Fix -Wextra-semi warnings.
[oota-llvm.git] / lib / Transforms / Vectorize / SLPVectorizer.cpp
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Vectorize.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CodeMetrics.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Analysis/VectorUtils.h"
47 #include <algorithm>
48 #include <map>
49 #include <memory>
50
51 using namespace llvm;
52
53 #define SV_NAME "slp-vectorizer"
54 #define DEBUG_TYPE "SLP"
55
56 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
57
58 static cl::opt<int>
59     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
60                      cl::desc("Only vectorize if you gain more than this "
61                               "number "));
62
63 static cl::opt<bool>
64 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
65                    cl::desc("Attempt to vectorize horizontal reductions"));
66
67 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
68     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
69     cl::desc(
70         "Attempt to vectorize horizontal reductions feeding into a store"));
71
72 static cl::opt<int>
73 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
74     cl::desc("Attempt to vectorize for this register size in bits"));
75
76 namespace {
77
78 // FIXME: Set this via cl::opt to allow overriding.
79 static const unsigned MinVecRegSize = 128;
80
81 static const unsigned RecursionMaxDepth = 12;
82
83 // Limit the number of alias checks. The limit is chosen so that
84 // it has no negative effect on the llvm benchmarks.
85 static const unsigned AliasedCheckLimit = 10;
86
87 // Another limit for the alias checks: The maximum distance between load/store
88 // instructions where alias checks are done.
89 // This limit is useful for very large basic blocks.
90 static const unsigned MaxMemDepDistance = 160;
91
92 /// \brief Predicate for the element types that the SLP vectorizer supports.
93 ///
94 /// The most important thing to filter here are types which are invalid in LLVM
95 /// vectors. We also filter target specific types which have absolutely no
96 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
97 /// avoids spending time checking the cost model and realizing that they will
98 /// be inevitably scalarized.
99 static bool isValidElementType(Type *Ty) {
100   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
101          !Ty->isPPC_FP128Ty();
102 }
103
104 /// \returns the parent basic block if all of the instructions in \p VL
105 /// are in the same block or null otherwise.
106 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
107   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
108   if (!I0)
109     return nullptr;
110   BasicBlock *BB = I0->getParent();
111   for (int i = 1, e = VL.size(); i < e; i++) {
112     Instruction *I = dyn_cast<Instruction>(VL[i]);
113     if (!I)
114       return nullptr;
115
116     if (BB != I->getParent())
117       return nullptr;
118   }
119   return BB;
120 }
121
122 /// \returns True if all of the values in \p VL are constants.
123 static bool allConstant(ArrayRef<Value *> VL) {
124   for (unsigned i = 0, e = VL.size(); i < e; ++i)
125     if (!isa<Constant>(VL[i]))
126       return false;
127   return true;
128 }
129
130 /// \returns True if all of the values in \p VL are identical.
131 static bool isSplat(ArrayRef<Value *> VL) {
132   for (unsigned i = 1, e = VL.size(); i < e; ++i)
133     if (VL[i] != VL[0])
134       return false;
135   return true;
136 }
137
138 ///\returns Opcode that can be clubbed with \p Op to create an alternate
139 /// sequence which can later be merged as a ShuffleVector instruction.
140 static unsigned getAltOpcode(unsigned Op) {
141   switch (Op) {
142   case Instruction::FAdd:
143     return Instruction::FSub;
144   case Instruction::FSub:
145     return Instruction::FAdd;
146   case Instruction::Add:
147     return Instruction::Sub;
148   case Instruction::Sub:
149     return Instruction::Add;
150   default:
151     return 0;
152   }
153 }
154
155 ///\returns bool representing if Opcode \p Op can be part
156 /// of an alternate sequence which can later be merged as
157 /// a ShuffleVector instruction.
158 static bool canCombineAsAltInst(unsigned Op) {
159   if (Op == Instruction::FAdd || Op == Instruction::FSub ||
160       Op == Instruction::Sub || Op == Instruction::Add)
161     return true;
162   return false;
163 }
164
165 /// \returns ShuffleVector instruction if intructions in \p VL have
166 ///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
167 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
168 static unsigned isAltInst(ArrayRef<Value *> VL) {
169   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
170   unsigned Opcode = I0->getOpcode();
171   unsigned AltOpcode = getAltOpcode(Opcode);
172   for (int i = 1, e = VL.size(); i < e; i++) {
173     Instruction *I = dyn_cast<Instruction>(VL[i]);
174     if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
175       return 0;
176   }
177   return Instruction::ShuffleVector;
178 }
179
180 /// \returns The opcode if all of the Instructions in \p VL have the same
181 /// opcode, or zero.
182 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
183   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
184   if (!I0)
185     return 0;
186   unsigned Opcode = I0->getOpcode();
187   for (int i = 1, e = VL.size(); i < e; i++) {
188     Instruction *I = dyn_cast<Instruction>(VL[i]);
189     if (!I || Opcode != I->getOpcode()) {
190       if (canCombineAsAltInst(Opcode) && i == 1)
191         return isAltInst(VL);
192       return 0;
193     }
194   }
195   return Opcode;
196 }
197
198 /// Get the intersection (logical and) of all of the potential IR flags
199 /// of each scalar operation (VL) that will be converted into a vector (I).
200 /// Flag set: NSW, NUW, exact, and all of fast-math.
201 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
202   if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
203     if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
204       // Intersection is initialized to the 0th scalar,
205       // so start counting from index '1'.
206       for (int i = 1, e = VL.size(); i < e; ++i) {
207         if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
208           Intersection->andIRFlags(Scalar);
209       }
210       VecOp->copyIRFlags(Intersection);
211     }
212   }
213 }
214   
215 /// \returns \p I after propagating metadata from \p VL.
216 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
217   Instruction *I0 = cast<Instruction>(VL[0]);
218   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
219   I0->getAllMetadataOtherThanDebugLoc(Metadata);
220
221   for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
222     unsigned Kind = Metadata[i].first;
223     MDNode *MD = Metadata[i].second;
224
225     for (int i = 1, e = VL.size(); MD && i != e; i++) {
226       Instruction *I = cast<Instruction>(VL[i]);
227       MDNode *IMD = I->getMetadata(Kind);
228
229       switch (Kind) {
230       default:
231         MD = nullptr; // Remove unknown metadata
232         break;
233       case LLVMContext::MD_tbaa:
234         MD = MDNode::getMostGenericTBAA(MD, IMD);
235         break;
236       case LLVMContext::MD_alias_scope:
237         MD = MDNode::getMostGenericAliasScope(MD, IMD);
238         break;
239       case LLVMContext::MD_noalias:
240         MD = MDNode::intersect(MD, IMD);
241         break;
242       case LLVMContext::MD_fpmath:
243         MD = MDNode::getMostGenericFPMath(MD, IMD);
244         break;
245       }
246     }
247     I->setMetadata(Kind, MD);
248   }
249   return I;
250 }
251
252 /// \returns The type that all of the values in \p VL have or null if there
253 /// are different types.
254 static Type* getSameType(ArrayRef<Value *> VL) {
255   Type *Ty = VL[0]->getType();
256   for (int i = 1, e = VL.size(); i < e; i++)
257     if (VL[i]->getType() != Ty)
258       return nullptr;
259
260   return Ty;
261 }
262
263 /// \returns True if the ExtractElement instructions in VL can be vectorized
264 /// to use the original vector.
265 static bool CanReuseExtract(ArrayRef<Value *> VL) {
266   assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
267   // Check if all of the extracts come from the same vector and from the
268   // correct offset.
269   Value *VL0 = VL[0];
270   ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
271   Value *Vec = E0->getOperand(0);
272
273   // We have to extract from the same vector type.
274   unsigned NElts = Vec->getType()->getVectorNumElements();
275
276   if (NElts != VL.size())
277     return false;
278
279   // Check that all of the indices extract from the correct offset.
280   ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
281   if (!CI || CI->getZExtValue())
282     return false;
283
284   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
285     ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
286     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
287
288     if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
289       return false;
290   }
291
292   return true;
293 }
294
295 /// \returns True if in-tree use also needs extract. This refers to
296 /// possible scalar operand in vectorized instruction.
297 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
298                                     TargetLibraryInfo *TLI) {
299
300   unsigned Opcode = UserInst->getOpcode();
301   switch (Opcode) {
302   case Instruction::Load: {
303     LoadInst *LI = cast<LoadInst>(UserInst);
304     return (LI->getPointerOperand() == Scalar);
305   }
306   case Instruction::Store: {
307     StoreInst *SI = cast<StoreInst>(UserInst);
308     return (SI->getPointerOperand() == Scalar);
309   }
310   case Instruction::Call: {
311     CallInst *CI = cast<CallInst>(UserInst);
312     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
313     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
314       return (CI->getArgOperand(1) == Scalar);
315     }
316   }
317   default:
318     return false;
319   }
320 }
321
322 /// \returns the AA location that is being access by the instruction.
323 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
324   if (StoreInst *SI = dyn_cast<StoreInst>(I))
325     return MemoryLocation::get(SI);
326   if (LoadInst *LI = dyn_cast<LoadInst>(I))
327     return MemoryLocation::get(LI);
328   return MemoryLocation();
329 }
330
331 /// \returns True if the instruction is not a volatile or atomic load/store.
332 static bool isSimple(Instruction *I) {
333   if (LoadInst *LI = dyn_cast<LoadInst>(I))
334     return LI->isSimple();
335   if (StoreInst *SI = dyn_cast<StoreInst>(I))
336     return SI->isSimple();
337   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
338     return !MI->isVolatile();
339   return true;
340 }
341
342 /// Bottom Up SLP Vectorizer.
343 class BoUpSLP {
344 public:
345   typedef SmallVector<Value *, 8> ValueList;
346   typedef SmallVector<Instruction *, 16> InstrList;
347   typedef SmallPtrSet<Value *, 16> ValueSet;
348   typedef SmallVector<StoreInst *, 8> StoreList;
349
350   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
351           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
352           DominatorTree *Dt, AssumptionCache *AC)
353       : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
354         SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
355         Builder(Se->getContext()) {
356     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
357   }
358
359   /// \brief Vectorize the tree that starts with the elements in \p VL.
360   /// Returns the vectorized root.
361   Value *vectorizeTree();
362
363   /// \returns the cost incurred by unwanted spills and fills, caused by
364   /// holding live values over call sites.
365   int getSpillCost();
366
367   /// \returns the vectorization cost of the subtree that starts at \p VL.
368   /// A negative number means that this is profitable.
369   int getTreeCost();
370
371   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
372   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
373   void buildTree(ArrayRef<Value *> Roots,
374                  ArrayRef<Value *> UserIgnoreLst = None);
375
376   /// Clear the internal data structures that are created by 'buildTree'.
377   void deleteTree() {
378     VectorizableTree.clear();
379     ScalarToTreeEntry.clear();
380     MustGather.clear();
381     ExternalUses.clear();
382     NumLoadsWantToKeepOrder = 0;
383     NumLoadsWantToChangeOrder = 0;
384     for (auto &Iter : BlocksSchedules) {
385       BlockScheduling *BS = Iter.second.get();
386       BS->clear();
387     }
388   }
389
390   /// \returns true if the memory operations A and B are consecutive.
391   bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
392
393   /// \brief Perform LICM and CSE on the newly generated gather sequences.
394   void optimizeGatherSequence();
395
396   /// \returns true if it is benefitial to reverse the vector order.
397   bool shouldReorder() const {
398     return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
399   }
400
401 private:
402   struct TreeEntry;
403
404   /// \returns the cost of the vectorizable entry.
405   int getEntryCost(TreeEntry *E);
406
407   /// This is the recursive part of buildTree.
408   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
409
410   /// Vectorize a single entry in the tree.
411   Value *vectorizeTree(TreeEntry *E);
412
413   /// Vectorize a single entry in the tree, starting in \p VL.
414   Value *vectorizeTree(ArrayRef<Value *> VL);
415
416   /// \returns the pointer to the vectorized value if \p VL is already
417   /// vectorized, or NULL. They may happen in cycles.
418   Value *alreadyVectorized(ArrayRef<Value *> VL) const;
419
420   /// \brief Take the pointer operand from the Load/Store instruction.
421   /// \returns NULL if this is not a valid Load/Store instruction.
422   static Value *getPointerOperand(Value *I);
423
424   /// \brief Take the address space operand from the Load/Store instruction.
425   /// \returns -1 if this is not a valid Load/Store instruction.
426   static unsigned getAddressSpaceOperand(Value *I);
427
428   /// \returns the scalarization cost for this type. Scalarization in this
429   /// context means the creation of vectors from a group of scalars.
430   int getGatherCost(Type *Ty);
431
432   /// \returns the scalarization cost for this list of values. Assuming that
433   /// this subtree gets vectorized, we may need to extract the values from the
434   /// roots. This method calculates the cost of extracting the values.
435   int getGatherCost(ArrayRef<Value *> VL);
436
437   /// \brief Set the Builder insert point to one after the last instruction in
438   /// the bundle
439   void setInsertPointAfterBundle(ArrayRef<Value *> VL);
440
441   /// \returns a vector from a collection of scalars in \p VL.
442   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
443
444   /// \returns whether the VectorizableTree is fully vectoriable and will
445   /// be beneficial even the tree height is tiny.
446   bool isFullyVectorizableTinyTree();
447
448   /// \reorder commutative operands in alt shuffle if they result in
449   ///  vectorized code.
450   void reorderAltShuffleOperands(ArrayRef<Value *> VL,
451                                  SmallVectorImpl<Value *> &Left,
452                                  SmallVectorImpl<Value *> &Right);
453   /// \reorder commutative operands to get better probability of
454   /// generating vectorized code.
455   void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
456                                       SmallVectorImpl<Value *> &Left,
457                                       SmallVectorImpl<Value *> &Right);
458   struct TreeEntry {
459     TreeEntry() : Scalars(), VectorizedValue(nullptr),
460     NeedToGather(0) {}
461
462     /// \returns true if the scalars in VL are equal to this entry.
463     bool isSame(ArrayRef<Value *> VL) const {
464       assert(VL.size() == Scalars.size() && "Invalid size");
465       return std::equal(VL.begin(), VL.end(), Scalars.begin());
466     }
467
468     /// A vector of scalars.
469     ValueList Scalars;
470
471     /// The Scalars are vectorized into this value. It is initialized to Null.
472     Value *VectorizedValue;
473
474     /// Do we need to gather this sequence ?
475     bool NeedToGather;
476   };
477
478   /// Create a new VectorizableTree entry.
479   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
480     VectorizableTree.emplace_back();
481     int idx = VectorizableTree.size() - 1;
482     TreeEntry *Last = &VectorizableTree[idx];
483     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
484     Last->NeedToGather = !Vectorized;
485     if (Vectorized) {
486       for (int i = 0, e = VL.size(); i != e; ++i) {
487         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
488         ScalarToTreeEntry[VL[i]] = idx;
489       }
490     } else {
491       MustGather.insert(VL.begin(), VL.end());
492     }
493     return Last;
494   }
495   
496   /// -- Vectorization State --
497   /// Holds all of the tree entries.
498   std::vector<TreeEntry> VectorizableTree;
499
500   /// Maps a specific scalar to its tree entry.
501   SmallDenseMap<Value*, int> ScalarToTreeEntry;
502
503   /// A list of scalars that we found that we need to keep as scalars.
504   ValueSet MustGather;
505
506   /// This POD struct describes one external user in the vectorized tree.
507   struct ExternalUser {
508     ExternalUser (Value *S, llvm::User *U, int L) :
509       Scalar(S), User(U), Lane(L){}
510     // Which scalar in our function.
511     Value *Scalar;
512     // Which user that uses the scalar.
513     llvm::User *User;
514     // Which lane does the scalar belong to.
515     int Lane;
516   };
517   typedef SmallVector<ExternalUser, 16> UserList;
518
519   /// Checks if two instructions may access the same memory.
520   ///
521   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
522   /// is invariant in the calling loop.
523   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
524                  Instruction *Inst2) {
525
526     // First check if the result is already in the cache.
527     AliasCacheKey key = std::make_pair(Inst1, Inst2);
528     Optional<bool> &result = AliasCache[key];
529     if (result.hasValue()) {
530       return result.getValue();
531     }
532     MemoryLocation Loc2 = getLocation(Inst2, AA);
533     bool aliased = true;
534     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
535       // Do the alias check.
536       aliased = AA->alias(Loc1, Loc2);
537     }
538     // Store the result in the cache.
539     result = aliased;
540     return aliased;
541   }
542
543   typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
544
545   /// Cache for alias results.
546   /// TODO: consider moving this to the AliasAnalysis itself.
547   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
548
549   /// Removes an instruction from its block and eventually deletes it.
550   /// It's like Instruction::eraseFromParent() except that the actual deletion
551   /// is delayed until BoUpSLP is destructed.
552   /// This is required to ensure that there are no incorrect collisions in the
553   /// AliasCache, which can happen if a new instruction is allocated at the
554   /// same address as a previously deleted instruction.
555   void eraseInstruction(Instruction *I) {
556     I->removeFromParent();
557     I->dropAllReferences();
558     DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
559   }
560
561   /// Temporary store for deleted instructions. Instructions will be deleted
562   /// eventually when the BoUpSLP is destructed.
563   SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
564
565   /// A list of values that need to extracted out of the tree.
566   /// This list holds pairs of (Internal Scalar : External User).
567   UserList ExternalUses;
568
569   /// Values used only by @llvm.assume calls.
570   SmallPtrSet<const Value *, 32> EphValues;
571
572   /// Holds all of the instructions that we gathered.
573   SetVector<Instruction *> GatherSeq;
574   /// A list of blocks that we are going to CSE.
575   SetVector<BasicBlock *> CSEBlocks;
576
577   /// Contains all scheduling relevant data for an instruction.
578   /// A ScheduleData either represents a single instruction or a member of an
579   /// instruction bundle (= a group of instructions which is combined into a
580   /// vector instruction).
581   struct ScheduleData {
582
583     // The initial value for the dependency counters. It means that the
584     // dependencies are not calculated yet.
585     enum { InvalidDeps = -1 };
586
587     ScheduleData()
588         : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
589           NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
590           Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
591           UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
592
593     void init(int BlockSchedulingRegionID) {
594       FirstInBundle = this;
595       NextInBundle = nullptr;
596       NextLoadStore = nullptr;
597       IsScheduled = false;
598       SchedulingRegionID = BlockSchedulingRegionID;
599       UnscheduledDepsInBundle = UnscheduledDeps;
600       clearDependencies();
601     }
602
603     /// Returns true if the dependency information has been calculated.
604     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
605
606     /// Returns true for single instructions and for bundle representatives
607     /// (= the head of a bundle).
608     bool isSchedulingEntity() const { return FirstInBundle == this; }
609
610     /// Returns true if it represents an instruction bundle and not only a
611     /// single instruction.
612     bool isPartOfBundle() const {
613       return NextInBundle != nullptr || FirstInBundle != this;
614     }
615
616     /// Returns true if it is ready for scheduling, i.e. it has no more
617     /// unscheduled depending instructions/bundles.
618     bool isReady() const {
619       assert(isSchedulingEntity() &&
620              "can't consider non-scheduling entity for ready list");
621       return UnscheduledDepsInBundle == 0 && !IsScheduled;
622     }
623
624     /// Modifies the number of unscheduled dependencies, also updating it for
625     /// the whole bundle.
626     int incrementUnscheduledDeps(int Incr) {
627       UnscheduledDeps += Incr;
628       return FirstInBundle->UnscheduledDepsInBundle += Incr;
629     }
630
631     /// Sets the number of unscheduled dependencies to the number of
632     /// dependencies.
633     void resetUnscheduledDeps() {
634       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
635     }
636
637     /// Clears all dependency information.
638     void clearDependencies() {
639       Dependencies = InvalidDeps;
640       resetUnscheduledDeps();
641       MemoryDependencies.clear();
642     }
643
644     void dump(raw_ostream &os) const {
645       if (!isSchedulingEntity()) {
646         os << "/ " << *Inst;
647       } else if (NextInBundle) {
648         os << '[' << *Inst;
649         ScheduleData *SD = NextInBundle;
650         while (SD) {
651           os << ';' << *SD->Inst;
652           SD = SD->NextInBundle;
653         }
654         os << ']';
655       } else {
656         os << *Inst;
657       }
658     }
659
660     Instruction *Inst;
661
662     /// Points to the head in an instruction bundle (and always to this for
663     /// single instructions).
664     ScheduleData *FirstInBundle;
665
666     /// Single linked list of all instructions in a bundle. Null if it is a
667     /// single instruction.
668     ScheduleData *NextInBundle;
669
670     /// Single linked list of all memory instructions (e.g. load, store, call)
671     /// in the block - until the end of the scheduling region.
672     ScheduleData *NextLoadStore;
673
674     /// The dependent memory instructions.
675     /// This list is derived on demand in calculateDependencies().
676     SmallVector<ScheduleData *, 4> MemoryDependencies;
677
678     /// This ScheduleData is in the current scheduling region if this matches
679     /// the current SchedulingRegionID of BlockScheduling.
680     int SchedulingRegionID;
681
682     /// Used for getting a "good" final ordering of instructions.
683     int SchedulingPriority;
684
685     /// The number of dependencies. Constitutes of the number of users of the
686     /// instruction plus the number of dependent memory instructions (if any).
687     /// This value is calculated on demand.
688     /// If InvalidDeps, the number of dependencies is not calculated yet.
689     ///
690     int Dependencies;
691
692     /// The number of dependencies minus the number of dependencies of scheduled
693     /// instructions. As soon as this is zero, the instruction/bundle gets ready
694     /// for scheduling.
695     /// Note that this is negative as long as Dependencies is not calculated.
696     int UnscheduledDeps;
697
698     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
699     /// single instructions.
700     int UnscheduledDepsInBundle;
701
702     /// True if this instruction is scheduled (or considered as scheduled in the
703     /// dry-run).
704     bool IsScheduled;
705   };
706
707 #ifndef NDEBUG
708   friend raw_ostream &operator<<(raw_ostream &os,
709                                  const BoUpSLP::ScheduleData &SD);
710 #endif
711
712   /// Contains all scheduling data for a basic block.
713   ///
714   struct BlockScheduling {
715
716     BlockScheduling(BasicBlock *BB)
717         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
718           ScheduleStart(nullptr), ScheduleEnd(nullptr),
719           FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
720           // Make sure that the initial SchedulingRegionID is greater than the
721           // initial SchedulingRegionID in ScheduleData (which is 0).
722           SchedulingRegionID(1) {}
723
724     void clear() {
725       ReadyInsts.clear();
726       ScheduleStart = nullptr;
727       ScheduleEnd = nullptr;
728       FirstLoadStoreInRegion = nullptr;
729       LastLoadStoreInRegion = nullptr;
730
731       // Make a new scheduling region, i.e. all existing ScheduleData is not
732       // in the new region yet.
733       ++SchedulingRegionID;
734     }
735
736     ScheduleData *getScheduleData(Value *V) {
737       ScheduleData *SD = ScheduleDataMap[V];
738       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
739         return SD;
740       return nullptr;
741     }
742
743     bool isInSchedulingRegion(ScheduleData *SD) {
744       return SD->SchedulingRegionID == SchedulingRegionID;
745     }
746
747     /// Marks an instruction as scheduled and puts all dependent ready
748     /// instructions into the ready-list.
749     template <typename ReadyListType>
750     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
751       SD->IsScheduled = true;
752       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
753
754       ScheduleData *BundleMember = SD;
755       while (BundleMember) {
756         // Handle the def-use chain dependencies.
757         for (Use &U : BundleMember->Inst->operands()) {
758           ScheduleData *OpDef = getScheduleData(U.get());
759           if (OpDef && OpDef->hasValidDependencies() &&
760               OpDef->incrementUnscheduledDeps(-1) == 0) {
761             // There are no more unscheduled dependencies after decrementing,
762             // so we can put the dependent instruction into the ready list.
763             ScheduleData *DepBundle = OpDef->FirstInBundle;
764             assert(!DepBundle->IsScheduled &&
765                    "already scheduled bundle gets ready");
766             ReadyList.insert(DepBundle);
767             DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
768           }
769         }
770         // Handle the memory dependencies.
771         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
772           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
773             // There are no more unscheduled dependencies after decrementing,
774             // so we can put the dependent instruction into the ready list.
775             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
776             assert(!DepBundle->IsScheduled &&
777                    "already scheduled bundle gets ready");
778             ReadyList.insert(DepBundle);
779             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
780           }
781         }
782         BundleMember = BundleMember->NextInBundle;
783       }
784     }
785
786     /// Put all instructions into the ReadyList which are ready for scheduling.
787     template <typename ReadyListType>
788     void initialFillReadyList(ReadyListType &ReadyList) {
789       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
790         ScheduleData *SD = getScheduleData(I);
791         if (SD->isSchedulingEntity() && SD->isReady()) {
792           ReadyList.insert(SD);
793           DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
794         }
795       }
796     }
797
798     /// Checks if a bundle of instructions can be scheduled, i.e. has no
799     /// cyclic dependencies. This is only a dry-run, no instructions are
800     /// actually moved at this stage.
801     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
802
803     /// Un-bundles a group of instructions.
804     void cancelScheduling(ArrayRef<Value *> VL);
805
806     /// Extends the scheduling region so that V is inside the region.
807     void extendSchedulingRegion(Value *V);
808
809     /// Initialize the ScheduleData structures for new instructions in the
810     /// scheduling region.
811     void initScheduleData(Instruction *FromI, Instruction *ToI,
812                           ScheduleData *PrevLoadStore,
813                           ScheduleData *NextLoadStore);
814
815     /// Updates the dependency information of a bundle and of all instructions/
816     /// bundles which depend on the original bundle.
817     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
818                                BoUpSLP *SLP);
819
820     /// Sets all instruction in the scheduling region to un-scheduled.
821     void resetSchedule();
822
823     BasicBlock *BB;
824
825     /// Simple memory allocation for ScheduleData.
826     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
827
828     /// The size of a ScheduleData array in ScheduleDataChunks.
829     int ChunkSize;
830
831     /// The allocator position in the current chunk, which is the last entry
832     /// of ScheduleDataChunks.
833     int ChunkPos;
834
835     /// Attaches ScheduleData to Instruction.
836     /// Note that the mapping survives during all vectorization iterations, i.e.
837     /// ScheduleData structures are recycled.
838     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
839
840     struct ReadyList : SmallVector<ScheduleData *, 8> {
841       void insert(ScheduleData *SD) { push_back(SD); }
842     };
843
844     /// The ready-list for scheduling (only used for the dry-run).
845     ReadyList ReadyInsts;
846
847     /// The first instruction of the scheduling region.
848     Instruction *ScheduleStart;
849
850     /// The first instruction _after_ the scheduling region.
851     Instruction *ScheduleEnd;
852
853     /// The first memory accessing instruction in the scheduling region
854     /// (can be null).
855     ScheduleData *FirstLoadStoreInRegion;
856
857     /// The last memory accessing instruction in the scheduling region
858     /// (can be null).
859     ScheduleData *LastLoadStoreInRegion;
860
861     /// The ID of the scheduling region. For a new vectorization iteration this
862     /// is incremented which "removes" all ScheduleData from the region.
863     int SchedulingRegionID;
864   };
865
866   /// Attaches the BlockScheduling structures to basic blocks.
867   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
868
869   /// Performs the "real" scheduling. Done before vectorization is actually
870   /// performed in a basic block.
871   void scheduleBlock(BlockScheduling *BS);
872
873   /// List of users to ignore during scheduling and that don't need extracting.
874   ArrayRef<Value *> UserIgnoreList;
875
876   // Number of load-bundles, which contain consecutive loads.
877   int NumLoadsWantToKeepOrder;
878
879   // Number of load-bundles of size 2, which are consecutive loads if reversed.
880   int NumLoadsWantToChangeOrder;
881
882   // Analysis and block reference.
883   Function *F;
884   ScalarEvolution *SE;
885   TargetTransformInfo *TTI;
886   TargetLibraryInfo *TLI;
887   AliasAnalysis *AA;
888   LoopInfo *LI;
889   DominatorTree *DT;
890   /// Instruction builder to construct the vectorized tree.
891   IRBuilder<> Builder;
892 };
893
894 #ifndef NDEBUG
895 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
896   SD.dump(os);
897   return os;
898 }
899 #endif
900
901 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
902                         ArrayRef<Value *> UserIgnoreLst) {
903   deleteTree();
904   UserIgnoreList = UserIgnoreLst;
905   if (!getSameType(Roots))
906     return;
907   buildTree_rec(Roots, 0);
908
909   // Collect the values that we need to extract from the tree.
910   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
911     TreeEntry *Entry = &VectorizableTree[EIdx];
912
913     // For each lane:
914     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
915       Value *Scalar = Entry->Scalars[Lane];
916
917       // No need to handle users of gathered values.
918       if (Entry->NeedToGather)
919         continue;
920
921       for (User *U : Scalar->users()) {
922         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
923
924         Instruction *UserInst = dyn_cast<Instruction>(U);
925         if (!UserInst)
926           continue;
927
928         // Skip in-tree scalars that become vectors
929         if (ScalarToTreeEntry.count(U)) {
930           int Idx = ScalarToTreeEntry[U];
931           TreeEntry *UseEntry = &VectorizableTree[Idx];
932           Value *UseScalar = UseEntry->Scalars[0];
933           // Some in-tree scalars will remain as scalar in vectorized
934           // instructions. If that is the case, the one in Lane 0 will
935           // be used.
936           if (UseScalar != U ||
937               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
938             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
939                          << ".\n");
940             assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
941             continue;
942           }
943         }
944
945         // Ignore users in the user ignore list.
946         if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
947             UserIgnoreList.end())
948           continue;
949
950         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
951               Lane << " from " << *Scalar << ".\n");
952         ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
953       }
954     }
955   }
956 }
957
958
959 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
960   bool SameTy = getSameType(VL); (void)SameTy;
961   bool isAltShuffle = false;
962   assert(SameTy && "Invalid types!");
963
964   if (Depth == RecursionMaxDepth) {
965     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
966     newTreeEntry(VL, false);
967     return;
968   }
969
970   // Don't handle vectors.
971   if (VL[0]->getType()->isVectorTy()) {
972     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
973     newTreeEntry(VL, false);
974     return;
975   }
976
977   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
978     if (SI->getValueOperand()->getType()->isVectorTy()) {
979       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
980       newTreeEntry(VL, false);
981       return;
982     }
983   unsigned Opcode = getSameOpcode(VL);
984
985   // Check that this shuffle vector refers to the alternate
986   // sequence of opcodes.
987   if (Opcode == Instruction::ShuffleVector) {
988     Instruction *I0 = dyn_cast<Instruction>(VL[0]);
989     unsigned Op = I0->getOpcode();
990     if (Op != Instruction::ShuffleVector)
991       isAltShuffle = true;
992   }
993
994   // If all of the operands are identical or constant we have a simple solution.
995   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
996     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
997     newTreeEntry(VL, false);
998     return;
999   }
1000
1001   // We now know that this is a vector of instructions of the same type from
1002   // the same block.
1003
1004   // Don't vectorize ephemeral values.
1005   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1006     if (EphValues.count(VL[i])) {
1007       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1008             ") is ephemeral.\n");
1009       newTreeEntry(VL, false);
1010       return;
1011     }
1012   }
1013
1014   // Check if this is a duplicate of another entry.
1015   if (ScalarToTreeEntry.count(VL[0])) {
1016     int Idx = ScalarToTreeEntry[VL[0]];
1017     TreeEntry *E = &VectorizableTree[Idx];
1018     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1019       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
1020       if (E->Scalars[i] != VL[i]) {
1021         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1022         newTreeEntry(VL, false);
1023         return;
1024       }
1025     }
1026     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
1027     return;
1028   }
1029
1030   // Check that none of the instructions in the bundle are already in the tree.
1031   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1032     if (ScalarToTreeEntry.count(VL[i])) {
1033       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1034             ") is already in tree.\n");
1035       newTreeEntry(VL, false);
1036       return;
1037     }
1038   }
1039
1040   // If any of the scalars is marked as a value that needs to stay scalar then
1041   // we need to gather the scalars.
1042   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1043     if (MustGather.count(VL[i])) {
1044       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1045       newTreeEntry(VL, false);
1046       return;
1047     }
1048   }
1049
1050   // Check that all of the users of the scalars that we want to vectorize are
1051   // schedulable.
1052   Instruction *VL0 = cast<Instruction>(VL[0]);
1053   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
1054
1055   if (!DT->isReachableFromEntry(BB)) {
1056     // Don't go into unreachable blocks. They may contain instructions with
1057     // dependency cycles which confuse the final scheduling.
1058     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1059     newTreeEntry(VL, false);
1060     return;
1061   }
1062   
1063   // Check that every instructions appears once in this bundle.
1064   for (unsigned i = 0, e = VL.size(); i < e; ++i)
1065     for (unsigned j = i+1; j < e; ++j)
1066       if (VL[i] == VL[j]) {
1067         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1068         newTreeEntry(VL, false);
1069         return;
1070       }
1071
1072   auto &BSRef = BlocksSchedules[BB];
1073   if (!BSRef) {
1074     BSRef = llvm::make_unique<BlockScheduling>(BB);
1075   }
1076   BlockScheduling &BS = *BSRef.get();
1077
1078   if (!BS.tryScheduleBundle(VL, this)) {
1079     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1080     BS.cancelScheduling(VL);
1081     newTreeEntry(VL, false);
1082     return;
1083   }
1084   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1085
1086   switch (Opcode) {
1087     case Instruction::PHI: {
1088       PHINode *PH = dyn_cast<PHINode>(VL0);
1089
1090       // Check for terminator values (e.g. invoke).
1091       for (unsigned j = 0; j < VL.size(); ++j)
1092         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1093           TerminatorInst *Term = dyn_cast<TerminatorInst>(
1094               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1095           if (Term) {
1096             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1097             BS.cancelScheduling(VL);
1098             newTreeEntry(VL, false);
1099             return;
1100           }
1101         }
1102
1103       newTreeEntry(VL, true);
1104       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1105
1106       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1107         ValueList Operands;
1108         // Prepare the operand vector.
1109         for (unsigned j = 0; j < VL.size(); ++j)
1110           Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
1111               PH->getIncomingBlock(i)));
1112
1113         buildTree_rec(Operands, Depth + 1);
1114       }
1115       return;
1116     }
1117     case Instruction::ExtractElement: {
1118       bool Reuse = CanReuseExtract(VL);
1119       if (Reuse) {
1120         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
1121       } else {
1122         BS.cancelScheduling(VL);
1123       }
1124       newTreeEntry(VL, Reuse);
1125       return;
1126     }
1127     case Instruction::Load: {
1128       // Check if the loads are consecutive or of we need to swizzle them.
1129       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1130         LoadInst *L = cast<LoadInst>(VL[i]);
1131         if (!L->isSimple()) {
1132           BS.cancelScheduling(VL);
1133           newTreeEntry(VL, false);
1134           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1135           return;
1136         }
1137         const DataLayout &DL = F->getParent()->getDataLayout();
1138         if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1139           if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
1140             ++NumLoadsWantToChangeOrder;
1141           }
1142           BS.cancelScheduling(VL);
1143           newTreeEntry(VL, false);
1144           DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1145           return;
1146         }
1147       }
1148       ++NumLoadsWantToKeepOrder;
1149       newTreeEntry(VL, true);
1150       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1151       return;
1152     }
1153     case Instruction::ZExt:
1154     case Instruction::SExt:
1155     case Instruction::FPToUI:
1156     case Instruction::FPToSI:
1157     case Instruction::FPExt:
1158     case Instruction::PtrToInt:
1159     case Instruction::IntToPtr:
1160     case Instruction::SIToFP:
1161     case Instruction::UIToFP:
1162     case Instruction::Trunc:
1163     case Instruction::FPTrunc:
1164     case Instruction::BitCast: {
1165       Type *SrcTy = VL0->getOperand(0)->getType();
1166       for (unsigned i = 0; i < VL.size(); ++i) {
1167         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1168         if (Ty != SrcTy || !isValidElementType(Ty)) {
1169           BS.cancelScheduling(VL);
1170           newTreeEntry(VL, false);
1171           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1172           return;
1173         }
1174       }
1175       newTreeEntry(VL, true);
1176       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1177
1178       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1179         ValueList Operands;
1180         // Prepare the operand vector.
1181         for (unsigned j = 0; j < VL.size(); ++j)
1182           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1183
1184         buildTree_rec(Operands, Depth+1);
1185       }
1186       return;
1187     }
1188     case Instruction::ICmp:
1189     case Instruction::FCmp: {
1190       // Check that all of the compares have the same predicate.
1191       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1192       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
1193       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1194         CmpInst *Cmp = cast<CmpInst>(VL[i]);
1195         if (Cmp->getPredicate() != P0 ||
1196             Cmp->getOperand(0)->getType() != ComparedTy) {
1197           BS.cancelScheduling(VL);
1198           newTreeEntry(VL, false);
1199           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1200           return;
1201         }
1202       }
1203
1204       newTreeEntry(VL, true);
1205       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1206
1207       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1208         ValueList Operands;
1209         // Prepare the operand vector.
1210         for (unsigned j = 0; j < VL.size(); ++j)
1211           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1212
1213         buildTree_rec(Operands, Depth+1);
1214       }
1215       return;
1216     }
1217     case Instruction::Select:
1218     case Instruction::Add:
1219     case Instruction::FAdd:
1220     case Instruction::Sub:
1221     case Instruction::FSub:
1222     case Instruction::Mul:
1223     case Instruction::FMul:
1224     case Instruction::UDiv:
1225     case Instruction::SDiv:
1226     case Instruction::FDiv:
1227     case Instruction::URem:
1228     case Instruction::SRem:
1229     case Instruction::FRem:
1230     case Instruction::Shl:
1231     case Instruction::LShr:
1232     case Instruction::AShr:
1233     case Instruction::And:
1234     case Instruction::Or:
1235     case Instruction::Xor: {
1236       newTreeEntry(VL, true);
1237       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1238
1239       // Sort operands of the instructions so that each side is more likely to
1240       // have the same opcode.
1241       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1242         ValueList Left, Right;
1243         reorderInputsAccordingToOpcode(VL, Left, Right);
1244         buildTree_rec(Left, Depth + 1);
1245         buildTree_rec(Right, Depth + 1);
1246         return;
1247       }
1248
1249       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1250         ValueList Operands;
1251         // Prepare the operand vector.
1252         for (unsigned j = 0; j < VL.size(); ++j)
1253           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1254
1255         buildTree_rec(Operands, Depth+1);
1256       }
1257       return;
1258     }
1259     case Instruction::GetElementPtr: {
1260       // We don't combine GEPs with complicated (nested) indexing.
1261       for (unsigned j = 0; j < VL.size(); ++j) {
1262         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1263           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1264           BS.cancelScheduling(VL);
1265           newTreeEntry(VL, false);
1266           return;
1267         }
1268       }
1269
1270       // We can't combine several GEPs into one vector if they operate on
1271       // different types.
1272       Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1273       for (unsigned j = 0; j < VL.size(); ++j) {
1274         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1275         if (Ty0 != CurTy) {
1276           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1277           BS.cancelScheduling(VL);
1278           newTreeEntry(VL, false);
1279           return;
1280         }
1281       }
1282
1283       // We don't combine GEPs with non-constant indexes.
1284       for (unsigned j = 0; j < VL.size(); ++j) {
1285         auto Op = cast<Instruction>(VL[j])->getOperand(1);
1286         if (!isa<ConstantInt>(Op)) {
1287           DEBUG(
1288               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1289           BS.cancelScheduling(VL);
1290           newTreeEntry(VL, false);
1291           return;
1292         }
1293       }
1294
1295       newTreeEntry(VL, true);
1296       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1297       for (unsigned i = 0, e = 2; i < e; ++i) {
1298         ValueList Operands;
1299         // Prepare the operand vector.
1300         for (unsigned j = 0; j < VL.size(); ++j)
1301           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1302
1303         buildTree_rec(Operands, Depth + 1);
1304       }
1305       return;
1306     }
1307     case Instruction::Store: {
1308       const DataLayout &DL = F->getParent()->getDataLayout();
1309       // Check if the stores are consecutive or of we need to swizzle them.
1310       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1311         if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1312           BS.cancelScheduling(VL);
1313           newTreeEntry(VL, false);
1314           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1315           return;
1316         }
1317
1318       newTreeEntry(VL, true);
1319       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1320
1321       ValueList Operands;
1322       for (unsigned j = 0; j < VL.size(); ++j)
1323         Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
1324
1325       buildTree_rec(Operands, Depth + 1);
1326       return;
1327     }
1328     case Instruction::Call: {
1329       // Check if the calls are all to the same vectorizable intrinsic.
1330       CallInst *CI = cast<CallInst>(VL[0]);
1331       // Check if this is an Intrinsic call or something that can be
1332       // represented by an intrinsic call
1333       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1334       if (!isTriviallyVectorizable(ID)) {
1335         BS.cancelScheduling(VL);
1336         newTreeEntry(VL, false);
1337         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1338         return;
1339       }
1340       Function *Int = CI->getCalledFunction();
1341       Value *A1I = nullptr;
1342       if (hasVectorInstrinsicScalarOpd(ID, 1))
1343         A1I = CI->getArgOperand(1);
1344       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1345         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1346         if (!CI2 || CI2->getCalledFunction() != Int ||
1347             getIntrinsicIDForCall(CI2, TLI) != ID) {
1348           BS.cancelScheduling(VL);
1349           newTreeEntry(VL, false);
1350           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1351                        << "\n");
1352           return;
1353         }
1354         // ctlz,cttz and powi are special intrinsics whose second argument
1355         // should be same in order for them to be vectorized.
1356         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1357           Value *A1J = CI2->getArgOperand(1);
1358           if (A1I != A1J) {
1359             BS.cancelScheduling(VL);
1360             newTreeEntry(VL, false);
1361             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1362                          << " argument "<< A1I<<"!=" << A1J
1363                          << "\n");
1364             return;
1365           }
1366         }
1367       }
1368
1369       newTreeEntry(VL, true);
1370       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1371         ValueList Operands;
1372         // Prepare the operand vector.
1373         for (unsigned j = 0; j < VL.size(); ++j) {
1374           CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
1375           Operands.push_back(CI2->getArgOperand(i));
1376         }
1377         buildTree_rec(Operands, Depth + 1);
1378       }
1379       return;
1380     }
1381     case Instruction::ShuffleVector: {
1382       // If this is not an alternate sequence of opcode like add-sub
1383       // then do not vectorize this instruction.
1384       if (!isAltShuffle) {
1385         BS.cancelScheduling(VL);
1386         newTreeEntry(VL, false);
1387         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1388         return;
1389       }
1390       newTreeEntry(VL, true);
1391       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1392
1393       // Reorder operands if reordering would enable vectorization.
1394       if (isa<BinaryOperator>(VL0)) {
1395         ValueList Left, Right;
1396         reorderAltShuffleOperands(VL, Left, Right);
1397         buildTree_rec(Left, Depth + 1);
1398         buildTree_rec(Right, Depth + 1);
1399         return;
1400       }
1401
1402       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1403         ValueList Operands;
1404         // Prepare the operand vector.
1405         for (unsigned j = 0; j < VL.size(); ++j)
1406           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1407
1408         buildTree_rec(Operands, Depth + 1);
1409       }
1410       return;
1411     }
1412     default:
1413       BS.cancelScheduling(VL);
1414       newTreeEntry(VL, false);
1415       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1416       return;
1417   }
1418 }
1419
1420 int BoUpSLP::getEntryCost(TreeEntry *E) {
1421   ArrayRef<Value*> VL = E->Scalars;
1422
1423   Type *ScalarTy = VL[0]->getType();
1424   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1425     ScalarTy = SI->getValueOperand()->getType();
1426   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1427
1428   if (E->NeedToGather) {
1429     if (allConstant(VL))
1430       return 0;
1431     if (isSplat(VL)) {
1432       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1433     }
1434     return getGatherCost(E->Scalars);
1435   }
1436   unsigned Opcode = getSameOpcode(VL);
1437   assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
1438   Instruction *VL0 = cast<Instruction>(VL[0]);
1439   switch (Opcode) {
1440     case Instruction::PHI: {
1441       return 0;
1442     }
1443     case Instruction::ExtractElement: {
1444       if (CanReuseExtract(VL)) {
1445         int DeadCost = 0;
1446         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1447           ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
1448           if (E->hasOneUse())
1449             // Take credit for instruction that will become dead.
1450             DeadCost +=
1451                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1452         }
1453         return -DeadCost;
1454       }
1455       return getGatherCost(VecTy);
1456     }
1457     case Instruction::ZExt:
1458     case Instruction::SExt:
1459     case Instruction::FPToUI:
1460     case Instruction::FPToSI:
1461     case Instruction::FPExt:
1462     case Instruction::PtrToInt:
1463     case Instruction::IntToPtr:
1464     case Instruction::SIToFP:
1465     case Instruction::UIToFP:
1466     case Instruction::Trunc:
1467     case Instruction::FPTrunc:
1468     case Instruction::BitCast: {
1469       Type *SrcTy = VL0->getOperand(0)->getType();
1470
1471       // Calculate the cost of this instruction.
1472       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1473                                                          VL0->getType(), SrcTy);
1474
1475       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1476       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1477       return VecCost - ScalarCost;
1478     }
1479     case Instruction::FCmp:
1480     case Instruction::ICmp:
1481     case Instruction::Select:
1482     case Instruction::Add:
1483     case Instruction::FAdd:
1484     case Instruction::Sub:
1485     case Instruction::FSub:
1486     case Instruction::Mul:
1487     case Instruction::FMul:
1488     case Instruction::UDiv:
1489     case Instruction::SDiv:
1490     case Instruction::FDiv:
1491     case Instruction::URem:
1492     case Instruction::SRem:
1493     case Instruction::FRem:
1494     case Instruction::Shl:
1495     case Instruction::LShr:
1496     case Instruction::AShr:
1497     case Instruction::And:
1498     case Instruction::Or:
1499     case Instruction::Xor: {
1500       // Calculate the cost of this instruction.
1501       int ScalarCost = 0;
1502       int VecCost = 0;
1503       if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1504           Opcode == Instruction::Select) {
1505         VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1506         ScalarCost = VecTy->getNumElements() *
1507         TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1508         VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1509       } else {
1510         // Certain instructions can be cheaper to vectorize if they have a
1511         // constant second vector operand.
1512         TargetTransformInfo::OperandValueKind Op1VK =
1513             TargetTransformInfo::OK_AnyValue;
1514         TargetTransformInfo::OperandValueKind Op2VK =
1515             TargetTransformInfo::OK_UniformConstantValue;
1516         TargetTransformInfo::OperandValueProperties Op1VP =
1517             TargetTransformInfo::OP_None;
1518         TargetTransformInfo::OperandValueProperties Op2VP =
1519             TargetTransformInfo::OP_None;
1520
1521         // If all operands are exactly the same ConstantInt then set the
1522         // operand kind to OK_UniformConstantValue.
1523         // If instead not all operands are constants, then set the operand kind
1524         // to OK_AnyValue. If all operands are constants but not the same,
1525         // then set the operand kind to OK_NonUniformConstantValue.
1526         ConstantInt *CInt = nullptr;
1527         for (unsigned i = 0; i < VL.size(); ++i) {
1528           const Instruction *I = cast<Instruction>(VL[i]);
1529           if (!isa<ConstantInt>(I->getOperand(1))) {
1530             Op2VK = TargetTransformInfo::OK_AnyValue;
1531             break;
1532           }
1533           if (i == 0) {
1534             CInt = cast<ConstantInt>(I->getOperand(1));
1535             continue;
1536           }
1537           if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1538               CInt != cast<ConstantInt>(I->getOperand(1)))
1539             Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1540         }
1541         // FIXME: Currently cost of model modification for division by
1542         // power of 2 is handled only for X86. Add support for other targets.
1543         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
1544             CInt->getValue().isPowerOf2())
1545           Op2VP = TargetTransformInfo::OP_PowerOf2;
1546
1547         ScalarCost = VecTy->getNumElements() *
1548                      TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
1549                                                  Op1VP, Op2VP);
1550         VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
1551                                               Op1VP, Op2VP);
1552       }
1553       return VecCost - ScalarCost;
1554     }
1555     case Instruction::GetElementPtr: {
1556       TargetTransformInfo::OperandValueKind Op1VK =
1557           TargetTransformInfo::OK_AnyValue;
1558       TargetTransformInfo::OperandValueKind Op2VK =
1559           TargetTransformInfo::OK_UniformConstantValue;
1560
1561       int ScalarCost =
1562           VecTy->getNumElements() *
1563           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1564       int VecCost =
1565           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1566
1567       return VecCost - ScalarCost;
1568     }
1569     case Instruction::Load: {
1570       // Cost of wide load - cost of scalar loads.
1571       int ScalarLdCost = VecTy->getNumElements() *
1572       TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1573       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1574       return VecLdCost - ScalarLdCost;
1575     }
1576     case Instruction::Store: {
1577       // We know that we can merge the stores. Calculate the cost.
1578       int ScalarStCost = VecTy->getNumElements() *
1579       TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1580       int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1581       return VecStCost - ScalarStCost;
1582     }
1583     case Instruction::Call: {
1584       CallInst *CI = cast<CallInst>(VL0);
1585       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1586
1587       // Calculate the cost of the scalar and vector calls.
1588       SmallVector<Type*, 4> ScalarTys, VecTys;
1589       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1590         ScalarTys.push_back(CI->getArgOperand(op)->getType());
1591         VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1592                                          VecTy->getNumElements()));
1593       }
1594
1595       int ScalarCallCost = VecTy->getNumElements() *
1596           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
1597
1598       int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
1599
1600       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1601             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
1602             << " for " << *CI << "\n");
1603
1604       return VecCallCost - ScalarCallCost;
1605     }
1606     case Instruction::ShuffleVector: {
1607       TargetTransformInfo::OperandValueKind Op1VK =
1608           TargetTransformInfo::OK_AnyValue;
1609       TargetTransformInfo::OperandValueKind Op2VK =
1610           TargetTransformInfo::OK_AnyValue;
1611       int ScalarCost = 0;
1612       int VecCost = 0;
1613       for (unsigned i = 0; i < VL.size(); ++i) {
1614         Instruction *I = cast<Instruction>(VL[i]);
1615         if (!I)
1616           break;
1617         ScalarCost +=
1618             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1619       }
1620       // VecCost is equal to sum of the cost of creating 2 vectors
1621       // and the cost of creating shuffle.
1622       Instruction *I0 = cast<Instruction>(VL[0]);
1623       VecCost =
1624           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1625       Instruction *I1 = cast<Instruction>(VL[1]);
1626       VecCost +=
1627           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1628       VecCost +=
1629           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1630       return VecCost - ScalarCost;
1631     }
1632     default:
1633       llvm_unreachable("Unknown instruction");
1634   }
1635 }
1636
1637 bool BoUpSLP::isFullyVectorizableTinyTree() {
1638   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1639         VectorizableTree.size() << " is fully vectorizable .\n");
1640
1641   // We only handle trees of height 2.
1642   if (VectorizableTree.size() != 2)
1643     return false;
1644
1645   // Handle splat and all-constants stores.
1646   if (!VectorizableTree[0].NeedToGather &&
1647       (allConstant(VectorizableTree[1].Scalars) ||
1648        isSplat(VectorizableTree[1].Scalars)))
1649     return true;
1650
1651   // Gathering cost would be too much for tiny trees.
1652   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1653     return false;
1654
1655   return true;
1656 }
1657
1658 int BoUpSLP::getSpillCost() {
1659   // Walk from the bottom of the tree to the top, tracking which values are
1660   // live. When we see a call instruction that is not part of our tree,
1661   // query TTI to see if there is a cost to keeping values live over it
1662   // (for example, if spills and fills are required).
1663   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
1664   int Cost = 0;
1665
1666   SmallPtrSet<Instruction*, 4> LiveValues;
1667   Instruction *PrevInst = nullptr; 
1668
1669   for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
1670     Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
1671     if (!Inst)
1672       continue;
1673
1674     if (!PrevInst) {
1675       PrevInst = Inst;
1676       continue;
1677     }
1678
1679     DEBUG(
1680       dbgs() << "SLP: #LV: " << LiveValues.size();
1681       for (auto *X : LiveValues)
1682         dbgs() << " " << X->getName();
1683       dbgs() << ", Looking at ";
1684       Inst->dump();
1685       );
1686
1687     // Update LiveValues.
1688     LiveValues.erase(PrevInst);
1689     for (auto &J : PrevInst->operands()) {
1690       if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
1691         LiveValues.insert(cast<Instruction>(&*J));
1692     }    
1693
1694     // Now find the sequence of instructions between PrevInst and Inst.
1695     BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst);
1696     --PrevInstIt;
1697     while (InstIt != PrevInstIt) {
1698       if (PrevInstIt == PrevInst->getParent()->rend()) {
1699         PrevInstIt = Inst->getParent()->rbegin();
1700         continue;
1701       }
1702
1703       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
1704         SmallVector<Type*, 4> V;
1705         for (auto *II : LiveValues)
1706           V.push_back(VectorType::get(II->getType(), BundleWidth));
1707         Cost += TTI->getCostOfKeepingLiveOverCall(V);
1708       }
1709
1710       ++PrevInstIt;
1711     }
1712
1713     PrevInst = Inst;
1714   }
1715
1716   DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
1717   return Cost;
1718 }
1719
1720 int BoUpSLP::getTreeCost() {
1721   int Cost = 0;
1722   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1723         VectorizableTree.size() << ".\n");
1724
1725   // We only vectorize tiny trees if it is fully vectorizable.
1726   if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1727     if (VectorizableTree.empty()) {
1728       assert(!ExternalUses.size() && "We should not have any external users");
1729     }
1730     return INT_MAX;
1731   }
1732
1733   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1734
1735   for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1736     int C = getEntryCost(&VectorizableTree[i]);
1737     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1738           << *VectorizableTree[i].Scalars[0] << " .\n");
1739     Cost += C;
1740   }
1741
1742   SmallSet<Value *, 16> ExtractCostCalculated;
1743   int ExtractCost = 0;
1744   for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1745        I != E; ++I) {
1746     // We only add extract cost once for the same scalar.
1747     if (!ExtractCostCalculated.insert(I->Scalar).second)
1748       continue;
1749
1750     // Uses by ephemeral values are free (because the ephemeral value will be
1751     // removed prior to code generation, and so the extraction will be
1752     // removed as well).
1753     if (EphValues.count(I->User))
1754       continue;
1755
1756     VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1757     ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1758                                            I->Lane);
1759   }
1760
1761   Cost += getSpillCost();
1762
1763   DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1764   return  Cost + ExtractCost;
1765 }
1766
1767 int BoUpSLP::getGatherCost(Type *Ty) {
1768   int Cost = 0;
1769   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1770     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1771   return Cost;
1772 }
1773
1774 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1775   // Find the type of the operands in VL.
1776   Type *ScalarTy = VL[0]->getType();
1777   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1778     ScalarTy = SI->getValueOperand()->getType();
1779   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1780   // Find the cost of inserting/extracting values from the vector.
1781   return getGatherCost(VecTy);
1782 }
1783
1784 Value *BoUpSLP::getPointerOperand(Value *I) {
1785   if (LoadInst *LI = dyn_cast<LoadInst>(I))
1786     return LI->getPointerOperand();
1787   if (StoreInst *SI = dyn_cast<StoreInst>(I))
1788     return SI->getPointerOperand();
1789   return nullptr;
1790 }
1791
1792 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1793   if (LoadInst *L = dyn_cast<LoadInst>(I))
1794     return L->getPointerAddressSpace();
1795   if (StoreInst *S = dyn_cast<StoreInst>(I))
1796     return S->getPointerAddressSpace();
1797   return -1;
1798 }
1799
1800 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
1801   Value *PtrA = getPointerOperand(A);
1802   Value *PtrB = getPointerOperand(B);
1803   unsigned ASA = getAddressSpaceOperand(A);
1804   unsigned ASB = getAddressSpaceOperand(B);
1805
1806   // Check that the address spaces match and that the pointers are valid.
1807   if (!PtrA || !PtrB || (ASA != ASB))
1808     return false;
1809
1810   // Make sure that A and B are different pointers of the same type.
1811   if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1812     return false;
1813
1814   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1815   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1816   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1817
1818   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1819   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1820   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1821
1822   APInt OffsetDelta = OffsetB - OffsetA;
1823
1824   // Check if they are based on the same pointer. That makes the offsets
1825   // sufficient.
1826   if (PtrA == PtrB)
1827     return OffsetDelta == Size;
1828
1829   // Compute the necessary base pointer delta to have the necessary final delta
1830   // equal to the size.
1831   APInt BaseDelta = Size - OffsetDelta;
1832
1833   // Otherwise compute the distance with SCEV between the base pointers.
1834   const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1835   const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1836   const SCEV *C = SE->getConstant(BaseDelta);
1837   const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1838   return X == PtrSCEVB;
1839 }
1840
1841 // Reorder commutative operations in alternate shuffle if the resulting vectors
1842 // are consecutive loads. This would allow us to vectorize the tree.
1843 // If we have something like-
1844 // load a[0] - load b[0]
1845 // load b[1] + load a[1]
1846 // load a[2] - load b[2]
1847 // load a[3] + load b[3]
1848 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
1849 // code.
1850 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
1851                                         SmallVectorImpl<Value *> &Left,
1852                                         SmallVectorImpl<Value *> &Right) {
1853   const DataLayout &DL = F->getParent()->getDataLayout();
1854
1855   // Push left and right operands of binary operation into Left and Right
1856   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1857     Left.push_back(cast<Instruction>(VL[i])->getOperand(0));
1858     Right.push_back(cast<Instruction>(VL[i])->getOperand(1));
1859   }
1860
1861   // Reorder if we have a commutative operation and consecutive access
1862   // are on either side of the alternate instructions.
1863   for (unsigned j = 0; j < VL.size() - 1; ++j) {
1864     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
1865       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
1866         Instruction *VL1 = cast<Instruction>(VL[j]);
1867         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1868         if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1869           std::swap(Left[j], Right[j]);
1870           continue;
1871         } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1872           std::swap(Left[j + 1], Right[j + 1]);
1873           continue;
1874         }
1875         // else unchanged
1876       }
1877     }
1878     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
1879       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
1880         Instruction *VL1 = cast<Instruction>(VL[j]);
1881         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1882         if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1883           std::swap(Left[j], Right[j]);
1884           continue;
1885         } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1886           std::swap(Left[j + 1], Right[j + 1]);
1887           continue;
1888         }
1889         // else unchanged
1890       }
1891     }
1892   }
1893 }
1894
1895 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1896                                              SmallVectorImpl<Value *> &Left,
1897                                              SmallVectorImpl<Value *> &Right) {
1898
1899   SmallVector<Value *, 16> OrigLeft, OrigRight;
1900
1901   bool AllSameOpcodeLeft = true;
1902   bool AllSameOpcodeRight = true;
1903   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1904     Instruction *I = cast<Instruction>(VL[i]);
1905     Value *VLeft = I->getOperand(0);
1906     Value *VRight = I->getOperand(1);
1907
1908     OrigLeft.push_back(VLeft);
1909     OrigRight.push_back(VRight);
1910
1911     Instruction *ILeft = dyn_cast<Instruction>(VLeft);
1912     Instruction *IRight = dyn_cast<Instruction>(VRight);
1913
1914     // Check whether all operands on one side have the same opcode. In this case
1915     // we want to preserve the original order and not make things worse by
1916     // reordering.
1917     if (i && AllSameOpcodeLeft && ILeft) {
1918       if (Instruction *PLeft = dyn_cast<Instruction>(OrigLeft[i - 1])) {
1919         if (PLeft->getOpcode() != ILeft->getOpcode())
1920           AllSameOpcodeLeft = false;
1921       } else
1922         AllSameOpcodeLeft = false;
1923     }
1924     if (i && AllSameOpcodeRight && IRight) {
1925       if (Instruction *PRight = dyn_cast<Instruction>(OrigRight[i - 1])) {
1926         if (PRight->getOpcode() != IRight->getOpcode())
1927           AllSameOpcodeRight = false;
1928       } else
1929         AllSameOpcodeRight = false;
1930     }
1931
1932     // Sort two opcodes. In the code below we try to preserve the ability to use
1933     // broadcast of values instead of individual inserts.
1934     // vl1 = load
1935     // vl2 = phi
1936     // vr1 = load
1937     // vr2 = vr2
1938     //    = vl1 x vr1
1939     //    = vl2 x vr2
1940     // If we just sorted according to opcode we would leave the first line in
1941     // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
1942     //    = vl1 x vr1
1943     //    = vr2 x vl2
1944     // Because vr2 and vr1 are from the same load we loose the opportunity of a
1945     // broadcast for the packed right side in the backend: we have [vr1, vl2]
1946     // instead of [vr1, vr2=vr1].
1947     if (ILeft && IRight) {
1948       if (!i && ILeft->getOpcode() > IRight->getOpcode()) {
1949         Left.push_back(IRight);
1950         Right.push_back(ILeft);
1951       } else if (i && ILeft->getOpcode() > IRight->getOpcode() &&
1952                  Right[i - 1] != IRight) {
1953         // Try not to destroy a broad cast for no apparent benefit.
1954         Left.push_back(IRight);
1955         Right.push_back(ILeft);
1956       } else if (i && ILeft->getOpcode() == IRight->getOpcode() &&
1957                  Right[i - 1] == ILeft) {
1958         // Try preserve broadcasts.
1959         Left.push_back(IRight);
1960         Right.push_back(ILeft);
1961       } else if (i && ILeft->getOpcode() == IRight->getOpcode() &&
1962                  Left[i - 1] == IRight) {
1963         // Try preserve broadcasts.
1964         Left.push_back(IRight);
1965         Right.push_back(ILeft);
1966       } else {
1967         Left.push_back(ILeft);
1968         Right.push_back(IRight);
1969       }
1970       continue;
1971     }
1972     // One opcode, put the instruction on the right.
1973     if (ILeft) {
1974       Left.push_back(VRight);
1975       Right.push_back(ILeft);
1976       continue;
1977     }
1978     Left.push_back(VLeft);
1979     Right.push_back(VRight);
1980   }
1981
1982   bool LeftBroadcast = isSplat(Left);
1983   bool RightBroadcast = isSplat(Right);
1984
1985   // If operands end up being broadcast return this operand order.
1986   if (LeftBroadcast || RightBroadcast)
1987     return;
1988
1989   // Don't reorder if the operands where good to begin.
1990   if (AllSameOpcodeRight || AllSameOpcodeLeft) {
1991     Left = OrigLeft;
1992     Right = OrigRight;
1993   }
1994
1995   const DataLayout &DL = F->getParent()->getDataLayout();
1996
1997   // Finally check if we can get longer vectorizable chain by reordering
1998   // without breaking the good operand order detected above.
1999   // E.g. If we have something like-
2000   // load a[0]  load b[0]
2001   // load b[1]  load a[1]
2002   // load a[2]  load b[2]
2003   // load a[3]  load b[3]
2004   // Reordering the second load b[1]  load a[1] would allow us to vectorize
2005   // this code and we still retain AllSameOpcode property.
2006   // FIXME: This load reordering might break AllSameOpcode in some rare cases
2007   // such as-
2008   // add a[0],c[0]  load b[0]
2009   // add a[1],c[2]  load b[1]
2010   // b[2]           load b[2]
2011   // add a[3],c[3]  load b[3]
2012   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2013     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2014       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2015         if (isConsecutiveAccess(L, L1, DL)) {
2016           std::swap(Left[j + 1], Right[j + 1]);
2017           continue;
2018         }
2019       }
2020     }
2021     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2022       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2023         if (isConsecutiveAccess(L, L1, DL)) {
2024           std::swap(Left[j + 1], Right[j + 1]);
2025           continue;
2026         }
2027       }
2028     }
2029     // else unchanged
2030   }
2031 }
2032
2033 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
2034   Instruction *VL0 = cast<Instruction>(VL[0]);
2035   BasicBlock::iterator NextInst = VL0;
2036   ++NextInst;
2037   Builder.SetInsertPoint(VL0->getParent(), NextInst);
2038   Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
2039 }
2040
2041 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2042   Value *Vec = UndefValue::get(Ty);
2043   // Generate the 'InsertElement' instruction.
2044   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2045     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2046     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2047       GatherSeq.insert(Insrt);
2048       CSEBlocks.insert(Insrt->getParent());
2049
2050       // Add to our 'need-to-extract' list.
2051       if (ScalarToTreeEntry.count(VL[i])) {
2052         int Idx = ScalarToTreeEntry[VL[i]];
2053         TreeEntry *E = &VectorizableTree[Idx];
2054         // Find which lane we need to extract.
2055         int FoundLane = -1;
2056         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2057           // Is this the lane of the scalar that we are looking for ?
2058           if (E->Scalars[Lane] == VL[i]) {
2059             FoundLane = Lane;
2060             break;
2061           }
2062         }
2063         assert(FoundLane >= 0 && "Could not find the correct lane");
2064         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2065       }
2066     }
2067   }
2068
2069   return Vec;
2070 }
2071
2072 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
2073   SmallDenseMap<Value*, int>::const_iterator Entry
2074     = ScalarToTreeEntry.find(VL[0]);
2075   if (Entry != ScalarToTreeEntry.end()) {
2076     int Idx = Entry->second;
2077     const TreeEntry *En = &VectorizableTree[Idx];
2078     if (En->isSame(VL) && En->VectorizedValue)
2079       return En->VectorizedValue;
2080   }
2081   return nullptr;
2082 }
2083
2084 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2085   if (ScalarToTreeEntry.count(VL[0])) {
2086     int Idx = ScalarToTreeEntry[VL[0]];
2087     TreeEntry *E = &VectorizableTree[Idx];
2088     if (E->isSame(VL))
2089       return vectorizeTree(E);
2090   }
2091
2092   Type *ScalarTy = VL[0]->getType();
2093   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2094     ScalarTy = SI->getValueOperand()->getType();
2095   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2096
2097   return Gather(VL, VecTy);
2098 }
2099
2100 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2101   IRBuilder<>::InsertPointGuard Guard(Builder);
2102
2103   if (E->VectorizedValue) {
2104     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2105     return E->VectorizedValue;
2106   }
2107
2108   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2109   Type *ScalarTy = VL0->getType();
2110   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2111     ScalarTy = SI->getValueOperand()->getType();
2112   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2113
2114   if (E->NeedToGather) {
2115     setInsertPointAfterBundle(E->Scalars);
2116     return Gather(E->Scalars, VecTy);
2117   }
2118
2119   const DataLayout &DL = F->getParent()->getDataLayout();
2120   unsigned Opcode = getSameOpcode(E->Scalars);
2121
2122   switch (Opcode) {
2123     case Instruction::PHI: {
2124       PHINode *PH = dyn_cast<PHINode>(VL0);
2125       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2126       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2127       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2128       E->VectorizedValue = NewPhi;
2129
2130       // PHINodes may have multiple entries from the same block. We want to
2131       // visit every block once.
2132       SmallSet<BasicBlock*, 4> VisitedBBs;
2133
2134       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2135         ValueList Operands;
2136         BasicBlock *IBB = PH->getIncomingBlock(i);
2137
2138         if (!VisitedBBs.insert(IBB).second) {
2139           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2140           continue;
2141         }
2142
2143         // Prepare the operand vector.
2144         for (Value *V : E->Scalars)
2145           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2146
2147         Builder.SetInsertPoint(IBB->getTerminator());
2148         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2149         Value *Vec = vectorizeTree(Operands);
2150         NewPhi->addIncoming(Vec, IBB);
2151       }
2152
2153       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2154              "Invalid number of incoming values");
2155       return NewPhi;
2156     }
2157
2158     case Instruction::ExtractElement: {
2159       if (CanReuseExtract(E->Scalars)) {
2160         Value *V = VL0->getOperand(0);
2161         E->VectorizedValue = V;
2162         return V;
2163       }
2164       return Gather(E->Scalars, VecTy);
2165     }
2166     case Instruction::ZExt:
2167     case Instruction::SExt:
2168     case Instruction::FPToUI:
2169     case Instruction::FPToSI:
2170     case Instruction::FPExt:
2171     case Instruction::PtrToInt:
2172     case Instruction::IntToPtr:
2173     case Instruction::SIToFP:
2174     case Instruction::UIToFP:
2175     case Instruction::Trunc:
2176     case Instruction::FPTrunc:
2177     case Instruction::BitCast: {
2178       ValueList INVL;
2179       for (Value *V : E->Scalars)
2180         INVL.push_back(cast<Instruction>(V)->getOperand(0));
2181
2182       setInsertPointAfterBundle(E->Scalars);
2183
2184       Value *InVec = vectorizeTree(INVL);
2185
2186       if (Value *V = alreadyVectorized(E->Scalars))
2187         return V;
2188
2189       CastInst *CI = dyn_cast<CastInst>(VL0);
2190       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2191       E->VectorizedValue = V;
2192       ++NumVectorInstructions;
2193       return V;
2194     }
2195     case Instruction::FCmp:
2196     case Instruction::ICmp: {
2197       ValueList LHSV, RHSV;
2198       for (Value *V : E->Scalars) {
2199         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2200         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2201       }
2202
2203       setInsertPointAfterBundle(E->Scalars);
2204
2205       Value *L = vectorizeTree(LHSV);
2206       Value *R = vectorizeTree(RHSV);
2207
2208       if (Value *V = alreadyVectorized(E->Scalars))
2209         return V;
2210
2211       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2212       Value *V;
2213       if (Opcode == Instruction::FCmp)
2214         V = Builder.CreateFCmp(P0, L, R);
2215       else
2216         V = Builder.CreateICmp(P0, L, R);
2217
2218       E->VectorizedValue = V;
2219       ++NumVectorInstructions;
2220       return V;
2221     }
2222     case Instruction::Select: {
2223       ValueList TrueVec, FalseVec, CondVec;
2224       for (Value *V : E->Scalars) {
2225         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2226         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2227         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2228       }
2229
2230       setInsertPointAfterBundle(E->Scalars);
2231
2232       Value *Cond = vectorizeTree(CondVec);
2233       Value *True = vectorizeTree(TrueVec);
2234       Value *False = vectorizeTree(FalseVec);
2235
2236       if (Value *V = alreadyVectorized(E->Scalars))
2237         return V;
2238
2239       Value *V = Builder.CreateSelect(Cond, True, False);
2240       E->VectorizedValue = V;
2241       ++NumVectorInstructions;
2242       return V;
2243     }
2244     case Instruction::Add:
2245     case Instruction::FAdd:
2246     case Instruction::Sub:
2247     case Instruction::FSub:
2248     case Instruction::Mul:
2249     case Instruction::FMul:
2250     case Instruction::UDiv:
2251     case Instruction::SDiv:
2252     case Instruction::FDiv:
2253     case Instruction::URem:
2254     case Instruction::SRem:
2255     case Instruction::FRem:
2256     case Instruction::Shl:
2257     case Instruction::LShr:
2258     case Instruction::AShr:
2259     case Instruction::And:
2260     case Instruction::Or:
2261     case Instruction::Xor: {
2262       ValueList LHSVL, RHSVL;
2263       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2264         reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
2265       else
2266         for (Value *V : E->Scalars) {
2267           LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
2268           RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
2269         }
2270
2271       setInsertPointAfterBundle(E->Scalars);
2272
2273       Value *LHS = vectorizeTree(LHSVL);
2274       Value *RHS = vectorizeTree(RHSVL);
2275
2276       if (LHS == RHS && isa<Instruction>(LHS)) {
2277         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
2278       }
2279
2280       if (Value *V = alreadyVectorized(E->Scalars))
2281         return V;
2282
2283       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2284       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2285       E->VectorizedValue = V;
2286       propagateIRFlags(E->VectorizedValue, E->Scalars);
2287       ++NumVectorInstructions;
2288
2289       if (Instruction *I = dyn_cast<Instruction>(V))
2290         return propagateMetadata(I, E->Scalars);
2291
2292       return V;
2293     }
2294     case Instruction::Load: {
2295       // Loads are inserted at the head of the tree because we don't want to
2296       // sink them all the way down past store instructions.
2297       setInsertPointAfterBundle(E->Scalars);
2298
2299       LoadInst *LI = cast<LoadInst>(VL0);
2300       Type *ScalarLoadTy = LI->getType();
2301       unsigned AS = LI->getPointerAddressSpace();
2302
2303       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2304                                             VecTy->getPointerTo(AS));
2305
2306       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2307       // ExternalUses list to make sure that an extract will be generated in the
2308       // future.
2309       if (ScalarToTreeEntry.count(LI->getPointerOperand()))
2310         ExternalUses.push_back(
2311             ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
2312
2313       unsigned Alignment = LI->getAlignment();
2314       LI = Builder.CreateLoad(VecPtr);
2315       if (!Alignment) {
2316         Alignment = DL.getABITypeAlignment(ScalarLoadTy);
2317       }
2318       LI->setAlignment(Alignment);
2319       E->VectorizedValue = LI;
2320       ++NumVectorInstructions;
2321       return propagateMetadata(LI, E->Scalars);
2322     }
2323     case Instruction::Store: {
2324       StoreInst *SI = cast<StoreInst>(VL0);
2325       unsigned Alignment = SI->getAlignment();
2326       unsigned AS = SI->getPointerAddressSpace();
2327
2328       ValueList ValueOp;
2329       for (Value *V : E->Scalars)
2330         ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2331
2332       setInsertPointAfterBundle(E->Scalars);
2333
2334       Value *VecValue = vectorizeTree(ValueOp);
2335       Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2336                                             VecTy->getPointerTo(AS));
2337       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2338
2339       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2340       // ExternalUses list to make sure that an extract will be generated in the
2341       // future.
2342       if (ScalarToTreeEntry.count(SI->getPointerOperand()))
2343         ExternalUses.push_back(
2344             ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
2345
2346       if (!Alignment) {
2347         Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
2348       }
2349       S->setAlignment(Alignment);
2350       E->VectorizedValue = S;
2351       ++NumVectorInstructions;
2352       return propagateMetadata(S, E->Scalars);
2353     }
2354     case Instruction::GetElementPtr: {
2355       setInsertPointAfterBundle(E->Scalars);
2356
2357       ValueList Op0VL;
2358       for (Value *V : E->Scalars)
2359         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2360
2361       Value *Op0 = vectorizeTree(Op0VL);
2362
2363       std::vector<Value *> OpVecs;
2364       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2365            ++j) {
2366         ValueList OpVL;
2367         for (Value *V : E->Scalars)
2368           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2369
2370         Value *OpVec = vectorizeTree(OpVL);
2371         OpVecs.push_back(OpVec);
2372       }
2373
2374       Value *V = Builder.CreateGEP(
2375           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2376       E->VectorizedValue = V;
2377       ++NumVectorInstructions;
2378
2379       if (Instruction *I = dyn_cast<Instruction>(V))
2380         return propagateMetadata(I, E->Scalars);
2381
2382       return V;
2383     }
2384     case Instruction::Call: {
2385       CallInst *CI = cast<CallInst>(VL0);
2386       setInsertPointAfterBundle(E->Scalars);
2387       Function *FI;
2388       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
2389       Value *ScalarArg = nullptr;
2390       if (CI && (FI = CI->getCalledFunction())) {
2391         IID = FI->getIntrinsicID();
2392       }
2393       std::vector<Value *> OpVecs;
2394       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2395         ValueList OpVL;
2396         // ctlz,cttz and powi are special intrinsics whose second argument is
2397         // a scalar. This argument should not be vectorized.
2398         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2399           CallInst *CEI = cast<CallInst>(E->Scalars[0]);
2400           ScalarArg = CEI->getArgOperand(j);
2401           OpVecs.push_back(CEI->getArgOperand(j));
2402           continue;
2403         }
2404         for (Value *V : E->Scalars) {
2405           CallInst *CEI = cast<CallInst>(V);
2406           OpVL.push_back(CEI->getArgOperand(j));
2407         }
2408
2409         Value *OpVec = vectorizeTree(OpVL);
2410         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
2411         OpVecs.push_back(OpVec);
2412       }
2413
2414       Module *M = F->getParent();
2415       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2416       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
2417       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
2418       Value *V = Builder.CreateCall(CF, OpVecs);
2419
2420       // The scalar argument uses an in-tree scalar so we add the new vectorized
2421       // call to ExternalUses list to make sure that an extract will be
2422       // generated in the future.
2423       if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
2424         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
2425
2426       E->VectorizedValue = V;
2427       ++NumVectorInstructions;
2428       return V;
2429     }
2430     case Instruction::ShuffleVector: {
2431       ValueList LHSVL, RHSVL;
2432       assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
2433       reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
2434       setInsertPointAfterBundle(E->Scalars);
2435
2436       Value *LHS = vectorizeTree(LHSVL);
2437       Value *RHS = vectorizeTree(RHSVL);
2438
2439       if (Value *V = alreadyVectorized(E->Scalars))
2440         return V;
2441
2442       // Create a vector of LHS op1 RHS
2443       BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
2444       Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
2445
2446       // Create a vector of LHS op2 RHS
2447       Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
2448       BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
2449       Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
2450
2451       // Create shuffle to take alternate operations from the vector.
2452       // Also, gather up odd and even scalar ops to propagate IR flags to
2453       // each vector operation.
2454       ValueList OddScalars, EvenScalars;
2455       unsigned e = E->Scalars.size();
2456       SmallVector<Constant *, 8> Mask(e);
2457       for (unsigned i = 0; i < e; ++i) {
2458         if (i & 1) {
2459           Mask[i] = Builder.getInt32(e + i);
2460           OddScalars.push_back(E->Scalars[i]);
2461         } else {
2462           Mask[i] = Builder.getInt32(i);
2463           EvenScalars.push_back(E->Scalars[i]);
2464         }
2465       }
2466
2467       Value *ShuffleMask = ConstantVector::get(Mask);
2468       propagateIRFlags(V0, EvenScalars);
2469       propagateIRFlags(V1, OddScalars);
2470
2471       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
2472       E->VectorizedValue = V;
2473       ++NumVectorInstructions;
2474       if (Instruction *I = dyn_cast<Instruction>(V))
2475         return propagateMetadata(I, E->Scalars);
2476
2477       return V;
2478     }
2479     default:
2480     llvm_unreachable("unknown inst");
2481   }
2482   return nullptr;
2483 }
2484
2485 Value *BoUpSLP::vectorizeTree() {
2486   
2487   // All blocks must be scheduled before any instructions are inserted.
2488   for (auto &BSIter : BlocksSchedules) {
2489     scheduleBlock(BSIter.second.get());
2490   }
2491
2492   Builder.SetInsertPoint(F->getEntryBlock().begin());
2493   vectorizeTree(&VectorizableTree[0]);
2494
2495   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
2496
2497   // Extract all of the elements with the external uses.
2498   for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
2499        it != e; ++it) {
2500     Value *Scalar = it->Scalar;
2501     llvm::User *User = it->User;
2502
2503     // Skip users that we already RAUW. This happens when one instruction
2504     // has multiple uses of the same value.
2505     if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
2506         Scalar->user_end())
2507       continue;
2508     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
2509
2510     int Idx = ScalarToTreeEntry[Scalar];
2511     TreeEntry *E = &VectorizableTree[Idx];
2512     assert(!E->NeedToGather && "Extracting from a gather list");
2513
2514     Value *Vec = E->VectorizedValue;
2515     assert(Vec && "Can't find vectorizable value");
2516
2517     Value *Lane = Builder.getInt32(it->Lane);
2518     // Generate extracts for out-of-tree users.
2519     // Find the insertion point for the extractelement lane.
2520     if (isa<Instruction>(Vec)){
2521       if (PHINode *PH = dyn_cast<PHINode>(User)) {
2522         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
2523           if (PH->getIncomingValue(i) == Scalar) {
2524             Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
2525             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2526             CSEBlocks.insert(PH->getIncomingBlock(i));
2527             PH->setOperand(i, Ex);
2528           }
2529         }
2530       } else {
2531         Builder.SetInsertPoint(cast<Instruction>(User));
2532         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2533         CSEBlocks.insert(cast<Instruction>(User)->getParent());
2534         User->replaceUsesOfWith(Scalar, Ex);
2535      }
2536     } else {
2537       Builder.SetInsertPoint(F->getEntryBlock().begin());
2538       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2539       CSEBlocks.insert(&F->getEntryBlock());
2540       User->replaceUsesOfWith(Scalar, Ex);
2541     }
2542
2543     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
2544   }
2545
2546   // For each vectorized value:
2547   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
2548     TreeEntry *Entry = &VectorizableTree[EIdx];
2549
2550     // For each lane:
2551     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2552       Value *Scalar = Entry->Scalars[Lane];
2553       // No need to handle users of gathered values.
2554       if (Entry->NeedToGather)
2555         continue;
2556
2557       assert(Entry->VectorizedValue && "Can't find vectorizable value");
2558
2559       Type *Ty = Scalar->getType();
2560       if (!Ty->isVoidTy()) {
2561 #ifndef NDEBUG
2562         for (User *U : Scalar->users()) {
2563           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
2564
2565           assert((ScalarToTreeEntry.count(U) ||
2566                   // It is legal to replace users in the ignorelist by undef.
2567                   (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
2568                    UserIgnoreList.end())) &&
2569                  "Replacing out-of-tree value with undef");
2570         }
2571 #endif
2572         Value *Undef = UndefValue::get(Ty);
2573         Scalar->replaceAllUsesWith(Undef);
2574       }
2575       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
2576       eraseInstruction(cast<Instruction>(Scalar));
2577     }
2578   }
2579
2580   Builder.ClearInsertionPoint();
2581
2582   return VectorizableTree[0].VectorizedValue;
2583 }
2584
2585 void BoUpSLP::optimizeGatherSequence() {
2586   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
2587         << " gather sequences instructions.\n");
2588   // LICM InsertElementInst sequences.
2589   for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
2590        e = GatherSeq.end(); it != e; ++it) {
2591     InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
2592
2593     if (!Insert)
2594       continue;
2595
2596     // Check if this block is inside a loop.
2597     Loop *L = LI->getLoopFor(Insert->getParent());
2598     if (!L)
2599       continue;
2600
2601     // Check if it has a preheader.
2602     BasicBlock *PreHeader = L->getLoopPreheader();
2603     if (!PreHeader)
2604       continue;
2605
2606     // If the vector or the element that we insert into it are
2607     // instructions that are defined in this basic block then we can't
2608     // hoist this instruction.
2609     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2610     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2611     if (CurrVec && L->contains(CurrVec))
2612       continue;
2613     if (NewElem && L->contains(NewElem))
2614       continue;
2615
2616     // We can hoist this instruction. Move it to the pre-header.
2617     Insert->moveBefore(PreHeader->getTerminator());
2618   }
2619
2620   // Make a list of all reachable blocks in our CSE queue.
2621   SmallVector<const DomTreeNode *, 8> CSEWorkList;
2622   CSEWorkList.reserve(CSEBlocks.size());
2623   for (BasicBlock *BB : CSEBlocks)
2624     if (DomTreeNode *N = DT->getNode(BB)) {
2625       assert(DT->isReachableFromEntry(N));
2626       CSEWorkList.push_back(N);
2627     }
2628
2629   // Sort blocks by domination. This ensures we visit a block after all blocks
2630   // dominating it are visited.
2631   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2632                    [this](const DomTreeNode *A, const DomTreeNode *B) {
2633     return DT->properlyDominates(A, B);
2634   });
2635
2636   // Perform O(N^2) search over the gather sequences and merge identical
2637   // instructions. TODO: We can further optimize this scan if we split the
2638   // instructions into different buckets based on the insert lane.
2639   SmallVector<Instruction *, 16> Visited;
2640   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2641     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
2642            "Worklist not sorted properly!");
2643     BasicBlock *BB = (*I)->getBlock();
2644     // For all instructions in blocks containing gather sequences:
2645     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2646       Instruction *In = it++;
2647       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2648         continue;
2649
2650       // Check if we can replace this instruction with any of the
2651       // visited instructions.
2652       for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
2653                                                     ve = Visited.end();
2654            v != ve; ++v) {
2655         if (In->isIdenticalTo(*v) &&
2656             DT->dominates((*v)->getParent(), In->getParent())) {
2657           In->replaceAllUsesWith(*v);
2658           eraseInstruction(In);
2659           In = nullptr;
2660           break;
2661         }
2662       }
2663       if (In) {
2664         assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
2665         Visited.push_back(In);
2666       }
2667     }
2668   }
2669   CSEBlocks.clear();
2670   GatherSeq.clear();
2671 }
2672
2673 // Groups the instructions to a bundle (which is then a single scheduling entity)
2674 // and schedules instructions until the bundle gets ready.
2675 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
2676                                                  BoUpSLP *SLP) {
2677   if (isa<PHINode>(VL[0]))
2678     return true;
2679
2680   // Initialize the instruction bundle.
2681   Instruction *OldScheduleEnd = ScheduleEnd;
2682   ScheduleData *PrevInBundle = nullptr;
2683   ScheduleData *Bundle = nullptr;
2684   bool ReSchedule = false;
2685   DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
2686   for (Value *V : VL) {
2687     extendSchedulingRegion(V);
2688     ScheduleData *BundleMember = getScheduleData(V);
2689     assert(BundleMember &&
2690            "no ScheduleData for bundle member (maybe not in same basic block)");
2691     if (BundleMember->IsScheduled) {
2692       // A bundle member was scheduled as single instruction before and now
2693       // needs to be scheduled as part of the bundle. We just get rid of the
2694       // existing schedule.
2695       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
2696                    << " was already scheduled\n");
2697       ReSchedule = true;
2698     }
2699     assert(BundleMember->isSchedulingEntity() &&
2700            "bundle member already part of other bundle");
2701     if (PrevInBundle) {
2702       PrevInBundle->NextInBundle = BundleMember;
2703     } else {
2704       Bundle = BundleMember;
2705     }
2706     BundleMember->UnscheduledDepsInBundle = 0;
2707     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
2708
2709     // Group the instructions to a bundle.
2710     BundleMember->FirstInBundle = Bundle;
2711     PrevInBundle = BundleMember;
2712   }
2713   if (ScheduleEnd != OldScheduleEnd) {
2714     // The scheduling region got new instructions at the lower end (or it is a
2715     // new region for the first bundle). This makes it necessary to
2716     // recalculate all dependencies.
2717     // It is seldom that this needs to be done a second time after adding the
2718     // initial bundle to the region.
2719     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2720       ScheduleData *SD = getScheduleData(I);
2721       SD->clearDependencies();
2722     }
2723     ReSchedule = true;
2724   }
2725   if (ReSchedule) {
2726     resetSchedule();
2727     initialFillReadyList(ReadyInsts);
2728   }
2729
2730   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
2731                << BB->getName() << "\n");
2732
2733   calculateDependencies(Bundle, true, SLP);
2734
2735   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
2736   // means that there are no cyclic dependencies and we can schedule it.
2737   // Note that's important that we don't "schedule" the bundle yet (see
2738   // cancelScheduling).
2739   while (!Bundle->isReady() && !ReadyInsts.empty()) {
2740
2741     ScheduleData *pickedSD = ReadyInsts.back();
2742     ReadyInsts.pop_back();
2743
2744     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
2745       schedule(pickedSD, ReadyInsts);
2746     }
2747   }
2748   return Bundle->isReady();
2749 }
2750
2751 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
2752   if (isa<PHINode>(VL[0]))
2753     return;
2754
2755   ScheduleData *Bundle = getScheduleData(VL[0]);
2756   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
2757   assert(!Bundle->IsScheduled &&
2758          "Can't cancel bundle which is already scheduled");
2759   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
2760          "tried to unbundle something which is not a bundle");
2761
2762   // Un-bundle: make single instructions out of the bundle.
2763   ScheduleData *BundleMember = Bundle;
2764   while (BundleMember) {
2765     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
2766     BundleMember->FirstInBundle = BundleMember;
2767     ScheduleData *Next = BundleMember->NextInBundle;
2768     BundleMember->NextInBundle = nullptr;
2769     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
2770     if (BundleMember->UnscheduledDepsInBundle == 0) {
2771       ReadyInsts.insert(BundleMember);
2772     }
2773     BundleMember = Next;
2774   }
2775 }
2776
2777 void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
2778   if (getScheduleData(V))
2779     return;
2780   Instruction *I = dyn_cast<Instruction>(V);
2781   assert(I && "bundle member must be an instruction");
2782   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
2783   if (!ScheduleStart) {
2784     // It's the first instruction in the new region.
2785     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
2786     ScheduleStart = I;
2787     ScheduleEnd = I->getNextNode();
2788     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2789     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
2790     return;
2791   }
2792   // Search up and down at the same time, because we don't know if the new
2793   // instruction is above or below the existing scheduling region.
2794   BasicBlock::reverse_iterator UpIter(ScheduleStart);
2795   BasicBlock::reverse_iterator UpperEnd = BB->rend();
2796   BasicBlock::iterator DownIter(ScheduleEnd);
2797   BasicBlock::iterator LowerEnd = BB->end();
2798   for (;;) {
2799     if (UpIter != UpperEnd) {
2800       if (&*UpIter == I) {
2801         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
2802         ScheduleStart = I;
2803         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
2804         return;
2805       }
2806       UpIter++;
2807     }
2808     if (DownIter != LowerEnd) {
2809       if (&*DownIter == I) {
2810         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
2811                          nullptr);
2812         ScheduleEnd = I->getNextNode();
2813         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2814         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
2815         return;
2816       }
2817       DownIter++;
2818     }
2819     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
2820            "instruction not found in block");
2821   }
2822 }
2823
2824 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
2825                                                 Instruction *ToI,
2826                                                 ScheduleData *PrevLoadStore,
2827                                                 ScheduleData *NextLoadStore) {
2828   ScheduleData *CurrentLoadStore = PrevLoadStore;
2829   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
2830     ScheduleData *SD = ScheduleDataMap[I];
2831     if (!SD) {
2832       // Allocate a new ScheduleData for the instruction.
2833       if (ChunkPos >= ChunkSize) {
2834         ScheduleDataChunks.push_back(
2835             llvm::make_unique<ScheduleData[]>(ChunkSize));
2836         ChunkPos = 0;
2837       }
2838       SD = &(ScheduleDataChunks.back()[ChunkPos++]);
2839       ScheduleDataMap[I] = SD;
2840       SD->Inst = I;
2841     }
2842     assert(!isInSchedulingRegion(SD) &&
2843            "new ScheduleData already in scheduling region");
2844     SD->init(SchedulingRegionID);
2845
2846     if (I->mayReadOrWriteMemory()) {
2847       // Update the linked list of memory accessing instructions.
2848       if (CurrentLoadStore) {
2849         CurrentLoadStore->NextLoadStore = SD;
2850       } else {
2851         FirstLoadStoreInRegion = SD;
2852       }
2853       CurrentLoadStore = SD;
2854     }
2855   }
2856   if (NextLoadStore) {
2857     if (CurrentLoadStore)
2858       CurrentLoadStore->NextLoadStore = NextLoadStore;
2859   } else {
2860     LastLoadStoreInRegion = CurrentLoadStore;
2861   }
2862 }
2863
2864 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
2865                                                      bool InsertInReadyList,
2866                                                      BoUpSLP *SLP) {
2867   assert(SD->isSchedulingEntity());
2868
2869   SmallVector<ScheduleData *, 10> WorkList;
2870   WorkList.push_back(SD);
2871
2872   while (!WorkList.empty()) {
2873     ScheduleData *SD = WorkList.back();
2874     WorkList.pop_back();
2875
2876     ScheduleData *BundleMember = SD;
2877     while (BundleMember) {
2878       assert(isInSchedulingRegion(BundleMember));
2879       if (!BundleMember->hasValidDependencies()) {
2880
2881         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
2882         BundleMember->Dependencies = 0;
2883         BundleMember->resetUnscheduledDeps();
2884
2885         // Handle def-use chain dependencies.
2886         for (User *U : BundleMember->Inst->users()) {
2887           if (isa<Instruction>(U)) {
2888             ScheduleData *UseSD = getScheduleData(U);
2889             if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
2890               BundleMember->Dependencies++;
2891               ScheduleData *DestBundle = UseSD->FirstInBundle;
2892               if (!DestBundle->IsScheduled) {
2893                 BundleMember->incrementUnscheduledDeps(1);
2894               }
2895               if (!DestBundle->hasValidDependencies()) {
2896                 WorkList.push_back(DestBundle);
2897               }
2898             }
2899           } else {
2900             // I'm not sure if this can ever happen. But we need to be safe.
2901             // This lets the instruction/bundle never be scheduled and eventally
2902             // disable vectorization.
2903             BundleMember->Dependencies++;
2904             BundleMember->incrementUnscheduledDeps(1);
2905           }
2906         }
2907
2908         // Handle the memory dependencies.
2909         ScheduleData *DepDest = BundleMember->NextLoadStore;
2910         if (DepDest) {
2911           Instruction *SrcInst = BundleMember->Inst;
2912           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
2913           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
2914           unsigned numAliased = 0;
2915           unsigned DistToSrc = 1;
2916
2917           while (DepDest) {
2918             assert(isInSchedulingRegion(DepDest));
2919
2920             // We have two limits to reduce the complexity:
2921             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
2922             //    SLP->isAliased (which is the expensive part in this loop).
2923             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
2924             //    the whole loop (even if the loop is fast, it's quadratic).
2925             //    It's important for the loop break condition (see below) to
2926             //    check this limit even between two read-only instructions.
2927             if (DistToSrc >= MaxMemDepDistance ||
2928                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
2929                      (numAliased >= AliasedCheckLimit ||
2930                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
2931
2932               // We increment the counter only if the locations are aliased
2933               // (instead of counting all alias checks). This gives a better
2934               // balance between reduced runtime and accurate dependencies.
2935               numAliased++;
2936
2937               DepDest->MemoryDependencies.push_back(BundleMember);
2938               BundleMember->Dependencies++;
2939               ScheduleData *DestBundle = DepDest->FirstInBundle;
2940               if (!DestBundle->IsScheduled) {
2941                 BundleMember->incrementUnscheduledDeps(1);
2942               }
2943               if (!DestBundle->hasValidDependencies()) {
2944                 WorkList.push_back(DestBundle);
2945               }
2946             }
2947             DepDest = DepDest->NextLoadStore;
2948
2949             // Example, explaining the loop break condition: Let's assume our
2950             // starting instruction is i0 and MaxMemDepDistance = 3.
2951             //
2952             //                      +--------v--v--v
2953             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
2954             //             +--------^--^--^
2955             //
2956             // MaxMemDepDistance let us stop alias-checking at i3 and we add
2957             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
2958             // Previously we already added dependencies from i3 to i6,i7,i8
2959             // (because of MaxMemDepDistance). As we added a dependency from
2960             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
2961             // and we can abort this loop at i6.
2962             if (DistToSrc >= 2 * MaxMemDepDistance)
2963                 break;
2964             DistToSrc++;
2965           }
2966         }
2967       }
2968       BundleMember = BundleMember->NextInBundle;
2969     }
2970     if (InsertInReadyList && SD->isReady()) {
2971       ReadyInsts.push_back(SD);
2972       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
2973     }
2974   }
2975 }
2976
2977 void BoUpSLP::BlockScheduling::resetSchedule() {
2978   assert(ScheduleStart &&
2979          "tried to reset schedule on block which has not been scheduled");
2980   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2981     ScheduleData *SD = getScheduleData(I);
2982     assert(isInSchedulingRegion(SD));
2983     SD->IsScheduled = false;
2984     SD->resetUnscheduledDeps();
2985   }
2986   ReadyInsts.clear();
2987 }
2988
2989 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
2990   
2991   if (!BS->ScheduleStart)
2992     return;
2993   
2994   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
2995
2996   BS->resetSchedule();
2997
2998   // For the real scheduling we use a more sophisticated ready-list: it is
2999   // sorted by the original instruction location. This lets the final schedule
3000   // be as  close as possible to the original instruction order.
3001   struct ScheduleDataCompare {
3002     bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
3003       return SD2->SchedulingPriority < SD1->SchedulingPriority;
3004     }
3005   };
3006   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3007
3008   // Ensure that all depencency data is updated and fill the ready-list with
3009   // initial instructions.
3010   int Idx = 0;
3011   int NumToSchedule = 0;
3012   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3013        I = I->getNextNode()) {
3014     ScheduleData *SD = BS->getScheduleData(I);
3015     assert(
3016         SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
3017         "scheduler and vectorizer have different opinion on what is a bundle");
3018     SD->FirstInBundle->SchedulingPriority = Idx++;
3019     if (SD->isSchedulingEntity()) {
3020       BS->calculateDependencies(SD, false, this);
3021       NumToSchedule++;
3022     }
3023   }
3024   BS->initialFillReadyList(ReadyInsts);
3025
3026   Instruction *LastScheduledInst = BS->ScheduleEnd;
3027
3028   // Do the "real" scheduling.
3029   while (!ReadyInsts.empty()) {
3030     ScheduleData *picked = *ReadyInsts.begin();
3031     ReadyInsts.erase(ReadyInsts.begin());
3032
3033     // Move the scheduled instruction(s) to their dedicated places, if not
3034     // there yet.
3035     ScheduleData *BundleMember = picked;
3036     while (BundleMember) {
3037       Instruction *pickedInst = BundleMember->Inst;
3038       if (LastScheduledInst->getNextNode() != pickedInst) {
3039         BS->BB->getInstList().remove(pickedInst);
3040         BS->BB->getInstList().insert(LastScheduledInst, pickedInst);
3041       }
3042       LastScheduledInst = pickedInst;
3043       BundleMember = BundleMember->NextInBundle;
3044     }
3045
3046     BS->schedule(picked, ReadyInsts);
3047     NumToSchedule--;
3048   }
3049   assert(NumToSchedule == 0 && "could not schedule all instructions");
3050
3051   // Avoid duplicate scheduling of the block.
3052   BS->ScheduleStart = nullptr;
3053 }
3054
3055 /// The SLPVectorizer Pass.
3056 struct SLPVectorizer : public FunctionPass {
3057   typedef SmallVector<StoreInst *, 8> StoreList;
3058   typedef MapVector<Value *, StoreList> StoreListMap;
3059
3060   /// Pass identification, replacement for typeid
3061   static char ID;
3062
3063   explicit SLPVectorizer() : FunctionPass(ID) {
3064     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
3065   }
3066
3067   ScalarEvolution *SE;
3068   TargetTransformInfo *TTI;
3069   TargetLibraryInfo *TLI;
3070   AliasAnalysis *AA;
3071   LoopInfo *LI;
3072   DominatorTree *DT;
3073   AssumptionCache *AC;
3074
3075   bool runOnFunction(Function &F) override {
3076     if (skipOptnoneFunction(F))
3077       return false;
3078
3079     SE = &getAnalysis<ScalarEvolution>();
3080     TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3081     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
3082     TLI = TLIP ? &TLIP->getTLI() : nullptr;
3083     AA = &getAnalysis<AliasAnalysis>();
3084     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3085     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3086     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3087
3088     StoreRefs.clear();
3089     bool Changed = false;
3090
3091     // If the target claims to have no vector registers don't attempt
3092     // vectorization.
3093     if (!TTI->getNumberOfRegisters(true))
3094       return false;
3095
3096     // Use the vector register size specified by the target unless overridden
3097     // by a command-line option.
3098     // TODO: It would be better to limit the vectorization factor based on
3099     //       data type rather than just register size. For example, x86 AVX has
3100     //       256-bit registers, but it does not support integer operations
3101     //       at that width (that requires AVX2).
3102     if (MaxVectorRegSizeOption.getNumOccurrences())
3103       MaxVecRegSize = MaxVectorRegSizeOption;
3104     else
3105       MaxVecRegSize = TTI->getRegisterBitWidth(true);
3106
3107     // Don't vectorize when the attribute NoImplicitFloat is used.
3108     if (F.hasFnAttribute(Attribute::NoImplicitFloat))
3109       return false;
3110
3111     DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
3112
3113     // Use the bottom up slp vectorizer to construct chains that start with
3114     // store instructions.
3115     BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
3116
3117     // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
3118     // delete instructions.
3119
3120     // Scan the blocks in the function in post order.
3121     for (auto BB : post_order(&F.getEntryBlock())) {
3122       // Vectorize trees that end at stores.
3123       if (unsigned count = collectStores(BB, R)) {
3124         (void)count;
3125         DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
3126         Changed |= vectorizeStoreChains(R);
3127       }
3128
3129       // Vectorize trees that end at reductions.
3130       Changed |= vectorizeChainsInBlock(BB, R);
3131     }
3132
3133     if (Changed) {
3134       R.optimizeGatherSequence();
3135       DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
3136       DEBUG(verifyFunction(F));
3137     }
3138     return Changed;
3139   }
3140
3141   void getAnalysisUsage(AnalysisUsage &AU) const override {
3142     FunctionPass::getAnalysisUsage(AU);
3143     AU.addRequired<AssumptionCacheTracker>();
3144     AU.addRequired<ScalarEvolution>();
3145     AU.addRequired<AliasAnalysis>();
3146     AU.addRequired<TargetTransformInfoWrapperPass>();
3147     AU.addRequired<LoopInfoWrapperPass>();
3148     AU.addRequired<DominatorTreeWrapperPass>();
3149     AU.addPreserved<LoopInfoWrapperPass>();
3150     AU.addPreserved<DominatorTreeWrapperPass>();
3151     AU.setPreservesCFG();
3152   }
3153
3154 private:
3155
3156   /// \brief Collect memory references and sort them according to their base
3157   /// object. We sort the stores to their base objects to reduce the cost of the
3158   /// quadratic search on the stores. TODO: We can further reduce this cost
3159   /// if we flush the chain creation every time we run into a memory barrier.
3160   unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
3161
3162   /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
3163   bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
3164
3165   /// \brief Try to vectorize a list of operands.
3166   /// \@param BuildVector A list of users to ignore for the purpose of
3167   ///                     scheduling and that don't need extracting.
3168   /// \returns true if a value was vectorized.
3169   bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3170                           ArrayRef<Value *> BuildVector = None,
3171                           bool allowReorder = false);
3172
3173   /// \brief Try to vectorize a chain that may start at the operands of \V;
3174   bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
3175
3176   /// \brief Vectorize the stores that were collected in StoreRefs.
3177   bool vectorizeStoreChains(BoUpSLP &R);
3178
3179   /// \brief Scan the basic block and look for patterns that are likely to start
3180   /// a vectorization chain.
3181   bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
3182
3183   bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
3184                            BoUpSLP &R, unsigned VecRegSize);
3185
3186   bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
3187                        BoUpSLP &R);
3188 private:
3189   StoreListMap StoreRefs;
3190   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3191 };
3192
3193 /// \brief Check that the Values in the slice in VL array are still existent in
3194 /// the WeakVH array.
3195 /// Vectorization of part of the VL array may cause later values in the VL array
3196 /// to become invalid. We track when this has happened in the WeakVH array.
3197 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
3198                                unsigned SliceBegin, unsigned SliceSize) {
3199   VL = VL.slice(SliceBegin, SliceSize);
3200   VH = VH.slice(SliceBegin, SliceSize);
3201   return !std::equal(VL.begin(), VL.end(), VH.begin());
3202 }
3203
3204 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
3205                                         int CostThreshold, BoUpSLP &R,
3206                                         unsigned VecRegSize) {
3207   unsigned ChainLen = Chain.size();
3208   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
3209         << "\n");
3210   Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
3211   auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
3212   unsigned Sz = DL.getTypeSizeInBits(StoreTy);
3213   unsigned VF = VecRegSize / Sz;
3214
3215   if (!isPowerOf2_32(Sz) || VF < 2)
3216     return false;
3217
3218   // Keep track of values that were deleted by vectorizing in the loop below.
3219   SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
3220
3221   bool Changed = false;
3222   // Look for profitable vectorizable trees at all offsets, starting at zero.
3223   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
3224     if (i + VF > e)
3225       break;
3226
3227     // Check that a previous iteration of this loop did not delete the Value.
3228     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
3229       continue;
3230
3231     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
3232           << "\n");
3233     ArrayRef<Value *> Operands = Chain.slice(i, VF);
3234
3235     R.buildTree(Operands);
3236
3237     int Cost = R.getTreeCost();
3238
3239     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
3240     if (Cost < CostThreshold) {
3241       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
3242       R.vectorizeTree();
3243
3244       // Move to the next bundle.
3245       i += VF - 1;
3246       Changed = true;
3247     }
3248   }
3249
3250   return Changed;
3251 }
3252
3253 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
3254                                     int costThreshold, BoUpSLP &R) {
3255   SetVector<StoreInst *> Heads, Tails;
3256   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
3257
3258   // We may run into multiple chains that merge into a single chain. We mark the
3259   // stores that we vectorized so that we don't visit the same store twice.
3260   BoUpSLP::ValueSet VectorizedStores;
3261   bool Changed = false;
3262
3263   // Do a quadratic search on all of the given stores and find
3264   // all of the pairs of stores that follow each other.
3265   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
3266     for (unsigned j = 0; j < e; ++j) {
3267       if (i == j)
3268         continue;
3269       const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
3270       if (R.isConsecutiveAccess(Stores[i], Stores[j], DL)) {
3271         Tails.insert(Stores[j]);
3272         Heads.insert(Stores[i]);
3273         ConsecutiveChain[Stores[i]] = Stores[j];
3274       }
3275     }
3276   }
3277
3278   // For stores that start but don't end a link in the chain:
3279   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
3280        it != e; ++it) {
3281     if (Tails.count(*it))
3282       continue;
3283
3284     // We found a store instr that starts a chain. Now follow the chain and try
3285     // to vectorize it.
3286     BoUpSLP::ValueList Operands;
3287     StoreInst *I = *it;
3288     // Collect the chain into a list.
3289     while (Tails.count(I) || Heads.count(I)) {
3290       if (VectorizedStores.count(I))
3291         break;
3292       Operands.push_back(I);
3293       // Move to the next value in the chain.
3294       I = ConsecutiveChain[I];
3295     }
3296
3297     // FIXME: Is division-by-2 the correct step? Should we assert that the
3298     // register size is a power-of-2?
3299     for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
3300       if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
3301         // Mark the vectorized stores so that we don't vectorize them again.
3302         VectorizedStores.insert(Operands.begin(), Operands.end());
3303         Changed = true;
3304         break;
3305       }
3306     }
3307   }
3308
3309   return Changed;
3310 }
3311
3312
3313 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
3314   unsigned count = 0;
3315   StoreRefs.clear();
3316   const DataLayout &DL = BB->getModule()->getDataLayout();
3317   for (Instruction &I : *BB) {
3318     StoreInst *SI = dyn_cast<StoreInst>(&I);
3319     if (!SI)
3320       continue;
3321
3322     // Don't touch volatile stores.
3323     if (!SI->isSimple())
3324       continue;
3325
3326     // Check that the pointer points to scalars.
3327     Type *Ty = SI->getValueOperand()->getType();
3328     if (!isValidElementType(Ty))
3329       continue;
3330
3331     // Find the base pointer.
3332     Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
3333
3334     // Save the store locations.
3335     StoreRefs[Ptr].push_back(SI);
3336     count++;
3337   }
3338   return count;
3339 }
3340
3341 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
3342   if (!A || !B)
3343     return false;
3344   Value *VL[] = { A, B };
3345   return tryToVectorizeList(VL, R, None, true);
3346 }
3347
3348 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3349                                        ArrayRef<Value *> BuildVector,
3350                                        bool allowReorder) {
3351   if (VL.size() < 2)
3352     return false;
3353
3354   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
3355
3356   // Check that all of the parts are scalar instructions of the same type.
3357   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
3358   if (!I0)
3359     return false;
3360
3361   unsigned Opcode0 = I0->getOpcode();
3362   const DataLayout &DL = I0->getModule()->getDataLayout();
3363
3364   Type *Ty0 = I0->getType();
3365   unsigned Sz = DL.getTypeSizeInBits(Ty0);
3366   // FIXME: Register size should be a parameter to this function, so we can
3367   // try different vectorization factors.
3368   unsigned VF = MinVecRegSize / Sz;
3369
3370   for (Value *V : VL) {
3371     Type *Ty = V->getType();
3372     if (!isValidElementType(Ty))
3373       return false;
3374     Instruction *Inst = dyn_cast<Instruction>(V);
3375     if (!Inst || Inst->getOpcode() != Opcode0)
3376       return false;
3377   }
3378
3379   bool Changed = false;
3380
3381   // Keep track of values that were deleted by vectorizing in the loop below.
3382   SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
3383
3384   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3385     unsigned OpsWidth = 0;
3386
3387     if (i + VF > e)
3388       OpsWidth = e - i;
3389     else
3390       OpsWidth = VF;
3391
3392     if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
3393       break;
3394
3395     // Check that a previous iteration of this loop did not delete the Value.
3396     if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
3397       continue;
3398
3399     DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
3400                  << "\n");
3401     ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
3402
3403     ArrayRef<Value *> BuildVectorSlice;
3404     if (!BuildVector.empty())
3405       BuildVectorSlice = BuildVector.slice(i, OpsWidth);
3406
3407     R.buildTree(Ops, BuildVectorSlice);
3408     // TODO: check if we can allow reordering also for other cases than
3409     // tryToVectorizePair()
3410     if (allowReorder && R.shouldReorder()) {
3411       assert(Ops.size() == 2);
3412       assert(BuildVectorSlice.empty());
3413       Value *ReorderedOps[] = { Ops[1], Ops[0] };
3414       R.buildTree(ReorderedOps, None);
3415     }
3416     int Cost = R.getTreeCost();
3417
3418     if (Cost < -SLPCostThreshold) {
3419       DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
3420       Value *VectorizedRoot = R.vectorizeTree();
3421
3422       // Reconstruct the build vector by extracting the vectorized root. This
3423       // way we handle the case where some elements of the vector are undefined.
3424       //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
3425       if (!BuildVectorSlice.empty()) {
3426         // The insert point is the last build vector instruction. The vectorized
3427         // root will precede it. This guarantees that we get an instruction. The
3428         // vectorized tree could have been constant folded.
3429         Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
3430         unsigned VecIdx = 0;
3431         for (auto &V : BuildVectorSlice) {
3432           IRBuilder<true, NoFolder> Builder(
3433               ++BasicBlock::iterator(InsertAfter));
3434           InsertElementInst *IE = cast<InsertElementInst>(V);
3435           Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
3436               VectorizedRoot, Builder.getInt32(VecIdx++)));
3437           IE->setOperand(1, Extract);
3438           IE->removeFromParent();
3439           IE->insertAfter(Extract);
3440           InsertAfter = IE;
3441         }
3442       }
3443       // Move to the next bundle.
3444       i += VF - 1;
3445       Changed = true;
3446     }
3447   }
3448
3449   return Changed;
3450 }
3451
3452 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
3453   if (!V)
3454     return false;
3455
3456   // Try to vectorize V.
3457   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
3458     return true;
3459
3460   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
3461   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
3462   // Try to skip B.
3463   if (B && B->hasOneUse()) {
3464     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
3465     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
3466     if (tryToVectorizePair(A, B0, R)) {
3467       return true;
3468     }
3469     if (tryToVectorizePair(A, B1, R)) {
3470       return true;
3471     }
3472   }
3473
3474   // Try to skip A.
3475   if (A && A->hasOneUse()) {
3476     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
3477     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
3478     if (tryToVectorizePair(A0, B, R)) {
3479       return true;
3480     }
3481     if (tryToVectorizePair(A1, B, R)) {
3482       return true;
3483     }
3484   }
3485   return 0;
3486 }
3487
3488 /// \brief Generate a shuffle mask to be used in a reduction tree.
3489 ///
3490 /// \param VecLen The length of the vector to be reduced.
3491 /// \param NumEltsToRdx The number of elements that should be reduced in the
3492 ///        vector.
3493 /// \param IsPairwise Whether the reduction is a pairwise or splitting
3494 ///        reduction. A pairwise reduction will generate a mask of 
3495 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
3496 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
3497 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
3498 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
3499                                    bool IsPairwise, bool IsLeft,
3500                                    IRBuilder<> &Builder) {
3501   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
3502
3503   SmallVector<Constant *, 32> ShuffleMask(
3504       VecLen, UndefValue::get(Builder.getInt32Ty()));
3505
3506   if (IsPairwise)
3507     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
3508     for (unsigned i = 0; i != NumEltsToRdx; ++i)
3509       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
3510   else
3511     // Move the upper half of the vector to the lower half.
3512     for (unsigned i = 0; i != NumEltsToRdx; ++i)
3513       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
3514
3515   return ConstantVector::get(ShuffleMask);
3516 }
3517
3518
3519 /// Model horizontal reductions.
3520 ///
3521 /// A horizontal reduction is a tree of reduction operations (currently add and
3522 /// fadd) that has operations that can be put into a vector as its leaf.
3523 /// For example, this tree:
3524 ///
3525 /// mul mul mul mul
3526 ///  \  /    \  /
3527 ///   +       +
3528 ///    \     /
3529 ///       +
3530 /// This tree has "mul" as its reduced values and "+" as its reduction
3531 /// operations. A reduction might be feeding into a store or a binary operation
3532 /// feeding a phi.
3533 ///    ...
3534 ///    \  /
3535 ///     +
3536 ///     |
3537 ///  phi +=
3538 ///
3539 ///  Or:
3540 ///    ...
3541 ///    \  /
3542 ///     +
3543 ///     |
3544 ///   *p =
3545 ///
3546 class HorizontalReduction {
3547   SmallVector<Value *, 16> ReductionOps;
3548   SmallVector<Value *, 32> ReducedVals;
3549
3550   BinaryOperator *ReductionRoot;
3551   PHINode *ReductionPHI;
3552
3553   /// The opcode of the reduction.
3554   unsigned ReductionOpcode;
3555   /// The opcode of the values we perform a reduction on.
3556   unsigned ReducedValueOpcode;
3557   /// The width of one full horizontal reduction operation.
3558   unsigned ReduxWidth;
3559   /// Should we model this reduction as a pairwise reduction tree or a tree that
3560   /// splits the vector in halves and adds those halves.
3561   bool IsPairwiseReduction;
3562
3563 public:
3564   HorizontalReduction()
3565     : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
3566     ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
3567
3568   /// \brief Try to find a reduction tree.
3569   bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
3570     assert((!Phi ||
3571             std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
3572            "Thi phi needs to use the binary operator");
3573
3574     // We could have a initial reductions that is not an add.
3575     //  r *= v1 + v2 + v3 + v4
3576     // In such a case start looking for a tree rooted in the first '+'.
3577     if (Phi) {
3578       if (B->getOperand(0) == Phi) {
3579         Phi = nullptr;
3580         B = dyn_cast<BinaryOperator>(B->getOperand(1));
3581       } else if (B->getOperand(1) == Phi) {
3582         Phi = nullptr;
3583         B = dyn_cast<BinaryOperator>(B->getOperand(0));
3584       }
3585     }
3586
3587     if (!B)
3588       return false;
3589
3590     Type *Ty = B->getType();
3591     if (!isValidElementType(Ty))
3592       return false;
3593
3594     const DataLayout &DL = B->getModule()->getDataLayout();
3595     ReductionOpcode = B->getOpcode();
3596     ReducedValueOpcode = 0;
3597     // FIXME: Register size should be a parameter to this function, so we can
3598     // try different vectorization factors.
3599     ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
3600     ReductionRoot = B;
3601     ReductionPHI = Phi;
3602
3603     if (ReduxWidth < 4)
3604       return false;
3605
3606     // We currently only support adds.
3607     if (ReductionOpcode != Instruction::Add &&
3608         ReductionOpcode != Instruction::FAdd)
3609       return false;
3610
3611     // Post order traverse the reduction tree starting at B. We only handle true
3612     // trees containing only binary operators.
3613     SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
3614     Stack.push_back(std::make_pair(B, 0));
3615     while (!Stack.empty()) {
3616       BinaryOperator *TreeN = Stack.back().first;
3617       unsigned EdgeToVist = Stack.back().second++;
3618       bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
3619
3620       // Only handle trees in the current basic block.
3621       if (TreeN->getParent() != B->getParent())
3622         return false;
3623
3624       // Each tree node needs to have one user except for the ultimate
3625       // reduction.
3626       if (!TreeN->hasOneUse() && TreeN != B)
3627         return false;
3628
3629       // Postorder vist.
3630       if (EdgeToVist == 2 || IsReducedValue) {
3631         if (IsReducedValue) {
3632           // Make sure that the opcodes of the operations that we are going to
3633           // reduce match.
3634           if (!ReducedValueOpcode)
3635             ReducedValueOpcode = TreeN->getOpcode();
3636           else if (ReducedValueOpcode != TreeN->getOpcode())
3637             return false;
3638           ReducedVals.push_back(TreeN);
3639         } else {
3640           // We need to be able to reassociate the adds.
3641           if (!TreeN->isAssociative())
3642             return false;
3643           ReductionOps.push_back(TreeN);
3644         }
3645         // Retract.
3646         Stack.pop_back();
3647         continue;
3648       }
3649
3650       // Visit left or right.
3651       Value *NextV = TreeN->getOperand(EdgeToVist);
3652       BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
3653       if (Next)
3654         Stack.push_back(std::make_pair(Next, 0));
3655       else if (NextV != Phi)
3656         return false;
3657     }
3658     return true;
3659   }
3660
3661   /// \brief Attempt to vectorize the tree found by
3662   /// matchAssociativeReduction.
3663   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
3664     if (ReducedVals.empty())
3665       return false;
3666
3667     unsigned NumReducedVals = ReducedVals.size();
3668     if (NumReducedVals < ReduxWidth)
3669       return false;
3670
3671     Value *VectorizedTree = nullptr;
3672     IRBuilder<> Builder(ReductionRoot);
3673     FastMathFlags Unsafe;
3674     Unsafe.setUnsafeAlgebra();
3675     Builder.SetFastMathFlags(Unsafe);
3676     unsigned i = 0;
3677
3678     for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
3679       V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
3680
3681       // Estimate cost.
3682       int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
3683       if (Cost >= -SLPCostThreshold)
3684         break;
3685
3686       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
3687                    << ". (HorRdx)\n");
3688
3689       // Vectorize a tree.
3690       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
3691       Value *VectorizedRoot = V.vectorizeTree();
3692
3693       // Emit a reduction.
3694       Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
3695       if (VectorizedTree) {
3696         Builder.SetCurrentDebugLocation(Loc);
3697         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3698                                      ReducedSubTree, "bin.rdx");
3699       } else
3700         VectorizedTree = ReducedSubTree;
3701     }
3702
3703     if (VectorizedTree) {
3704       // Finish the reduction.
3705       for (; i < NumReducedVals; ++i) {
3706         Builder.SetCurrentDebugLocation(
3707           cast<Instruction>(ReducedVals[i])->getDebugLoc());
3708         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3709                                      ReducedVals[i]);
3710       }
3711       // Update users.
3712       if (ReductionPHI) {
3713         assert(ReductionRoot && "Need a reduction operation");
3714         ReductionRoot->setOperand(0, VectorizedTree);
3715         ReductionRoot->setOperand(1, ReductionPHI);
3716       } else
3717         ReductionRoot->replaceAllUsesWith(VectorizedTree);
3718     }
3719     return VectorizedTree != nullptr;
3720   }
3721
3722 private:
3723
3724   /// \brief Calcuate the cost of a reduction.
3725   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
3726     Type *ScalarTy = FirstReducedVal->getType();
3727     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
3728
3729     int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
3730     int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
3731
3732     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
3733     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
3734
3735     int ScalarReduxCost =
3736         ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
3737
3738     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
3739                  << " for reduction that starts with " << *FirstReducedVal
3740                  << " (It is a "
3741                  << (IsPairwiseReduction ? "pairwise" : "splitting")
3742                  << " reduction)\n");
3743
3744     return VecReduxCost - ScalarReduxCost;
3745   }
3746
3747   static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
3748                             Value *R, const Twine &Name = "") {
3749     if (Opcode == Instruction::FAdd)
3750       return Builder.CreateFAdd(L, R, Name);
3751     return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
3752   }
3753
3754   /// \brief Emit a horizontal reduction of the vectorized value.
3755   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
3756     assert(VectorizedValue && "Need to have a vectorized tree node");
3757     assert(isPowerOf2_32(ReduxWidth) &&
3758            "We only handle power-of-two reductions for now");
3759
3760     Value *TmpVec = VectorizedValue;
3761     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
3762       if (IsPairwiseReduction) {
3763         Value *LeftMask =
3764           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
3765         Value *RightMask =
3766           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
3767
3768         Value *LeftShuf = Builder.CreateShuffleVector(
3769           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
3770         Value *RightShuf = Builder.CreateShuffleVector(
3771           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
3772           "rdx.shuf.r");
3773         TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
3774                              "bin.rdx");
3775       } else {
3776         Value *UpperHalf =
3777           createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
3778         Value *Shuf = Builder.CreateShuffleVector(
3779           TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
3780         TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
3781       }
3782     }
3783
3784     // The result is in the first element of the vector.
3785     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
3786   }
3787 };
3788
3789 /// \brief Recognize construction of vectors like
3790 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
3791 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
3792 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
3793 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
3794 ///
3795 /// Returns true if it matches
3796 ///
3797 static bool findBuildVector(InsertElementInst *FirstInsertElem,
3798                             SmallVectorImpl<Value *> &BuildVector,
3799                             SmallVectorImpl<Value *> &BuildVectorOpds) {
3800   if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
3801     return false;
3802
3803   InsertElementInst *IE = FirstInsertElem;
3804   while (true) {
3805     BuildVector.push_back(IE);
3806     BuildVectorOpds.push_back(IE->getOperand(1));
3807
3808     if (IE->use_empty())
3809       return false;
3810
3811     InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
3812     if (!NextUse)
3813       return true;
3814
3815     // If this isn't the final use, make sure the next insertelement is the only
3816     // use. It's OK if the final constructed vector is used multiple times
3817     if (!IE->hasOneUse())
3818       return false;
3819
3820     IE = NextUse;
3821   }
3822
3823   return false;
3824 }
3825
3826 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
3827   return V->getType() < V2->getType();
3828 }
3829
3830 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
3831   bool Changed = false;
3832   SmallVector<Value *, 4> Incoming;
3833   SmallSet<Value *, 16> VisitedInstrs;
3834
3835   bool HaveVectorizedPhiNodes = true;
3836   while (HaveVectorizedPhiNodes) {
3837     HaveVectorizedPhiNodes = false;
3838
3839     // Collect the incoming values from the PHIs.
3840     Incoming.clear();
3841     for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
3842          ++instr) {
3843       PHINode *P = dyn_cast<PHINode>(instr);
3844       if (!P)
3845         break;
3846
3847       if (!VisitedInstrs.count(P))
3848         Incoming.push_back(P);
3849     }
3850
3851     // Sort by type.
3852     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
3853
3854     // Try to vectorize elements base on their type.
3855     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
3856                                            E = Incoming.end();
3857          IncIt != E;) {
3858
3859       // Look for the next elements with the same type.
3860       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
3861       while (SameTypeIt != E &&
3862              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
3863         VisitedInstrs.insert(*SameTypeIt);
3864         ++SameTypeIt;
3865       }
3866
3867       // Try to vectorize them.
3868       unsigned NumElts = (SameTypeIt - IncIt);
3869       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
3870       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
3871         // Success start over because instructions might have been changed.
3872         HaveVectorizedPhiNodes = true;
3873         Changed = true;
3874         break;
3875       }
3876
3877       // Start over at the next instruction of a different type (or the end).
3878       IncIt = SameTypeIt;
3879     }
3880   }
3881
3882   VisitedInstrs.clear();
3883
3884   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
3885     // We may go through BB multiple times so skip the one we have checked.
3886     if (!VisitedInstrs.insert(it).second)
3887       continue;
3888
3889     if (isa<DbgInfoIntrinsic>(it))
3890       continue;
3891
3892     // Try to vectorize reductions that use PHINodes.
3893     if (PHINode *P = dyn_cast<PHINode>(it)) {
3894       // Check that the PHI is a reduction PHI.
3895       if (P->getNumIncomingValues() != 2)
3896         return Changed;
3897       Value *Rdx =
3898           (P->getIncomingBlock(0) == BB
3899                ? (P->getIncomingValue(0))
3900                : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
3901                                                : nullptr));
3902       // Check if this is a Binary Operator.
3903       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
3904       if (!BI)
3905         continue;
3906
3907       // Try to match and vectorize a horizontal reduction.
3908       HorizontalReduction HorRdx;
3909       if (ShouldVectorizeHor && HorRdx.matchAssociativeReduction(P, BI) &&
3910           HorRdx.tryToReduce(R, TTI)) {
3911         Changed = true;
3912         it = BB->begin();
3913         e = BB->end();
3914         continue;
3915       }
3916
3917      Value *Inst = BI->getOperand(0);
3918       if (Inst == P)
3919         Inst = BI->getOperand(1);
3920
3921       if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
3922         // We would like to start over since some instructions are deleted
3923         // and the iterator may become invalid value.
3924         Changed = true;
3925         it = BB->begin();
3926         e = BB->end();
3927         continue;
3928       }
3929
3930       continue;
3931     }
3932
3933     // Try to vectorize horizontal reductions feeding into a store.
3934     if (ShouldStartVectorizeHorAtStore)
3935       if (StoreInst *SI = dyn_cast<StoreInst>(it))
3936         if (BinaryOperator *BinOp =
3937                 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
3938           HorizontalReduction HorRdx;
3939           if (((HorRdx.matchAssociativeReduction(nullptr, BinOp) &&
3940                 HorRdx.tryToReduce(R, TTI)) ||
3941                tryToVectorize(BinOp, R))) {
3942             Changed = true;
3943             it = BB->begin();
3944             e = BB->end();
3945             continue;
3946           }
3947         }
3948
3949     // Try to vectorize horizontal reductions feeding into a return.
3950     if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
3951       if (RI->getNumOperands() != 0)
3952         if (BinaryOperator *BinOp =
3953                 dyn_cast<BinaryOperator>(RI->getOperand(0))) {
3954           DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
3955           if (tryToVectorizePair(BinOp->getOperand(0),
3956                                  BinOp->getOperand(1), R)) {
3957             Changed = true;
3958             it = BB->begin();
3959             e = BB->end();
3960             continue;
3961           }
3962         }
3963
3964     // Try to vectorize trees that start at compare instructions.
3965     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
3966       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
3967         Changed = true;
3968         // We would like to start over since some instructions are deleted
3969         // and the iterator may become invalid value.
3970         it = BB->begin();
3971         e = BB->end();
3972         continue;
3973       }
3974
3975       for (int i = 0; i < 2; ++i) {
3976         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
3977           if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
3978             Changed = true;
3979             // We would like to start over since some instructions are deleted
3980             // and the iterator may become invalid value.
3981             it = BB->begin();
3982             e = BB->end();
3983             break;
3984           }
3985         }
3986       }
3987       continue;
3988     }
3989
3990     // Try to vectorize trees that start at insertelement instructions.
3991     if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
3992       SmallVector<Value *, 16> BuildVector;
3993       SmallVector<Value *, 16> BuildVectorOpds;
3994       if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
3995         continue;
3996
3997       // Vectorize starting with the build vector operands ignoring the
3998       // BuildVector instructions for the purpose of scheduling and user
3999       // extraction.
4000       if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
4001         Changed = true;
4002         it = BB->begin();
4003         e = BB->end();
4004       }
4005
4006       continue;
4007     }
4008   }
4009
4010   return Changed;
4011 }
4012
4013 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
4014   bool Changed = false;
4015   // Attempt to sort and vectorize each of the store-groups.
4016   for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
4017        it != e; ++it) {
4018     if (it->second.size() < 2)
4019       continue;
4020
4021     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
4022           << it->second.size() << ".\n");
4023
4024     // Process the stores in chunks of 16.
4025     // TODO: The limit of 16 inhibits greater vectorization factors.
4026     //       For example, AVX2 supports v32i8. Increasing this limit, however,
4027     //       may cause a significant compile-time increase.
4028     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
4029       unsigned Len = std::min<unsigned>(CE - CI, 16);
4030       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
4031                                  -SLPCostThreshold, R);
4032     }
4033   }
4034   return Changed;
4035 }
4036
4037 } // end anonymous namespace
4038
4039 char SLPVectorizer::ID = 0;
4040 static const char lv_name[] = "SLP Vectorizer";
4041 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
4042 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
4043 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4044 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4045 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4046 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4047 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
4048
4049 namespace llvm {
4050 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
4051 }