {
2032       Replacement = I->second;
2033     } else {
2034       // Okay, the new shape doesn't exist in the system yet.  Instead of
2035       // creating a new constant struct, inserting it, replaceallusesof'ing the
2036       // old with the new, then deleting the old... just update the current one
2037       // in place!
2038       pImpl->StructConstants.MoveConstantToNewSlot(this, I);
2039       
2040       // Update to the new value.
2041       setOperand(OperandToUpdate, ToC);
2042       return;
2043     }
2044   }
2045   
2046   assert(Replacement != this && "I didn't contain From!");
2047   
2048   // Everyone using this now uses the replacement.
2049   replaceAllUsesWith(Replacement);
2050   
2051   // Delete the old constant!
2052   destroyConstant();
2053 }
2054
2055 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2056                                                  Use *U) {
2057   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2058   
2059   std::vector<Constant*> Values;
2060   Values.reserve(getNumOperands());  // Build replacement array...
2061   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2062     Constant *Val = getOperand(i);
2063     if (Val == From) Val = cast<Constant>(To);
2064     Values.push_back(Val);
2065   }
2066   
2067   Constant *Replacement = get(Values);
2068   assert(Replacement != this && "I didn't contain From!");
2069   
2070   // Everyone using this now uses the replacement.
2071   replaceAllUsesWith(Replacement);
2072   
2073   // Delete the old constant!
2074   destroyConstant();
2075 }
2076
2077 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2078                                                Use *U) {
2079   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2080   Constant *To = cast<Constant>(ToV);
2081   
2082   Constant *Replacement = 0;
2083   if (getOpcode() == Instruction::GetElementPtr) {
2084     SmallVector<Constant*, 8> Indices;
2085     Constant *Pointer = getOperand(0);
2086     Indices.reserve(getNumOperands()-1);
2087     if (Pointer == From) Pointer = To;
2088     
2089     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2090       Constant *Val = getOperand(i);
2091       if (Val == From) Val = To;
2092       Indices.push_back(Val);
2093     }
2094     Replacement = ConstantExpr::getGetElementPtr(Pointer,
2095                                                  &Indices[0], Indices.size(),
2096                                          cast<GEPOperator>(this)->isInBounds());
2097   } else if (getOpcode() == Instruction::ExtractValue) {
2098     Constant *Agg = getOperand(0);
2099     if (Agg == From) Agg = To;
2100     
2101     ArrayRef<unsigned> Indices = getIndices();
2102     Replacement = ConstantExpr::getExtractValue(Agg, Indices);
2103   } else if (getOpcode() == Instruction::InsertValue) {
2104     Constant *Agg = getOperand(0);
2105     Constant *Val = getOperand(1);
2106     if (Agg == From) Agg = To;
2107     if (Val == From) Val = To;
2108     
2109     ArrayRef<unsigned> Indices = getIndices();
2110     Replacement = ConstantExpr::getInsertValue(Agg, Val, Indices);
2111   } else if (isCast()) {
2112     assert(getOperand(0) == From && "Cast only has one use!");
2113     Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
2114   } else if (getOpcode() == Instruction::Select) {
2115     Constant *C1 = getOperand(0);
2116     Constant *C2 = getOperand(1);
2117     Constant *C3 = getOperand(2);
2118     if (C1 == From) C1 = To;
2119     if (C2 == From) C2 = To;
2120     if (C3 == From) C3 = To;
2121     Replacement = ConstantExpr::getSelect(C1, C2, C3);
2122   } else if (getOpcode() == Instruction::ExtractElement) {
2123     Constant *C1 = getOperand(0);
2124     Constant *C2 = getOperand(1);
2125     if (C1 == From) C1 = To;
2126     if (C2 == From) C2 = To;
2127     Replacement = ConstantExpr::getExtractElement(C1, C2);
2128   } else if (getOpcode() == Instruction::InsertElement) {
2129     Constant *C1 = getOperand(0);
2130     Constant *C2 = getOperand(1);
2131     Constant *C3 = getOperand(1);
2132     if (C1 == From) C1 = To;
2133     if (C2 == From) C2 = To;
2134     if (C3 == From) C3 = To;
2135     Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2136   } else if (getOpcode() == Instruction::ShuffleVector) {
2137     Constant *C1 = getOperand(0);
2138     Constant *C2 = getOperand(1);
2139     Constant *C3 = getOperand(2);
2140     if (C1 == From) C1 = To;
2141     if (C2 == From) C2 = To;
2142     if (C3 == From) C3 = To;
2143     Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2144   } else if (isCompare()) {
2145     Constant *C1 = getOperand(0);
2146     Constant *C2 = getOperand(1);
2147     if (C1 == From) C1 = To;
2148     if (C2 == From) C2 = To;
2149     if (getOpcode() == Instruction::ICmp)
2150       Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2151     else {
2152       assert(getOpcode() == Instruction::FCmp);
2153       Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2154     }
2155   } else if (getNumOperands() == 2) {
2156     Constant *C1 = getOperand(0);
2157     Constant *C2 = getOperand(1);
2158     if (C1 == From) C1 = To;
2159     if (C2 == From) C2 = To;
2160     Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
2161   } else {
2162     llvm_unreachable("Unknown ConstantExpr type!");
2163     return;
2164   }
2165   
2166   assert(Replacement != this && "I didn't contain From!");
2167   
2168   // Everyone using this now uses the replacement.
2169   replaceAllUsesWith(Replacement);
2170   
2171   // Delete the old constant!
2172   destroyConstant();
2173 }