Efficient Constant Uniquing.
[oota-llvm.git] / lib / VMCore / Constants.cpp
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Constants.h"
15 #include "LLVMContextImpl.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42
43 void Constant::anchor() { }
44
45 bool Constant::isNegativeZeroValue() const {
46   // Floating point values have an explicit -0.0 value.
47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48     return CFP->isZero() && CFP->isNegative();
49   
50   // Otherwise, just use +0.0.
51   return isNullValue();
52 }
53
54 bool Constant::isNullValue() const {
55   // 0 is null.
56   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
57     return CI->isZero();
58   
59   // +0.0 is null.
60   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
61     return CFP->isZero() && !CFP->isNegative();
62
63   // constant zero is zero for aggregates and cpnull is null for pointers.
64   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
65 }
66
67 bool Constant::isAllOnesValue() const {
68   // Check for -1 integers
69   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
70     return CI->isMinusOne();
71
72   // Check for FP which are bitcasted from -1 integers
73   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
74     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
75
76   // Check for constant vectors which are splats of -1 values.
77   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
78     if (Constant *Splat = CV->getSplatValue())
79       return Splat->isAllOnesValue();
80
81   // Check for constant vectors which are splats of -1 values.
82   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
83     if (Constant *Splat = CV->getSplatValue())
84       return Splat->isAllOnesValue();
85
86   return false;
87 }
88
89 // Constructor to create a '0' constant of arbitrary type...
90 Constant *Constant::getNullValue(Type *Ty) {
91   switch (Ty->getTypeID()) {
92   case Type::IntegerTyID:
93     return ConstantInt::get(Ty, 0);
94   case Type::HalfTyID:
95     return ConstantFP::get(Ty->getContext(),
96                            APFloat::getZero(APFloat::IEEEhalf));
97   case Type::FloatTyID:
98     return ConstantFP::get(Ty->getContext(),
99                            APFloat::getZero(APFloat::IEEEsingle));
100   case Type::DoubleTyID:
101     return ConstantFP::get(Ty->getContext(),
102                            APFloat::getZero(APFloat::IEEEdouble));
103   case Type::X86_FP80TyID:
104     return ConstantFP::get(Ty->getContext(),
105                            APFloat::getZero(APFloat::x87DoubleExtended));
106   case Type::FP128TyID:
107     return ConstantFP::get(Ty->getContext(),
108                            APFloat::getZero(APFloat::IEEEquad));
109   case Type::PPC_FP128TyID:
110     return ConstantFP::get(Ty->getContext(),
111                            APFloat(APInt::getNullValue(128)));
112   case Type::PointerTyID:
113     return ConstantPointerNull::get(cast<PointerType>(Ty));
114   case Type::StructTyID:
115   case Type::ArrayTyID:
116   case Type::VectorTyID:
117     return ConstantAggregateZero::get(Ty);
118   default:
119     // Function, Label, or Opaque type?
120     assert(0 && "Cannot create a null constant of that type!");
121     return 0;
122   }
123 }
124
125 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
126   Type *ScalarTy = Ty->getScalarType();
127
128   // Create the base integer constant.
129   Constant *C = ConstantInt::get(Ty->getContext(), V);
130
131   // Convert an integer to a pointer, if necessary.
132   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
133     C = ConstantExpr::getIntToPtr(C, PTy);
134
135   // Broadcast a scalar to a vector, if necessary.
136   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
137     C = ConstantVector::getSplat(VTy->getNumElements(), C);
138
139   return C;
140 }
141
142 Constant *Constant::getAllOnesValue(Type *Ty) {
143   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
144     return ConstantInt::get(Ty->getContext(),
145                             APInt::getAllOnesValue(ITy->getBitWidth()));
146
147   if (Ty->isFloatingPointTy()) {
148     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
149                                           !Ty->isPPC_FP128Ty());
150     return ConstantFP::get(Ty->getContext(), FL);
151   }
152
153   VectorType *VTy = cast<VectorType>(Ty);
154   return ConstantVector::getSplat(VTy->getNumElements(),
155                                   getAllOnesValue(VTy->getElementType()));
156 }
157
158 /// getAggregateElement - For aggregates (struct/array/vector) return the
159 /// constant that corresponds to the specified element if possible, or null if
160 /// not.  This can return null if the element index is a ConstantExpr, or if
161 /// 'this' is a constant expr.
162 Constant *Constant::getAggregateElement(unsigned Elt) const {
163   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
164     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
165   
166   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
167     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
168   
169   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
170     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
171   
172   if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
173     return CAZ->getElementValue(Elt);
174   
175   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
176     return UV->getElementValue(Elt);
177   
178   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
179     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
180   return 0;
181 }
182
183 Constant *Constant::getAggregateElement(Constant *Elt) const {
184   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
185   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
186     return getAggregateElement(CI->getZExtValue());
187   return 0;
188 }
189
190
191 void Constant::destroyConstantImpl() {
192   // When a Constant is destroyed, there may be lingering
193   // references to the constant by other constants in the constant pool.  These
194   // constants are implicitly dependent on the module that is being deleted,
195   // but they don't know that.  Because we only find out when the CPV is
196   // deleted, we must now notify all of our users (that should only be
197   // Constants) that they are, in fact, invalid now and should be deleted.
198   //
199   while (!use_empty()) {
200     Value *V = use_back();
201 #ifndef NDEBUG      // Only in -g mode...
202     if (!isa<Constant>(V)) {
203       dbgs() << "While deleting: " << *this
204              << "\n\nUse still stuck around after Def is destroyed: "
205              << *V << "\n\n";
206     }
207 #endif
208     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
209     cast<Constant>(V)->destroyConstant();
210
211     // The constant should remove itself from our use list...
212     assert((use_empty() || use_back() != V) && "Constant not removed!");
213   }
214
215   // Value has no outstanding references it is safe to delete it now...
216   delete this;
217 }
218
219 /// canTrap - Return true if evaluation of this constant could trap.  This is
220 /// true for things like constant expressions that could divide by zero.
221 bool Constant::canTrap() const {
222   assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
223   // The only thing that could possibly trap are constant exprs.
224   const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
225   if (!CE) return false;
226   
227   // ConstantExpr traps if any operands can trap. 
228   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
229     if (CE->getOperand(i)->canTrap()) 
230       return true;
231
232   // Otherwise, only specific operations can trap.
233   switch (CE->getOpcode()) {
234   default:
235     return false;
236   case Instruction::UDiv:
237   case Instruction::SDiv:
238   case Instruction::FDiv:
239   case Instruction::URem:
240   case Instruction::SRem:
241   case Instruction::FRem:
242     // Div and rem can trap if the RHS is not known to be non-zero.
243     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
244       return true;
245     return false;
246   }
247 }
248
249 /// isConstantUsed - Return true if the constant has users other than constant
250 /// exprs and other dangling things.
251 bool Constant::isConstantUsed() const {
252   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
253     const Constant *UC = dyn_cast<Constant>(*UI);
254     if (UC == 0 || isa<GlobalValue>(UC))
255       return true;
256     
257     if (UC->isConstantUsed())
258       return true;
259   }
260   return false;
261 }
262
263
264
265 /// getRelocationInfo - This method classifies the entry according to
266 /// whether or not it may generate a relocation entry.  This must be
267 /// conservative, so if it might codegen to a relocatable entry, it should say
268 /// so.  The return values are:
269 /// 
270 ///  NoRelocation: This constant pool entry is guaranteed to never have a
271 ///     relocation applied to it (because it holds a simple constant like
272 ///     '4').
273 ///  LocalRelocation: This entry has relocations, but the entries are
274 ///     guaranteed to be resolvable by the static linker, so the dynamic
275 ///     linker will never see them.
276 ///  GlobalRelocations: This entry may have arbitrary relocations.
277 ///
278 /// FIXME: This really should not be in VMCore.
279 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
280   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
281     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
282       return LocalRelocation;  // Local to this file/library.
283     return GlobalRelocations;    // Global reference.
284   }
285   
286   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
287     return BA->getFunction()->getRelocationInfo();
288   
289   // While raw uses of blockaddress need to be relocated, differences between
290   // two of them don't when they are for labels in the same function.  This is a
291   // common idiom when creating a table for the indirect goto extension, so we
292   // handle it efficiently here.
293   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
294     if (CE->getOpcode() == Instruction::Sub) {
295       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
296       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
297       if (LHS && RHS &&
298           LHS->getOpcode() == Instruction::PtrToInt &&
299           RHS->getOpcode() == Instruction::PtrToInt &&
300           isa<BlockAddress>(LHS->getOperand(0)) &&
301           isa<BlockAddress>(RHS->getOperand(0)) &&
302           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
303             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
304         return NoRelocation;
305     }
306   
307   PossibleRelocationsTy Result = NoRelocation;
308   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309     Result = std::max(Result,
310                       cast<Constant>(getOperand(i))->getRelocationInfo());
311   
312   return Result;
313 }
314
315 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
316 /// it.  This involves recursively eliminating any dead users of the
317 /// constantexpr.
318 static bool removeDeadUsersOfConstant(const Constant *C) {
319   if (isa<GlobalValue>(C)) return false; // Cannot remove this
320   
321   while (!C->use_empty()) {
322     const Constant *User = dyn_cast<Constant>(C->use_back());
323     if (!User) return false; // Non-constant usage;
324     if (!removeDeadUsersOfConstant(User))
325       return false; // Constant wasn't dead
326   }
327   
328   const_cast<Constant*>(C)->destroyConstant();
329   return true;
330 }
331
332
333 /// removeDeadConstantUsers - If there are any dead constant users dangling
334 /// off of this constant, remove them.  This method is useful for clients
335 /// that want to check to see if a global is unused, but don't want to deal
336 /// with potentially dead constants hanging off of the globals.
337 void Constant::removeDeadConstantUsers() const {
338   Value::const_use_iterator I = use_begin(), E = use_end();
339   Value::const_use_iterator LastNonDeadUser = E;
340   while (I != E) {
341     const Constant *User = dyn_cast<Constant>(*I);
342     if (User == 0) {
343       LastNonDeadUser = I;
344       ++I;
345       continue;
346     }
347     
348     if (!removeDeadUsersOfConstant(User)) {
349       // If the constant wasn't dead, remember that this was the last live use
350       // and move on to the next constant.
351       LastNonDeadUser = I;
352       ++I;
353       continue;
354     }
355     
356     // If the constant was dead, then the iterator is invalidated.
357     if (LastNonDeadUser == E) {
358       I = use_begin();
359       if (I == E) break;
360     } else {
361       I = LastNonDeadUser;
362       ++I;
363     }
364   }
365 }
366
367
368
369 //===----------------------------------------------------------------------===//
370 //                                ConstantInt
371 //===----------------------------------------------------------------------===//
372
373 void ConstantInt::anchor() { }
374
375 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
376   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
377   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
378 }
379
380 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
381   LLVMContextImpl *pImpl = Context.pImpl;
382   if (!pImpl->TheTrueVal)
383     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
384   return pImpl->TheTrueVal;
385 }
386
387 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
388   LLVMContextImpl *pImpl = Context.pImpl;
389   if (!pImpl->TheFalseVal)
390     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
391   return pImpl->TheFalseVal;
392 }
393
394 Constant *ConstantInt::getTrue(Type *Ty) {
395   VectorType *VTy = dyn_cast<VectorType>(Ty);
396   if (!VTy) {
397     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
398     return ConstantInt::getTrue(Ty->getContext());
399   }
400   assert(VTy->getElementType()->isIntegerTy(1) &&
401          "True must be vector of i1 or i1.");
402   return ConstantVector::getSplat(VTy->getNumElements(),
403                                   ConstantInt::getTrue(Ty->getContext()));
404 }
405
406 Constant *ConstantInt::getFalse(Type *Ty) {
407   VectorType *VTy = dyn_cast<VectorType>(Ty);
408   if (!VTy) {
409     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
410     return ConstantInt::getFalse(Ty->getContext());
411   }
412   assert(VTy->getElementType()->isIntegerTy(1) &&
413          "False must be vector of i1 or i1.");
414   return ConstantVector::getSplat(VTy->getNumElements(),
415                                   ConstantInt::getFalse(Ty->getContext()));
416 }
417
418
419 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
420 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
421 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
422 // compare APInt's of different widths, which would violate an APInt class
423 // invariant which generates an assertion.
424 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
425   // Get the corresponding integer type for the bit width of the value.
426   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
427   // get an existing value or the insertion position
428   DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
429   ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; 
430   if (!Slot) Slot = new ConstantInt(ITy, V);
431   return Slot;
432 }
433
434 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
435   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
436
437   // For vectors, broadcast the value.
438   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
439     return ConstantVector::getSplat(VTy->getNumElements(), C);
440
441   return C;
442 }
443
444 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
445                               bool isSigned) {
446   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
447 }
448
449 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
450   return get(Ty, V, true);
451 }
452
453 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
454   return get(Ty, V, true);
455 }
456
457 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
458   ConstantInt *C = get(Ty->getContext(), V);
459   assert(C->getType() == Ty->getScalarType() &&
460          "ConstantInt type doesn't match the type implied by its value!");
461
462   // For vectors, broadcast the value.
463   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
464     return ConstantVector::getSplat(VTy->getNumElements(), C);
465
466   return C;
467 }
468
469 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
470                               uint8_t radix) {
471   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
472 }
473
474 //===----------------------------------------------------------------------===//
475 //                                ConstantFP
476 //===----------------------------------------------------------------------===//
477
478 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
479   if (Ty->isHalfTy())
480     return &APFloat::IEEEhalf;
481   if (Ty->isFloatTy())
482     return &APFloat::IEEEsingle;
483   if (Ty->isDoubleTy())
484     return &APFloat::IEEEdouble;
485   if (Ty->isX86_FP80Ty())
486     return &APFloat::x87DoubleExtended;
487   else if (Ty->isFP128Ty())
488     return &APFloat::IEEEquad;
489   
490   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
491   return &APFloat::PPCDoubleDouble;
492 }
493
494 void ConstantFP::anchor() { }
495
496 /// get() - This returns a constant fp for the specified value in the
497 /// specified type.  This should only be used for simple constant values like
498 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
499 Constant *ConstantFP::get(Type *Ty, double V) {
500   LLVMContext &Context = Ty->getContext();
501   
502   APFloat FV(V);
503   bool ignored;
504   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
505              APFloat::rmNearestTiesToEven, &ignored);
506   Constant *C = get(Context, FV);
507
508   // For vectors, broadcast the value.
509   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
510     return ConstantVector::getSplat(VTy->getNumElements(), C);
511
512   return C;
513 }
514
515
516 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
517   LLVMContext &Context = Ty->getContext();
518
519   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
520   Constant *C = get(Context, FV);
521
522   // For vectors, broadcast the value.
523   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
524     return ConstantVector::getSplat(VTy->getNumElements(), C);
525
526   return C; 
527 }
528
529
530 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
531   LLVMContext &Context = Ty->getContext();
532   APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
533   apf.changeSign();
534   return get(Context, apf);
535 }
536
537
538 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
539   Type *ScalarTy = Ty->getScalarType();
540   if (ScalarTy->isFloatingPointTy()) {
541     Constant *C = getNegativeZero(ScalarTy);
542     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
543       return ConstantVector::getSplat(VTy->getNumElements(), C);
544     return C;
545   }
546
547   return Constant::getNullValue(Ty);
548 }
549
550
551 // ConstantFP accessors.
552 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
553   DenseMapAPFloatKeyInfo::KeyTy Key(V);
554   
555   LLVMContextImpl* pImpl = Context.pImpl;
556   
557   ConstantFP *&Slot = pImpl->FPConstants[Key];
558     
559   if (!Slot) {
560     Type *Ty;
561     if (&V.getSemantics() == &APFloat::IEEEhalf)
562       Ty = Type::getHalfTy(Context);
563     else if (&V.getSemantics() == &APFloat::IEEEsingle)
564       Ty = Type::getFloatTy(Context);
565     else if (&V.getSemantics() == &APFloat::IEEEdouble)
566       Ty = Type::getDoubleTy(Context);
567     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
568       Ty = Type::getX86_FP80Ty(Context);
569     else if (&V.getSemantics() == &APFloat::IEEEquad)
570       Ty = Type::getFP128Ty(Context);
571     else {
572       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
573              "Unknown FP format");
574       Ty = Type::getPPC_FP128Ty(Context);
575     }
576     Slot = new ConstantFP(Ty, V);
577   }
578   
579   return Slot;
580 }
581
582 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
583   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
584   return ConstantFP::get(Ty->getContext(),
585                          APFloat::getInf(Semantics, Negative));
586 }
587
588 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
589   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
590   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
591          "FP type Mismatch");
592 }
593
594 bool ConstantFP::isExactlyValue(const APFloat &V) const {
595   return Val.bitwiseIsEqual(V);
596 }
597
598 //===----------------------------------------------------------------------===//
599 //                   ConstantAggregateZero Implementation
600 //===----------------------------------------------------------------------===//
601
602 /// getSequentialElement - If this CAZ has array or vector type, return a zero
603 /// with the right element type.
604 Constant *ConstantAggregateZero::getSequentialElement() const {
605   return Constant::getNullValue(getType()->getSequentialElementType());
606 }
607
608 /// getStructElement - If this CAZ has struct type, return a zero with the
609 /// right element type for the specified element.
610 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
611   return Constant::getNullValue(getType()->getStructElementType(Elt));
612 }
613
614 /// getElementValue - Return a zero of the right value for the specified GEP
615 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
616 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
617   if (isa<SequentialType>(getType()))
618     return getSequentialElement();
619   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
620 }
621
622 /// getElementValue - Return a zero of the right value for the specified GEP
623 /// index.
624 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
625   if (isa<SequentialType>(getType()))
626     return getSequentialElement();
627   return getStructElement(Idx);
628 }
629
630
631 //===----------------------------------------------------------------------===//
632 //                         UndefValue Implementation
633 //===----------------------------------------------------------------------===//
634
635 /// getSequentialElement - If this undef has array or vector type, return an
636 /// undef with the right element type.
637 UndefValue *UndefValue::getSequentialElement() const {
638   return UndefValue::get(getType()->getSequentialElementType());
639 }
640
641 /// getStructElement - If this undef has struct type, return a zero with the
642 /// right element type for the specified element.
643 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
644   return UndefValue::get(getType()->getStructElementType(Elt));
645 }
646
647 /// getElementValue - Return an undef of the right value for the specified GEP
648 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
649 UndefValue *UndefValue::getElementValue(Constant *C) const {
650   if (isa<SequentialType>(getType()))
651     return getSequentialElement();
652   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
653 }
654
655 /// getElementValue - Return an undef of the right value for the specified GEP
656 /// index.
657 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
658   if (isa<SequentialType>(getType()))
659     return getSequentialElement();
660   return getStructElement(Idx);
661 }
662
663
664
665 //===----------------------------------------------------------------------===//
666 //                            ConstantXXX Classes
667 //===----------------------------------------------------------------------===//
668
669 template <typename ItTy, typename EltTy>
670 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
671   for (; Start != End; ++Start)
672     if (*Start != Elt)
673       return false;
674   return true;
675 }
676
677 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
678   : Constant(T, ConstantArrayVal,
679              OperandTraits<ConstantArray>::op_end(this) - V.size(),
680              V.size()) {
681   assert(V.size() == T->getNumElements() &&
682          "Invalid initializer vector for constant array");
683   for (unsigned i = 0, e = V.size(); i != e; ++i)
684     assert(V[i]->getType() == T->getElementType() &&
685            "Initializer for array element doesn't match array element type!");
686   std::copy(V.begin(), V.end(), op_begin());
687 }
688
689 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
690   // Empty arrays are canonicalized to ConstantAggregateZero.
691   if (V.empty())
692     return ConstantAggregateZero::get(Ty);
693
694   for (unsigned i = 0, e = V.size(); i != e; ++i) {
695     assert(V[i]->getType() == Ty->getElementType() &&
696            "Wrong type in array element initializer");
697   }
698   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
699   
700   // If this is an all-zero array, return a ConstantAggregateZero object.  If
701   // all undef, return an UndefValue, if "all simple", then return a
702   // ConstantDataArray.
703   Constant *C = V[0];
704   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
705     return UndefValue::get(Ty);
706
707   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
708     return ConstantAggregateZero::get(Ty);
709
710   // Check to see if all of the elements are ConstantFP or ConstantInt and if
711   // the element type is compatible with ConstantDataVector.  If so, use it.
712   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
713     // We speculatively build the elements here even if it turns out that there
714     // is a constantexpr or something else weird in the array, since it is so
715     // uncommon for that to happen.
716     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
717       if (CI->getType()->isIntegerTy(8)) {
718         SmallVector<uint8_t, 16> Elts;
719         for (unsigned i = 0, e = V.size(); i != e; ++i)
720           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
721             Elts.push_back(CI->getZExtValue());
722           else
723             break;
724         if (Elts.size() == V.size())
725           return ConstantDataArray::get(C->getContext(), Elts);
726       } else if (CI->getType()->isIntegerTy(16)) {
727         SmallVector<uint16_t, 16> Elts;
728         for (unsigned i = 0, e = V.size(); i != e; ++i)
729           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
730             Elts.push_back(CI->getZExtValue());
731           else
732             break;
733         if (Elts.size() == V.size())
734           return ConstantDataArray::get(C->getContext(), Elts);
735       } else if (CI->getType()->isIntegerTy(32)) {
736         SmallVector<uint32_t, 16> Elts;
737         for (unsigned i = 0, e = V.size(); i != e; ++i)
738           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
739             Elts.push_back(CI->getZExtValue());
740           else
741             break;
742         if (Elts.size() == V.size())
743           return ConstantDataArray::get(C->getContext(), Elts);
744       } else if (CI->getType()->isIntegerTy(64)) {
745         SmallVector<uint64_t, 16> Elts;
746         for (unsigned i = 0, e = V.size(); i != e; ++i)
747           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
748             Elts.push_back(CI->getZExtValue());
749           else
750             break;
751         if (Elts.size() == V.size())
752           return ConstantDataArray::get(C->getContext(), Elts);
753       }
754     }
755     
756     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
757       if (CFP->getType()->isFloatTy()) {
758         SmallVector<float, 16> Elts;
759         for (unsigned i = 0, e = V.size(); i != e; ++i)
760           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
761             Elts.push_back(CFP->getValueAPF().convertToFloat());
762           else
763             break;
764         if (Elts.size() == V.size())
765           return ConstantDataArray::get(C->getContext(), Elts);
766       } else if (CFP->getType()->isDoubleTy()) {
767         SmallVector<double, 16> Elts;
768         for (unsigned i = 0, e = V.size(); i != e; ++i)
769           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
770             Elts.push_back(CFP->getValueAPF().convertToDouble());
771           else
772             break;
773         if (Elts.size() == V.size())
774           return ConstantDataArray::get(C->getContext(), Elts);
775       }
776     }
777   }
778
779   // Otherwise, we really do want to create a ConstantArray.
780   return pImpl->ArrayConstants.getOrCreate(Ty, V);
781 }
782
783 /// getTypeForElements - Return an anonymous struct type to use for a constant
784 /// with the specified set of elements.  The list must not be empty.
785 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
786                                                ArrayRef<Constant*> V,
787                                                bool Packed) {
788   SmallVector<Type*, 16> EltTypes;
789   for (unsigned i = 0, e = V.size(); i != e; ++i)
790     EltTypes.push_back(V[i]->getType());
791   
792   return StructType::get(Context, EltTypes, Packed);
793 }
794
795
796 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
797                                                bool Packed) {
798   assert(!V.empty() &&
799          "ConstantStruct::getTypeForElements cannot be called on empty list");
800   return getTypeForElements(V[0]->getContext(), V, Packed);
801 }
802
803
804 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
805   : Constant(T, ConstantStructVal,
806              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
807              V.size()) {
808   assert(V.size() == T->getNumElements() &&
809          "Invalid initializer vector for constant structure");
810   for (unsigned i = 0, e = V.size(); i != e; ++i)
811     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
812            "Initializer for struct element doesn't match struct element type!");
813   std::copy(V.begin(), V.end(), op_begin());
814 }
815
816 // ConstantStruct accessors.
817 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
818   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
819          "Incorrect # elements specified to ConstantStruct::get");
820
821   // Create a ConstantAggregateZero value if all elements are zeros.
822   bool isZero = true;
823   bool isUndef = false;
824   
825   if (!V.empty()) {
826     isUndef = isa<UndefValue>(V[0]);
827     isZero = V[0]->isNullValue();
828     if (isUndef || isZero) {
829       for (unsigned i = 0, e = V.size(); i != e; ++i) {
830         if (!V[i]->isNullValue())
831           isZero = false;
832         if (!isa<UndefValue>(V[i]))
833           isUndef = false;
834       }
835     }
836   }  
837   if (isZero)
838     return ConstantAggregateZero::get(ST);
839   if (isUndef)
840     return UndefValue::get(ST);
841     
842   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
843 }
844
845 Constant *ConstantStruct::get(StructType *T, ...) {
846   va_list ap;
847   SmallVector<Constant*, 8> Values;
848   va_start(ap, T);
849   while (Constant *Val = va_arg(ap, llvm::Constant*))
850     Values.push_back(Val);
851   va_end(ap);
852   return get(T, Values);
853 }
854
855 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
856   : Constant(T, ConstantVectorVal,
857              OperandTraits<ConstantVector>::op_end(this) - V.size(),
858              V.size()) {
859   for (size_t i = 0, e = V.size(); i != e; i++)
860     assert(V[i]->getType() == T->getElementType() &&
861            "Initializer for vector element doesn't match vector element type!");
862   std::copy(V.begin(), V.end(), op_begin());
863 }
864
865 // ConstantVector accessors.
866 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
867   assert(!V.empty() && "Vectors can't be empty");
868   VectorType *T = VectorType::get(V.front()->getType(), V.size());
869   LLVMContextImpl *pImpl = T->getContext().pImpl;
870
871   // If this is an all-undef or all-zero vector, return a
872   // ConstantAggregateZero or UndefValue.
873   Constant *C = V[0];
874   bool isZero = C->isNullValue();
875   bool isUndef = isa<UndefValue>(C);
876
877   if (isZero || isUndef) {
878     for (unsigned i = 1, e = V.size(); i != e; ++i)
879       if (V[i] != C) {
880         isZero = isUndef = false;
881         break;
882       }
883   }
884   
885   if (isZero)
886     return ConstantAggregateZero::get(T);
887   if (isUndef)
888     return UndefValue::get(T);
889    
890   // Check to see if all of the elements are ConstantFP or ConstantInt and if
891   // the element type is compatible with ConstantDataVector.  If so, use it.
892   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
893     // We speculatively build the elements here even if it turns out that there
894     // is a constantexpr or something else weird in the array, since it is so
895     // uncommon for that to happen.
896     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
897       if (CI->getType()->isIntegerTy(8)) {
898         SmallVector<uint8_t, 16> Elts;
899         for (unsigned i = 0, e = V.size(); i != e; ++i)
900           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
901             Elts.push_back(CI->getZExtValue());
902           else
903             break;
904         if (Elts.size() == V.size())
905           return ConstantDataVector::get(C->getContext(), Elts);
906       } else if (CI->getType()->isIntegerTy(16)) {
907         SmallVector<uint16_t, 16> Elts;
908         for (unsigned i = 0, e = V.size(); i != e; ++i)
909           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
910             Elts.push_back(CI->getZExtValue());
911           else
912             break;
913         if (Elts.size() == V.size())
914           return ConstantDataVector::get(C->getContext(), Elts);
915       } else if (CI->getType()->isIntegerTy(32)) {
916         SmallVector<uint32_t, 16> Elts;
917         for (unsigned i = 0, e = V.size(); i != e; ++i)
918           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
919             Elts.push_back(CI->getZExtValue());
920           else
921             break;
922         if (Elts.size() == V.size())
923           return ConstantDataVector::get(C->getContext(), Elts);
924       } else if (CI->getType()->isIntegerTy(64)) {
925         SmallVector<uint64_t, 16> Elts;
926         for (unsigned i = 0, e = V.size(); i != e; ++i)
927           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
928             Elts.push_back(CI->getZExtValue());
929           else
930             break;
931         if (Elts.size() == V.size())
932           return ConstantDataVector::get(C->getContext(), Elts);
933       }
934     }
935     
936     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
937       if (CFP->getType()->isFloatTy()) {
938         SmallVector<float, 16> Elts;
939         for (unsigned i = 0, e = V.size(); i != e; ++i)
940           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
941             Elts.push_back(CFP->getValueAPF().convertToFloat());
942           else
943             break;
944         if (Elts.size() == V.size())
945           return ConstantDataVector::get(C->getContext(), Elts);
946       } else if (CFP->getType()->isDoubleTy()) {
947         SmallVector<double, 16> Elts;
948         for (unsigned i = 0, e = V.size(); i != e; ++i)
949           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
950             Elts.push_back(CFP->getValueAPF().convertToDouble());
951           else
952             break;
953         if (Elts.size() == V.size())
954           return ConstantDataVector::get(C->getContext(), Elts);
955       }
956     }
957   }
958   
959   // Otherwise, the element type isn't compatible with ConstantDataVector, or
960   // the operand list constants a ConstantExpr or something else strange.
961   return pImpl->VectorConstants.getOrCreate(T, V);
962 }
963
964 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
965   // If this splat is compatible with ConstantDataVector, use it instead of
966   // ConstantVector.
967   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
968       ConstantDataSequential::isElementTypeCompatible(V->getType()))
969     return ConstantDataVector::getSplat(NumElts, V);
970   
971   SmallVector<Constant*, 32> Elts(NumElts, V);
972   return get(Elts);
973 }
974
975
976 // Utility function for determining if a ConstantExpr is a CastOp or not. This
977 // can't be inline because we don't want to #include Instruction.h into
978 // Constant.h
979 bool ConstantExpr::isCast() const {
980   return Instruction::isCast(getOpcode());
981 }
982
983 bool ConstantExpr::isCompare() const {
984   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
985 }
986
987 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
988   if (getOpcode() != Instruction::GetElementPtr) return false;
989
990   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
991   User::const_op_iterator OI = llvm::next(this->op_begin());
992
993   // Skip the first index, as it has no static limit.
994   ++GEPI;
995   ++OI;
996
997   // The remaining indices must be compile-time known integers within the
998   // bounds of the corresponding notional static array types.
999   for (; GEPI != E; ++GEPI, ++OI) {
1000     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1001     if (!CI) return false;
1002     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1003       if (CI->getValue().getActiveBits() > 64 ||
1004           CI->getZExtValue() >= ATy->getNumElements())
1005         return false;
1006   }
1007
1008   // All the indices checked out.
1009   return true;
1010 }
1011
1012 bool ConstantExpr::hasIndices() const {
1013   return getOpcode() == Instruction::ExtractValue ||
1014          getOpcode() == Instruction::InsertValue;
1015 }
1016
1017 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1018   if (const ExtractValueConstantExpr *EVCE =
1019         dyn_cast<ExtractValueConstantExpr>(this))
1020     return EVCE->Indices;
1021
1022   return cast<InsertValueConstantExpr>(this)->Indices;
1023 }
1024
1025 unsigned ConstantExpr::getPredicate() const {
1026   assert(isCompare());
1027   return ((const CompareConstantExpr*)this)->predicate;
1028 }
1029
1030 /// getWithOperandReplaced - Return a constant expression identical to this
1031 /// one, but with the specified operand set to the specified value.
1032 Constant *
1033 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1034   assert(Op->getType() == getOperand(OpNo)->getType() &&
1035          "Replacing operand with value of different type!");
1036   if (getOperand(OpNo) == Op)
1037     return const_cast<ConstantExpr*>(this);
1038
1039   SmallVector<Constant*, 8> NewOps;
1040   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1041     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1042   
1043   return getWithOperands(NewOps);
1044 }
1045
1046 /// getWithOperands - This returns the current constant expression with the
1047 /// operands replaced with the specified values.  The specified array must
1048 /// have the same number of operands as our current one.
1049 Constant *ConstantExpr::
1050 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1051   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1052   bool AnyChange = Ty != getType();
1053   for (unsigned i = 0; i != Ops.size(); ++i)
1054     AnyChange |= Ops[i] != getOperand(i);
1055   
1056   if (!AnyChange)  // No operands changed, return self.
1057     return const_cast<ConstantExpr*>(this);
1058
1059   switch (getOpcode()) {
1060   case Instruction::Trunc:
1061   case Instruction::ZExt:
1062   case Instruction::SExt:
1063   case Instruction::FPTrunc:
1064   case Instruction::FPExt:
1065   case Instruction::UIToFP:
1066   case Instruction::SIToFP:
1067   case Instruction::FPToUI:
1068   case Instruction::FPToSI:
1069   case Instruction::PtrToInt:
1070   case Instruction::IntToPtr:
1071   case Instruction::BitCast:
1072     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1073   case Instruction::Select:
1074     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1075   case Instruction::InsertElement:
1076     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1077   case Instruction::ExtractElement:
1078     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1079   case Instruction::InsertValue:
1080     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1081   case Instruction::ExtractValue:
1082     return ConstantExpr::getExtractValue(Ops[0], getIndices());
1083   case Instruction::ShuffleVector:
1084     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1085   case Instruction::GetElementPtr:
1086     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1087                                       cast<GEPOperator>(this)->isInBounds());
1088   case Instruction::ICmp:
1089   case Instruction::FCmp:
1090     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1091   default:
1092     assert(getNumOperands() == 2 && "Must be binary operator?");
1093     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1094   }
1095 }
1096
1097
1098 //===----------------------------------------------------------------------===//
1099 //                      isValueValidForType implementations
1100
1101 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1102   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1103   if (Ty->isIntegerTy(1))
1104     return Val == 0 || Val == 1;
1105   if (NumBits >= 64)
1106     return true; // always true, has to fit in largest type
1107   uint64_t Max = (1ll << NumBits) - 1;
1108   return Val <= Max;
1109 }
1110
1111 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1112   unsigned NumBits = Ty->getIntegerBitWidth();
1113   if (Ty->isIntegerTy(1))
1114     return Val == 0 || Val == 1 || Val == -1;
1115   if (NumBits >= 64)
1116     return true; // always true, has to fit in largest type
1117   int64_t Min = -(1ll << (NumBits-1));
1118   int64_t Max = (1ll << (NumBits-1)) - 1;
1119   return (Val >= Min && Val <= Max);
1120 }
1121
1122 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1123   // convert modifies in place, so make a copy.
1124   APFloat Val2 = APFloat(Val);
1125   bool losesInfo;
1126   switch (Ty->getTypeID()) {
1127   default:
1128     return false;         // These can't be represented as floating point!
1129
1130   // FIXME rounding mode needs to be more flexible
1131   case Type::HalfTyID: {
1132     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1133       return true;
1134     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1135     return !losesInfo;
1136   }
1137   case Type::FloatTyID: {
1138     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1139       return true;
1140     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1141     return !losesInfo;
1142   }
1143   case Type::DoubleTyID: {
1144     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1145         &Val2.getSemantics() == &APFloat::IEEEsingle ||
1146         &Val2.getSemantics() == &APFloat::IEEEdouble)
1147       return true;
1148     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1149     return !losesInfo;
1150   }
1151   case Type::X86_FP80TyID:
1152     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1153            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1154            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1155            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1156   case Type::FP128TyID:
1157     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1158            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1159            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1160            &Val2.getSemantics() == &APFloat::IEEEquad;
1161   case Type::PPC_FP128TyID:
1162     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1163            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1164            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1165            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1166   }
1167 }
1168
1169
1170 //===----------------------------------------------------------------------===//
1171 //                      Factory Function Implementation
1172
1173 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1174   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1175          "Cannot create an aggregate zero of non-aggregate type!");
1176   
1177   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1178   if (Entry == 0)
1179     Entry = new ConstantAggregateZero(Ty);
1180   
1181   return Entry;
1182 }
1183
1184 /// destroyConstant - Remove the constant from the constant table.
1185 ///
1186 void ConstantAggregateZero::destroyConstant() {
1187   getContext().pImpl->CAZConstants.erase(getType());
1188   destroyConstantImpl();
1189 }
1190
1191 /// destroyConstant - Remove the constant from the constant table...
1192 ///
1193 void ConstantArray::destroyConstant() {
1194   getType()->getContext().pImpl->ArrayConstants.remove(this);
1195   destroyConstantImpl();
1196 }
1197
1198
1199 //---- ConstantStruct::get() implementation...
1200 //
1201
1202 // destroyConstant - Remove the constant from the constant table...
1203 //
1204 void ConstantStruct::destroyConstant() {
1205   getType()->getContext().pImpl->StructConstants.remove(this);
1206   destroyConstantImpl();
1207 }
1208
1209 // destroyConstant - Remove the constant from the constant table...
1210 //
1211 void ConstantVector::destroyConstant() {
1212   getType()->getContext().pImpl->VectorConstants.remove(this);
1213   destroyConstantImpl();
1214 }
1215
1216 /// getSplatValue - If this is a splat constant, where all of the
1217 /// elements have the same value, return that value. Otherwise return null.
1218 Constant *ConstantVector::getSplatValue() const {
1219   // Check out first element.
1220   Constant *Elt = getOperand(0);
1221   // Then make sure all remaining elements point to the same value.
1222   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1223     if (getOperand(I) != Elt)
1224       return 0;
1225   return Elt;
1226 }
1227
1228 //---- ConstantPointerNull::get() implementation.
1229 //
1230
1231 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1232   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1233   if (Entry == 0)
1234     Entry = new ConstantPointerNull(Ty);
1235   
1236   return Entry;
1237 }
1238
1239 // destroyConstant - Remove the constant from the constant table...
1240 //
1241 void ConstantPointerNull::destroyConstant() {
1242   getContext().pImpl->CPNConstants.erase(getType());
1243   // Free the constant and any dangling references to it.
1244   destroyConstantImpl();
1245 }
1246
1247
1248 //---- UndefValue::get() implementation.
1249 //
1250
1251 UndefValue *UndefValue::get(Type *Ty) {
1252   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1253   if (Entry == 0)
1254     Entry = new UndefValue(Ty);
1255   
1256   return Entry;
1257 }
1258
1259 // destroyConstant - Remove the constant from the constant table.
1260 //
1261 void UndefValue::destroyConstant() {
1262   // Free the constant and any dangling references to it.
1263   getContext().pImpl->UVConstants.erase(getType());
1264   destroyConstantImpl();
1265 }
1266
1267 //---- BlockAddress::get() implementation.
1268 //
1269
1270 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1271   assert(BB->getParent() != 0 && "Block must have a parent");
1272   return get(BB->getParent(), BB);
1273 }
1274
1275 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1276   BlockAddress *&BA =
1277     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1278   if (BA == 0)
1279     BA = new BlockAddress(F, BB);
1280   
1281   assert(BA->getFunction() == F && "Basic block moved between functions");
1282   return BA;
1283 }
1284
1285 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1286 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1287            &Op<0>(), 2) {
1288   setOperand(0, F);
1289   setOperand(1, BB);
1290   BB->AdjustBlockAddressRefCount(1);
1291 }
1292
1293
1294 // destroyConstant - Remove the constant from the constant table.
1295 //
1296 void BlockAddress::destroyConstant() {
1297   getFunction()->getType()->getContext().pImpl
1298     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1299   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1300   destroyConstantImpl();
1301 }
1302
1303 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1304   // This could be replacing either the Basic Block or the Function.  In either
1305   // case, we have to remove the map entry.
1306   Function *NewF = getFunction();
1307   BasicBlock *NewBB = getBasicBlock();
1308   
1309   if (U == &Op<0>())
1310     NewF = cast<Function>(To);
1311   else
1312     NewBB = cast<BasicBlock>(To);
1313   
1314   // See if the 'new' entry already exists, if not, just update this in place
1315   // and return early.
1316   BlockAddress *&NewBA =
1317     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1318   if (NewBA == 0) {
1319     getBasicBlock()->AdjustBlockAddressRefCount(-1);
1320     
1321     // Remove the old entry, this can't cause the map to rehash (just a
1322     // tombstone will get added).
1323     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1324                                                             getBasicBlock()));
1325     NewBA = this;
1326     setOperand(0, NewF);
1327     setOperand(1, NewBB);
1328     getBasicBlock()->AdjustBlockAddressRefCount(1);
1329     return;
1330   }
1331
1332   // Otherwise, I do need to replace this with an existing value.
1333   assert(NewBA != this && "I didn't contain From!");
1334   
1335   // Everyone using this now uses the replacement.
1336   replaceAllUsesWith(NewBA);
1337   
1338   destroyConstant();
1339 }
1340
1341 //---- ConstantExpr::get() implementations.
1342 //
1343
1344 /// This is a utility function to handle folding of casts and lookup of the
1345 /// cast in the ExprConstants map. It is used by the various get* methods below.
1346 static inline Constant *getFoldedCast(
1347   Instruction::CastOps opc, Constant *C, Type *Ty) {
1348   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1349   // Fold a few common cases
1350   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1351     return FC;
1352
1353   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1354
1355   // Look up the constant in the table first to ensure uniqueness
1356   std::vector<Constant*> argVec(1, C);
1357   ExprMapKeyType Key(opc, argVec);
1358   
1359   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1360 }
1361  
1362 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1363   Instruction::CastOps opc = Instruction::CastOps(oc);
1364   assert(Instruction::isCast(opc) && "opcode out of range");
1365   assert(C && Ty && "Null arguments to getCast");
1366   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1367
1368   switch (opc) {
1369   default:
1370     llvm_unreachable("Invalid cast opcode");
1371   case Instruction::Trunc:    return getTrunc(C, Ty);
1372   case Instruction::ZExt:     return getZExt(C, Ty);
1373   case Instruction::SExt:     return getSExt(C, Ty);
1374   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1375   case Instruction::FPExt:    return getFPExtend(C, Ty);
1376   case Instruction::UIToFP:   return getUIToFP(C, Ty);
1377   case Instruction::SIToFP:   return getSIToFP(C, Ty);
1378   case Instruction::FPToUI:   return getFPToUI(C, Ty);
1379   case Instruction::FPToSI:   return getFPToSI(C, Ty);
1380   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1381   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1382   case Instruction::BitCast:  return getBitCast(C, Ty);
1383   }
1384
1385
1386 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1387   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1388     return getBitCast(C, Ty);
1389   return getZExt(C, Ty);
1390 }
1391
1392 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1393   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1394     return getBitCast(C, Ty);
1395   return getSExt(C, Ty);
1396 }
1397
1398 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1399   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1400     return getBitCast(C, Ty);
1401   return getTrunc(C, Ty);
1402 }
1403
1404 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1405   assert(S->getType()->isPointerTy() && "Invalid cast");
1406   assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
1407
1408   if (Ty->isIntegerTy())
1409     return getPtrToInt(S, Ty);
1410   return getBitCast(S, Ty);
1411 }
1412
1413 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, 
1414                                        bool isSigned) {
1415   assert(C->getType()->isIntOrIntVectorTy() &&
1416          Ty->isIntOrIntVectorTy() && "Invalid cast");
1417   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1418   unsigned DstBits = Ty->getScalarSizeInBits();
1419   Instruction::CastOps opcode =
1420     (SrcBits == DstBits ? Instruction::BitCast :
1421      (SrcBits > DstBits ? Instruction::Trunc :
1422       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1423   return getCast(opcode, C, Ty);
1424 }
1425
1426 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1427   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1428          "Invalid cast");
1429   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1430   unsigned DstBits = Ty->getScalarSizeInBits();
1431   if (SrcBits == DstBits)
1432     return C; // Avoid a useless cast
1433   Instruction::CastOps opcode =
1434     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1435   return getCast(opcode, C, Ty);
1436 }
1437
1438 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1439 #ifndef NDEBUG
1440   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1441   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1442 #endif
1443   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1444   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1445   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1446   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1447          "SrcTy must be larger than DestTy for Trunc!");
1448
1449   return getFoldedCast(Instruction::Trunc, C, Ty);
1450 }
1451
1452 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1453 #ifndef NDEBUG
1454   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1455   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1456 #endif
1457   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1458   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1459   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1460   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1461          "SrcTy must be smaller than DestTy for SExt!");
1462
1463   return getFoldedCast(Instruction::SExt, C, Ty);
1464 }
1465
1466 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1467 #ifndef NDEBUG
1468   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1469   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1470 #endif
1471   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1472   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1473   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1474   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1475          "SrcTy must be smaller than DestTy for ZExt!");
1476
1477   return getFoldedCast(Instruction::ZExt, C, Ty);
1478 }
1479
1480 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1481 #ifndef NDEBUG
1482   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1483   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1484 #endif
1485   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1486   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1487          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1488          "This is an illegal floating point truncation!");
1489   return getFoldedCast(Instruction::FPTrunc, C, Ty);
1490 }
1491
1492 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1493 #ifndef NDEBUG
1494   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1495   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1496 #endif
1497   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1498   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1499          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1500          "This is an illegal floating point extension!");
1501   return getFoldedCast(Instruction::FPExt, C, Ty);
1502 }
1503
1504 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1505 #ifndef NDEBUG
1506   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1507   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1508 #endif
1509   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1510   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1511          "This is an illegal uint to floating point cast!");
1512   return getFoldedCast(Instruction::UIToFP, C, Ty);
1513 }
1514
1515 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1516 #ifndef NDEBUG
1517   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1518   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1519 #endif
1520   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1521   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1522          "This is an illegal sint to floating point cast!");
1523   return getFoldedCast(Instruction::SIToFP, C, Ty);
1524 }
1525
1526 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1527 #ifndef NDEBUG
1528   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1529   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1530 #endif
1531   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1532   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1533          "This is an illegal floating point to uint cast!");
1534   return getFoldedCast(Instruction::FPToUI, C, Ty);
1535 }
1536
1537 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1538 #ifndef NDEBUG
1539   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1540   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1541 #endif
1542   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1543   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1544          "This is an illegal floating point to sint cast!");
1545   return getFoldedCast(Instruction::FPToSI, C, Ty);
1546 }
1547
1548 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1549   assert(C->getType()->getScalarType()->isPointerTy() &&
1550          "PtrToInt source must be pointer or pointer vector");
1551   assert(DstTy->getScalarType()->isIntegerTy() && 
1552          "PtrToInt destination must be integer or integer vector");
1553   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1554   if (isa<VectorType>(C->getType()))
1555     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1556            "Invalid cast between a different number of vector elements");
1557   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1558 }
1559
1560 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1561   assert(C->getType()->getScalarType()->isIntegerTy() &&
1562          "IntToPtr source must be integer or integer vector");
1563   assert(DstTy->getScalarType()->isPointerTy() &&
1564          "IntToPtr destination must be a pointer or pointer vector");
1565   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1566   if (isa<VectorType>(C->getType()))
1567     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1568            "Invalid cast between a different number of vector elements");
1569   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1570 }
1571
1572 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1573   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1574          "Invalid constantexpr bitcast!");
1575   
1576   // It is common to ask for a bitcast of a value to its own type, handle this
1577   // speedily.
1578   if (C->getType() == DstTy) return C;
1579   
1580   return getFoldedCast(Instruction::BitCast, C, DstTy);
1581 }
1582
1583 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1584                             unsigned Flags) {
1585   // Check the operands for consistency first.
1586   assert(Opcode >= Instruction::BinaryOpsBegin &&
1587          Opcode <  Instruction::BinaryOpsEnd   &&
1588          "Invalid opcode in binary constant expression");
1589   assert(C1->getType() == C2->getType() &&
1590          "Operand types in binary constant expression should match");
1591   
1592 #ifndef NDEBUG
1593   switch (Opcode) {
1594   case Instruction::Add:
1595   case Instruction::Sub:
1596   case Instruction::Mul:
1597     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1598     assert(C1->getType()->isIntOrIntVectorTy() &&
1599            "Tried to create an integer operation on a non-integer type!");
1600     break;
1601   case Instruction::FAdd:
1602   case Instruction::FSub:
1603   case Instruction::FMul:
1604     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1605     assert(C1->getType()->isFPOrFPVectorTy() &&
1606            "Tried to create a floating-point operation on a "
1607            "non-floating-point type!");
1608     break;
1609   case Instruction::UDiv: 
1610   case Instruction::SDiv: 
1611     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1612     assert(C1->getType()->isIntOrIntVectorTy() &&
1613            "Tried to create an arithmetic operation on a non-arithmetic type!");
1614     break;
1615   case Instruction::FDiv:
1616     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1617     assert(C1->getType()->isFPOrFPVectorTy() &&
1618            "Tried to create an arithmetic operation on a non-arithmetic type!");
1619     break;
1620   case Instruction::URem: 
1621   case Instruction::SRem: 
1622     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1623     assert(C1->getType()->isIntOrIntVectorTy() &&
1624            "Tried to create an arithmetic operation on a non-arithmetic type!");
1625     break;
1626   case Instruction::FRem:
1627     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1628     assert(C1->getType()->isFPOrFPVectorTy() &&
1629            "Tried to create an arithmetic operation on a non-arithmetic type!");
1630     break;
1631   case Instruction::And:
1632   case Instruction::Or:
1633   case Instruction::Xor:
1634     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1635     assert(C1->getType()->isIntOrIntVectorTy() &&
1636            "Tried to create a logical operation on a non-integral type!");
1637     break;
1638   case Instruction::Shl:
1639   case Instruction::LShr:
1640   case Instruction::AShr:
1641     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1642     assert(C1->getType()->isIntOrIntVectorTy() &&
1643            "Tried to create a shift operation on a non-integer type!");
1644     break;
1645   default:
1646     break;
1647   }
1648 #endif
1649
1650   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1651     return FC;          // Fold a few common cases.
1652   
1653   std::vector<Constant*> argVec(1, C1);
1654   argVec.push_back(C2);
1655   ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1656   
1657   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1658   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1659 }
1660
1661 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1662   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1663   // Note that a non-inbounds gep is used, as null isn't within any object.
1664   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1665   Constant *GEP = getGetElementPtr(
1666                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1667   return getPtrToInt(GEP, 
1668                      Type::getInt64Ty(Ty->getContext()));
1669 }
1670
1671 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1672   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1673   // Note that a non-inbounds gep is used, as null isn't within any object.
1674   Type *AligningTy = 
1675     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1676   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1677   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1678   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1679   Constant *Indices[2] = { Zero, One };
1680   Constant *GEP = getGetElementPtr(NullPtr, Indices);
1681   return getPtrToInt(GEP,
1682                      Type::getInt64Ty(Ty->getContext()));
1683 }
1684
1685 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1686   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1687                                            FieldNo));
1688 }
1689
1690 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1691   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1692   // Note that a non-inbounds gep is used, as null isn't within any object.
1693   Constant *GEPIdx[] = {
1694     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1695     FieldNo
1696   };
1697   Constant *GEP = getGetElementPtr(
1698                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1699   return getPtrToInt(GEP,
1700                      Type::getInt64Ty(Ty->getContext()));
1701 }
1702
1703 Constant *ConstantExpr::getCompare(unsigned short Predicate, 
1704                                    Constant *C1, Constant *C2) {
1705   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1706   
1707   switch (Predicate) {
1708   default: llvm_unreachable("Invalid CmpInst predicate");
1709   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1710   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1711   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1712   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1713   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1714   case CmpInst::FCMP_TRUE:
1715     return getFCmp(Predicate, C1, C2);
1716     
1717   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1718   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1719   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1720   case CmpInst::ICMP_SLE:
1721     return getICmp(Predicate, C1, C2);
1722   }
1723 }
1724
1725 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1726   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1727
1728   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1729     return SC;        // Fold common cases
1730
1731   std::vector<Constant*> argVec(3, C);
1732   argVec[1] = V1;
1733   argVec[2] = V2;
1734   ExprMapKeyType Key(Instruction::Select, argVec);
1735   
1736   LLVMContextImpl *pImpl = C->getContext().pImpl;
1737   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1738 }
1739
1740 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1741                                          bool InBounds) {
1742   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1743     return FC;          // Fold a few common cases.
1744
1745   // Get the result type of the getelementptr!
1746   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1747   assert(Ty && "GEP indices invalid!");
1748   unsigned AS = C->getType()->getPointerAddressSpace();
1749   Type *ReqTy = Ty->getPointerTo(AS);
1750   
1751   assert(C->getType()->isPointerTy() &&
1752          "Non-pointer type for constant GetElementPtr expression");
1753   // Look up the constant in the table first to ensure uniqueness
1754   std::vector<Constant*> ArgVec;
1755   ArgVec.reserve(1 + Idxs.size());
1756   ArgVec.push_back(C);
1757   for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1758     ArgVec.push_back(cast<Constant>(Idxs[i]));
1759   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1760                            InBounds ? GEPOperator::IsInBounds : 0);
1761   
1762   LLVMContextImpl *pImpl = C->getContext().pImpl;
1763   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1764 }
1765
1766 Constant *
1767 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1768   assert(LHS->getType() == RHS->getType());
1769   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
1770          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1771
1772   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1773     return FC;          // Fold a few common cases...
1774
1775   // Look up the constant in the table first to ensure uniqueness
1776   std::vector<Constant*> ArgVec;
1777   ArgVec.push_back(LHS);
1778   ArgVec.push_back(RHS);
1779   // Get the key type with both the opcode and predicate
1780   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1781
1782   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1783   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1784     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1785
1786   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1787   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1788 }
1789
1790 Constant *
1791 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1792   assert(LHS->getType() == RHS->getType());
1793   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1794
1795   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1796     return FC;          // Fold a few common cases...
1797
1798   // Look up the constant in the table first to ensure uniqueness
1799   std::vector<Constant*> ArgVec;
1800   ArgVec.push_back(LHS);
1801   ArgVec.push_back(RHS);
1802   // Get the key type with both the opcode and predicate
1803   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1804
1805   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1806   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1807     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1808
1809   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1810   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1811 }
1812
1813 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1814   assert(Val->getType()->isVectorTy() &&
1815          "Tried to create extractelement operation on non-vector type!");
1816   assert(Idx->getType()->isIntegerTy(32) &&
1817          "Extractelement index must be i32 type!");
1818   
1819   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1820     return FC;          // Fold a few common cases.
1821   
1822   // Look up the constant in the table first to ensure uniqueness
1823   std::vector<Constant*> ArgVec(1, Val);
1824   ArgVec.push_back(Idx);
1825   const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1826   
1827   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1828   Type *ReqTy = Val->getType()->getVectorElementType();
1829   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1830 }
1831
1832 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
1833                                          Constant *Idx) {
1834   assert(Val->getType()->isVectorTy() &&
1835          "Tried to create insertelement operation on non-vector type!");
1836   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1837          "Insertelement types must match!");
1838   assert(Idx->getType()->isIntegerTy(32) &&
1839          "Insertelement index must be i32 type!");
1840
1841   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1842     return FC;          // Fold a few common cases.
1843   // Look up the constant in the table first to ensure uniqueness
1844   std::vector<Constant*> ArgVec(1, Val);
1845   ArgVec.push_back(Elt);
1846   ArgVec.push_back(Idx);
1847   const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1848   
1849   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1850   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1851 }
1852
1853 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
1854                                          Constant *Mask) {
1855   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1856          "Invalid shuffle vector constant expr operands!");
1857
1858   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1859     return FC;          // Fold a few common cases.
1860
1861   unsigned NElts = Mask->getType()->getVectorNumElements();
1862   Type *EltTy = V1->getType()->getVectorElementType();
1863   Type *ShufTy = VectorType::get(EltTy, NElts);
1864
1865   // Look up the constant in the table first to ensure uniqueness
1866   std::vector<Constant*> ArgVec(1, V1);
1867   ArgVec.push_back(V2);
1868   ArgVec.push_back(Mask);
1869   const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1870   
1871   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1872   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1873 }
1874
1875 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1876                                        ArrayRef<unsigned> Idxs) {
1877   assert(ExtractValueInst::getIndexedType(Agg->getType(),
1878                                           Idxs) == Val->getType() &&
1879          "insertvalue indices invalid!");
1880   assert(Agg->getType()->isFirstClassType() &&
1881          "Non-first-class type for constant insertvalue expression");
1882   Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1883   assert(FC && "insertvalue constant expr couldn't be folded!");
1884   return FC;
1885 }
1886
1887 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1888                                         ArrayRef<unsigned> Idxs) {
1889   assert(Agg->getType()->isFirstClassType() &&
1890          "Tried to create extractelement operation on non-first-class type!");
1891
1892   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1893   (void)ReqTy;
1894   assert(ReqTy && "extractvalue indices invalid!");
1895   
1896   assert(Agg->getType()->isFirstClassType() &&
1897          "Non-first-class type for constant extractvalue expression");
1898   Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1899   assert(FC && "ExtractValue constant expr couldn't be folded!");
1900   return FC;
1901 }
1902
1903 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1904   assert(C->getType()->isIntOrIntVectorTy() &&
1905          "Cannot NEG a nonintegral value!");
1906   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1907                 C, HasNUW, HasNSW);
1908 }
1909
1910 Constant *ConstantExpr::getFNeg(Constant *C) {
1911   assert(C->getType()->isFPOrFPVectorTy() &&
1912          "Cannot FNEG a non-floating-point value!");
1913   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1914 }
1915
1916 Constant *ConstantExpr::getNot(Constant *C) {
1917   assert(C->getType()->isIntOrIntVectorTy() &&
1918          "Cannot NOT a nonintegral value!");
1919   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1920 }
1921
1922 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1923                                bool HasNUW, bool HasNSW) {
1924   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1925                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1926   return get(Instruction::Add, C1, C2, Flags);
1927 }
1928
1929 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
1930   return get(Instruction::FAdd, C1, C2);
1931 }
1932
1933 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
1934                                bool HasNUW, bool HasNSW) {
1935   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1936                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1937   return get(Instruction::Sub, C1, C2, Flags);
1938 }
1939
1940 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
1941   return get(Instruction::FSub, C1, C2);
1942 }
1943
1944 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
1945                                bool HasNUW, bool HasNSW) {
1946   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1947                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1948   return get(Instruction::Mul, C1, C2, Flags);
1949 }
1950
1951 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
1952   return get(Instruction::FMul, C1, C2);
1953 }
1954
1955 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
1956   return get(Instruction::UDiv, C1, C2,
1957              isExact ? PossiblyExactOperator::IsExact : 0);
1958 }
1959
1960 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
1961   return get(Instruction::SDiv, C1, C2,
1962              isExact ? PossiblyExactOperator::IsExact : 0);
1963 }
1964
1965 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
1966   return get(Instruction::FDiv, C1, C2);
1967 }
1968
1969 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
1970   return get(Instruction::URem, C1, C2);
1971 }
1972
1973 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
1974   return get(Instruction::SRem, C1, C2);
1975 }
1976
1977 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
1978   return get(Instruction::FRem, C1, C2);
1979 }
1980
1981 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
1982   return get(Instruction::And, C1, C2);
1983 }
1984
1985 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
1986   return get(Instruction::Or, C1, C2);
1987 }
1988
1989 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
1990   return get(Instruction::Xor, C1, C2);
1991 }
1992
1993 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
1994                                bool HasNUW, bool HasNSW) {
1995   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1996                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1997   return get(Instruction::Shl, C1, C2, Flags);
1998 }
1999
2000 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2001   return get(Instruction::LShr, C1, C2,
2002              isExact ? PossiblyExactOperator::IsExact : 0);
2003 }
2004
2005 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2006   return get(Instruction::AShr, C1, C2,
2007              isExact ? PossiblyExactOperator::IsExact : 0);
2008 }
2009
2010 // destroyConstant - Remove the constant from the constant table...
2011 //
2012 void ConstantExpr::destroyConstant() {
2013   getType()->getContext().pImpl->ExprConstants.remove(this);
2014   destroyConstantImpl();
2015 }
2016
2017 const char *ConstantExpr::getOpcodeName() const {
2018   return Instruction::getOpcodeName(getOpcode());
2019 }
2020
2021
2022
2023 GetElementPtrConstantExpr::
2024 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2025                           Type *DestTy)
2026   : ConstantExpr(DestTy, Instruction::GetElementPtr,
2027                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2028                  - (IdxList.size()+1), IdxList.size()+1) {
2029   OperandList[0] = C;
2030   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2031     OperandList[i+1] = IdxList[i];
2032 }
2033
2034 //===----------------------------------------------------------------------===//
2035 //                       ConstantData* implementations
2036
2037 void ConstantDataArray::anchor() {}
2038 void ConstantDataVector::anchor() {}
2039
2040 /// getElementType - Return the element type of the array/vector.
2041 Type *ConstantDataSequential::getElementType() const {
2042   return getType()->getElementType();
2043 }
2044
2045 StringRef ConstantDataSequential::getRawDataValues() const {
2046   return StringRef(DataElements, getNumElements()*getElementByteSize());
2047 }
2048
2049 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2050 /// formed with a vector or array of the specified element type.
2051 /// ConstantDataArray only works with normal float and int types that are
2052 /// stored densely in memory, not with things like i42 or x86_f80.
2053 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2054   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2055   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2056     switch (IT->getBitWidth()) {
2057     case 8:
2058     case 16:
2059     case 32:
2060     case 64:
2061       return true;
2062     default: break;
2063     }
2064   }
2065   return false;
2066 }
2067
2068 /// getNumElements - Return the number of elements in the array or vector.
2069 unsigned ConstantDataSequential::getNumElements() const {
2070   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2071     return AT->getNumElements();
2072   return getType()->getVectorNumElements();
2073 }
2074
2075
2076 /// getElementByteSize - Return the size in bytes of the elements in the data.
2077 uint64_t ConstantDataSequential::getElementByteSize() const {
2078   return getElementType()->getPrimitiveSizeInBits()/8;
2079 }
2080
2081 /// getElementPointer - Return the start of the specified element.
2082 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2083   assert(Elt < getNumElements() && "Invalid Elt");
2084   return DataElements+Elt*getElementByteSize();
2085 }
2086
2087
2088 /// isAllZeros - return true if the array is empty or all zeros.
2089 static bool isAllZeros(StringRef Arr) {
2090   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2091     if (*I != 0)
2092       return false;
2093   return true;
2094 }
2095
2096 /// getImpl - This is the underlying implementation of all of the
2097 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2098 /// the correct element type.  We take the bytes in as a StringRef because
2099 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2100 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2101   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2102   // If the elements are all zero or there are no elements, return a CAZ, which
2103   // is more dense and canonical.
2104   if (isAllZeros(Elements))
2105     return ConstantAggregateZero::get(Ty);
2106
2107   // Do a lookup to see if we have already formed one of these.
2108   StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2109     Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2110   
2111   // The bucket can point to a linked list of different CDS's that have the same
2112   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2113   // of i8, or a 1-element array of i32.  They'll both end up in the same
2114   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2115   ConstantDataSequential **Entry = &Slot.getValue();
2116   for (ConstantDataSequential *Node = *Entry; Node != 0;
2117        Entry = &Node->Next, Node = *Entry)
2118     if (Node->getType() == Ty)
2119       return Node;
2120   
2121   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2122   // and return it.
2123   if (isa<ArrayType>(Ty))
2124     return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2125
2126   assert(isa<VectorType>(Ty));
2127   return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2128 }
2129
2130 void ConstantDataSequential::destroyConstant() {
2131   // Remove the constant from the StringMap.
2132   StringMap<ConstantDataSequential*> &CDSConstants = 
2133     getType()->getContext().pImpl->CDSConstants;
2134   
2135   StringMap<ConstantDataSequential*>::iterator Slot =
2136     CDSConstants.find(getRawDataValues());
2137
2138   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2139
2140   ConstantDataSequential **Entry = &Slot->getValue();
2141
2142   // Remove the entry from the hash table.
2143   if ((*Entry)->Next == 0) {
2144     // If there is only one value in the bucket (common case) it must be this
2145     // entry, and removing the entry should remove the bucket completely.
2146     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2147     getContext().pImpl->CDSConstants.erase(Slot);
2148   } else {
2149     // Otherwise, there are multiple entries linked off the bucket, unlink the 
2150     // node we care about but keep the bucket around.
2151     for (ConstantDataSequential *Node = *Entry; ;
2152          Entry = &Node->Next, Node = *Entry) {
2153       assert(Node && "Didn't find entry in its uniquing hash table!");
2154       // If we found our entry, unlink it from the list and we're done.
2155       if (Node == this) {
2156         *Entry = Node->Next;
2157         break;
2158       }
2159     }
2160   }
2161   
2162   // If we were part of a list, make sure that we don't delete the list that is
2163   // still owned by the uniquing map.
2164   Next = 0;
2165   
2166   // Finally, actually delete it.
2167   destroyConstantImpl();
2168 }
2169
2170 /// get() constructors - Return a constant with array type with an element
2171 /// count and element type matching the ArrayRef passed in.  Note that this
2172 /// can return a ConstantAggregateZero object.
2173 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2174   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2175   return getImpl(StringRef((char*)Elts.data(), Elts.size()*1), Ty);
2176 }
2177 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2178   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2179   return getImpl(StringRef((char*)Elts.data(), Elts.size()*2), Ty);
2180 }
2181 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2182   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2183   return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty);
2184 }
2185 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2186   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2187   return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty);
2188 }
2189 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2190   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2191   return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty);
2192 }
2193 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2194   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2195   return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty);
2196 }
2197
2198 /// getString - This method constructs a CDS and initializes it with a text
2199 /// string. The default behavior (AddNull==true) causes a null terminator to
2200 /// be placed at the end of the array (increasing the length of the string by
2201 /// one more than the StringRef would normally indicate.  Pass AddNull=false
2202 /// to disable this behavior.
2203 Constant *ConstantDataArray::getString(LLVMContext &Context,
2204                                        StringRef Str, bool AddNull) {
2205   if (!AddNull)
2206     return get(Context, ArrayRef<uint8_t>((uint8_t*)Str.data(), Str.size()));
2207   
2208   SmallVector<uint8_t, 64> ElementVals;
2209   ElementVals.append(Str.begin(), Str.end());
2210   ElementVals.push_back(0);
2211   return get(Context, ElementVals);
2212 }
2213
2214 /// get() constructors - Return a constant with vector type with an element
2215 /// count and element type matching the ArrayRef passed in.  Note that this
2216 /// can return a ConstantAggregateZero object.
2217 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2218   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2219   return getImpl(StringRef((char*)Elts.data(), Elts.size()*1), Ty);
2220 }
2221 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2222   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2223   return getImpl(StringRef((char*)Elts.data(), Elts.size()*2), Ty);
2224 }
2225 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2226   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2227   return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty);
2228 }
2229 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2230   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2231   return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty);
2232 }
2233 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2234   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2235   return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty);
2236 }
2237 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2238   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2239   return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty);
2240 }
2241
2242 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2243   assert(isElementTypeCompatible(V->getType()) &&
2244          "Element type not compatible with ConstantData");
2245   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2246     if (CI->getType()->isIntegerTy(8)) {
2247       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2248       return get(V->getContext(), Elts);
2249     }
2250     if (CI->getType()->isIntegerTy(16)) {
2251       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2252       return get(V->getContext(), Elts);
2253     }
2254     if (CI->getType()->isIntegerTy(32)) {
2255       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2256       return get(V->getContext(), Elts);
2257     }
2258     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2259     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2260     return get(V->getContext(), Elts);
2261   }
2262
2263   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2264     if (CFP->getType()->isFloatTy()) {
2265       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2266       return get(V->getContext(), Elts);
2267     }
2268     if (CFP->getType()->isDoubleTy()) {
2269       SmallVector<double, 16> Elts(NumElts,
2270                                    CFP->getValueAPF().convertToDouble());
2271       return get(V->getContext(), Elts);
2272     }
2273   }
2274   return ConstantVector::getSplat(NumElts, V);
2275 }
2276
2277
2278 /// getElementAsInteger - If this is a sequential container of integers (of
2279 /// any size), return the specified element in the low bits of a uint64_t.
2280 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2281   assert(isa<IntegerType>(getElementType()) &&
2282          "Accessor can only be used when element is an integer");
2283   const char *EltPtr = getElementPointer(Elt);
2284   
2285   // The data is stored in host byte order, make sure to cast back to the right
2286   // type to load with the right endianness.
2287   switch (getElementType()->getIntegerBitWidth()) {
2288   default: assert(0 && "Invalid bitwidth for CDS");
2289   case 8:  return *(uint8_t*)EltPtr;
2290   case 16: return *(uint16_t*)EltPtr;
2291   case 32: return *(uint32_t*)EltPtr;
2292   case 64: return *(uint64_t*)EltPtr;
2293   }
2294 }
2295
2296 /// getElementAsAPFloat - If this is a sequential container of floating point
2297 /// type, return the specified element as an APFloat.
2298 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2299   const char *EltPtr = getElementPointer(Elt);
2300
2301   switch (getElementType()->getTypeID()) {
2302   default:
2303     assert(0 && "Accessor can only be used when element is float/double!");
2304   case Type::FloatTyID: return APFloat(*(float*)EltPtr);
2305   case Type::DoubleTyID: return APFloat(*(double*)EltPtr);
2306   }
2307 }
2308
2309 /// getElementAsFloat - If this is an sequential container of floats, return
2310 /// the specified element as a float.
2311 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2312   assert(getElementType()->isFloatTy() &&
2313          "Accessor can only be used when element is a 'float'");
2314   return *(float*)getElementPointer(Elt);
2315 }
2316
2317 /// getElementAsDouble - If this is an sequential container of doubles, return
2318 /// the specified element as a float.
2319 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2320   assert(getElementType()->isDoubleTy() &&
2321          "Accessor can only be used when element is a 'float'");
2322   return *(double*)getElementPointer(Elt);
2323 }
2324
2325 /// getElementAsConstant - Return a Constant for a specified index's element.
2326 /// Note that this has to compute a new constant to return, so it isn't as
2327 /// efficient as getElementAsInteger/Float/Double.
2328 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2329   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2330     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2331   
2332   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2333 }
2334
2335 /// isString - This method returns true if this is an array of i8.
2336 bool ConstantDataSequential::isString() const {
2337   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2338 }
2339
2340 /// isCString - This method returns true if the array "isString", ends with a
2341 /// nul byte, and does not contains any other nul bytes.
2342 bool ConstantDataSequential::isCString() const {
2343   if (!isString())
2344     return false;
2345   
2346   StringRef Str = getAsString();
2347   
2348   // The last value must be nul.
2349   if (Str.back() != 0) return false;
2350   
2351   // Other elements must be non-nul.
2352   return Str.drop_back().find(0) == StringRef::npos;
2353 }
2354
2355 /// getSplatValue - If this is a splat constant, meaning that all of the
2356 /// elements have the same value, return that value. Otherwise return NULL.
2357 Constant *ConstantDataVector::getSplatValue() const {
2358   const char *Base = getRawDataValues().data();
2359   
2360   // Compare elements 1+ to the 0'th element.
2361   unsigned EltSize = getElementByteSize();
2362   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2363     if (memcmp(Base, Base+i*EltSize, EltSize))
2364       return 0;
2365   
2366   // If they're all the same, return the 0th one as a representative.
2367   return getElementAsConstant(0);
2368 }
2369
2370 //===----------------------------------------------------------------------===//
2371 //                replaceUsesOfWithOnConstant implementations
2372
2373 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2374 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2375 /// etc.
2376 ///
2377 /// Note that we intentionally replace all uses of From with To here.  Consider
2378 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2379 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2380 /// single invocation handles all 1000 uses.  Handling them one at a time would
2381 /// work, but would be really slow because it would have to unique each updated
2382 /// array instance.
2383 ///
2384 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2385                                                 Use *U) {
2386   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2387   Constant *ToC = cast<Constant>(To);
2388
2389   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2390
2391   SmallVector<Constant*, 8> Values;
2392   LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2393   Lookup.first = cast<ArrayType>(getType());
2394   Values.reserve(getNumOperands());  // Build replacement array.
2395
2396   // Fill values with the modified operands of the constant array.  Also, 
2397   // compute whether this turns into an all-zeros array.
2398   unsigned NumUpdated = 0;
2399   
2400   // Keep track of whether all the values in the array are "ToC".
2401   bool AllSame = true;
2402   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2403     Constant *Val = cast<Constant>(O->get());
2404     if (Val == From) {
2405       Val = ToC;
2406       ++NumUpdated;
2407     }
2408     Values.push_back(Val);
2409     AllSame &= Val == ToC;
2410   }
2411   
2412   Constant *Replacement = 0;
2413   if (AllSame && ToC->isNullValue()) {
2414     Replacement = ConstantAggregateZero::get(getType());
2415   } else if (AllSame && isa<UndefValue>(ToC)) {
2416     Replacement = UndefValue::get(getType());
2417   } else {
2418     // Check to see if we have this array type already.
2419     Lookup.second = makeArrayRef(Values);
2420     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2421       pImpl->ArrayConstants.find(Lookup);
2422     
2423     if (I != pImpl->ArrayConstants.map_end()) {
2424       Replacement = I->first;
2425     } else {
2426       // Okay, the new shape doesn't exist in the system yet.  Instead of
2427       // creating a new constant array, inserting it, replaceallusesof'ing the
2428       // old with the new, then deleting the old... just update the current one
2429       // in place!
2430       pImpl->ArrayConstants.remove(this);
2431       
2432       // Update to the new value.  Optimize for the case when we have a single
2433       // operand that we're changing, but handle bulk updates efficiently.
2434       if (NumUpdated == 1) {
2435         unsigned OperandToUpdate = U - OperandList;
2436         assert(getOperand(OperandToUpdate) == From &&
2437                "ReplaceAllUsesWith broken!");
2438         setOperand(OperandToUpdate, ToC);
2439       } else {
2440         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2441           if (getOperand(i) == From)
2442             setOperand(i, ToC);
2443       }
2444       pImpl->ArrayConstants.insert(this);
2445       return;
2446     }
2447   }
2448  
2449   // Otherwise, I do need to replace this with an existing value.
2450   assert(Replacement != this && "I didn't contain From!");
2451   
2452   // Everyone using this now uses the replacement.
2453   replaceAllUsesWith(Replacement);
2454   
2455   // Delete the old constant!
2456   destroyConstant();
2457 }
2458
2459 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2460                                                  Use *U) {
2461   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2462   Constant *ToC = cast<Constant>(To);
2463
2464   unsigned OperandToUpdate = U-OperandList;
2465   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2466
2467   SmallVector<Constant*, 8> Values;
2468   LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2469   Lookup.first = cast<StructType>(getType());
2470   Values.reserve(getNumOperands());  // Build replacement struct.
2471   
2472   // Fill values with the modified operands of the constant struct.  Also, 
2473   // compute whether this turns into an all-zeros struct.
2474   bool isAllZeros = false;
2475   bool isAllUndef = false;
2476   if (ToC->isNullValue()) {
2477     isAllZeros = true;
2478     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2479       Constant *Val = cast<Constant>(O->get());
2480       Values.push_back(Val);
2481       if (isAllZeros) isAllZeros = Val->isNullValue();
2482     }
2483   } else if (isa<UndefValue>(ToC)) {
2484     isAllUndef = true;
2485     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2486       Constant *Val = cast<Constant>(O->get());
2487       Values.push_back(Val);
2488       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2489     }
2490   } else {
2491     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2492       Values.push_back(cast<Constant>(O->get()));
2493   }
2494   Values[OperandToUpdate] = ToC;
2495   
2496   LLVMContextImpl *pImpl = getContext().pImpl;
2497   
2498   Constant *Replacement = 0;
2499   if (isAllZeros) {
2500     Replacement = ConstantAggregateZero::get(getType());
2501   } else if (isAllUndef) {
2502     Replacement = UndefValue::get(getType());
2503   } else {
2504     // Check to see if we have this struct type already.
2505     Lookup.second = makeArrayRef(Values);
2506     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2507       pImpl->StructConstants.find(Lookup);
2508     
2509     if (I != pImpl->StructConstants.map_end()) {
2510       Replacement = I->first;
2511     } else {
2512       // Okay, the new shape doesn't exist in the system yet.  Instead of
2513       // creating a new constant struct, inserting it, replaceallusesof'ing the
2514       // old with the new, then deleting the old... just update the current one
2515       // in place!
2516       pImpl->StructConstants.remove(this);
2517       
2518       // Update to the new value.
2519       setOperand(OperandToUpdate, ToC);
2520       pImpl->StructConstants.insert(this);
2521       return;
2522     }
2523   }
2524   
2525   assert(Replacement != this && "I didn't contain From!");
2526   
2527   // Everyone using this now uses the replacement.
2528   replaceAllUsesWith(Replacement);
2529   
2530   // Delete the old constant!
2531   destroyConstant();
2532 }
2533
2534 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2535                                                  Use *U) {
2536   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2537   
2538   SmallVector<Constant*, 8> Values;
2539   Values.reserve(getNumOperands());  // Build replacement array...
2540   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2541     Constant *Val = getOperand(i);
2542     if (Val == From) Val = cast<Constant>(To);
2543     Values.push_back(Val);
2544   }
2545   
2546   Constant *Replacement = get(Values);
2547   assert(Replacement != this && "I didn't contain From!");
2548   
2549   // Everyone using this now uses the replacement.
2550   replaceAllUsesWith(Replacement);
2551   
2552   // Delete the old constant!
2553   destroyConstant();
2554 }
2555
2556 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2557                                                Use *U) {
2558   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2559   Constant *To = cast<Constant>(ToV);
2560   
2561   SmallVector<Constant*, 8> NewOps;
2562   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2563     Constant *Op = getOperand(i);
2564     NewOps.push_back(Op == From ? To : Op);
2565   }
2566   
2567   Constant *Replacement = getWithOperands(NewOps);
2568   assert(Replacement != this && "I didn't contain From!");
2569   
2570   // Everyone using this now uses the replacement.
2571   replaceAllUsesWith(Replacement);
2572   
2573   // Delete the old constant!
2574   destroyConstant();
2575 }