1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
29 //===----------------------------------------------------------------------===//
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
37 // Other ideas/concepts are from:
38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
41 // Vectorizing Compilers.
43 //===----------------------------------------------------------------------===//
45 #include "llvm/Transforms/Vectorize.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/EquivalenceClasses.h"
48 #include "llvm/ADT/Hashing.h"
49 #include "llvm/ADT/MapVector.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/AliasSetTracker.h"
58 #include "llvm/Analysis/AssumptionTracker.h"
59 #include "llvm/Analysis/BlockFrequencyInfo.h"
60 #include "llvm/Analysis/CodeMetrics.h"
61 #include "llvm/Analysis/LoopInfo.h"
62 #include "llvm/Analysis/LoopIterator.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolution.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
67 #include "llvm/Analysis/TargetTransformInfo.h"
68 #include "llvm/Analysis/ValueTracking.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugInfo.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/DiagnosticInfo.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/PatternMatch.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/IR/ValueHandle.h"
85 #include "llvm/IR/Verifier.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/BranchProbability.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Debug.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Transforms/Scalar.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/VectorUtils.h"
100 using namespace llvm::PatternMatch;
102 #define LV_NAME "loop-vectorize"
103 #define DEBUG_TYPE LV_NAME
105 STATISTIC(LoopsVectorized, "Number of loops vectorized");
106 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
108 static cl::opt<unsigned>
109 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
110 cl::desc("Sets the SIMD width. Zero is autoselect."));
112 static cl::opt<unsigned>
113 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden,
114 cl::desc("Sets the vectorization interleave count. "
115 "Zero is autoselect."));
118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
119 cl::desc("Enable if-conversion during vectorization."));
121 /// We don't vectorize loops with a known constant trip count below this number.
122 static cl::opt<unsigned>
123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
125 cl::desc("Don't vectorize loops with a constant "
126 "trip count that is smaller than this "
129 /// This enables versioning on the strides of symbolically striding memory
130 /// accesses in code like the following.
131 /// for (i = 0; i < N; ++i)
132 /// A[i * Stride1] += B[i * Stride2] ...
134 /// Will be roughly translated to
135 /// if (Stride1 == 1 && Stride2 == 1) {
136 /// for (i = 0; i < N; i+=4)
140 static cl::opt<bool> EnableMemAccessVersioning(
141 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
142 cl::desc("Enable symblic stride memory access versioning"));
144 /// We don't unroll loops with a known constant trip count below this number.
145 static const unsigned TinyTripCountUnrollThreshold = 128;
147 /// When performing memory disambiguation checks at runtime do not make more
148 /// than this number of comparisons.
149 static const unsigned RuntimeMemoryCheckThreshold = 8;
151 /// Maximum simd width.
152 static const unsigned MaxVectorWidth = 64;
154 static cl::opt<unsigned> ForceTargetNumScalarRegs(
155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
156 cl::desc("A flag that overrides the target's number of scalar registers."));
158 static cl::opt<unsigned> ForceTargetNumVectorRegs(
159 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
160 cl::desc("A flag that overrides the target's number of vector registers."));
162 /// Maximum vectorization interleave count.
163 static const unsigned MaxInterleaveFactor = 16;
165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
167 cl::desc("A flag that overrides the target's max interleave factor for "
170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
172 cl::desc("A flag that overrides the target's max interleave factor for "
173 "vectorized loops."));
175 static cl::opt<unsigned> ForceTargetInstructionCost(
176 "force-target-instruction-cost", cl::init(0), cl::Hidden,
177 cl::desc("A flag that overrides the target's expected cost for "
178 "an instruction to a single constant value. Mostly "
179 "useful for getting consistent testing."));
181 static cl::opt<unsigned> SmallLoopCost(
182 "small-loop-cost", cl::init(20), cl::Hidden,
183 cl::desc("The cost of a loop that is considered 'small' by the unroller."));
185 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
187 cl::desc("Enable the use of the block frequency analysis to access PGO "
188 "heuristics minimizing code growth in cold regions and being more "
189 "aggressive in hot regions."));
191 // Runtime unroll loops for load/store throughput.
192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
194 cl::desc("Enable runtime unrolling until load/store ports are saturated"));
196 /// The number of stores in a loop that are allowed to need predication.
197 static cl::opt<unsigned> NumberOfStoresToPredicate(
198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
199 cl::desc("Max number of stores to be predicated behind an if."));
201 static cl::opt<bool> EnableIndVarRegisterHeur(
202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
203 cl::desc("Count the induction variable only once when unrolling"));
205 static cl::opt<bool> EnableCondStoresVectorization(
206 "enable-cond-stores-vec", cl::init(false), cl::Hidden,
207 cl::desc("Enable if predication of stores during vectorization."));
209 static cl::opt<unsigned> MaxNestedScalarReductionUF(
210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden,
211 cl::desc("The maximum unroll factor to use when unrolling a scalar "
212 "reduction in a nested loop."));
216 // Forward declarations.
217 class LoopVectorizationLegality;
218 class LoopVectorizationCostModel;
219 class LoopVectorizeHints;
221 /// Optimization analysis message produced during vectorization. Messages inform
222 /// the user why vectorization did not occur.
225 raw_string_ostream Out;
229 Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
230 Out << "loop not vectorized: ";
233 template <typename A> Report &operator<<(const A &Value) {
238 Instruction *getInstr() { return Instr; }
240 std::string &str() { return Out.str(); }
241 operator Twine() { return Out.str(); }
244 /// InnerLoopVectorizer vectorizes loops which contain only one basic
245 /// block to a specified vectorization factor (VF).
246 /// This class performs the widening of scalars into vectors, or multiple
247 /// scalars. This class also implements the following features:
248 /// * It inserts an epilogue loop for handling loops that don't have iteration
249 /// counts that are known to be a multiple of the vectorization factor.
250 /// * It handles the code generation for reduction variables.
251 /// * Scalarization (implementation using scalars) of un-vectorizable
253 /// InnerLoopVectorizer does not perform any vectorization-legality
254 /// checks, and relies on the caller to check for the different legality
255 /// aspects. The InnerLoopVectorizer relies on the
256 /// LoopVectorizationLegality class to provide information about the induction
257 /// and reduction variables that were found to a given vectorization factor.
258 class InnerLoopVectorizer {
260 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
261 DominatorTree *DT, const DataLayout *DL,
262 const TargetLibraryInfo *TLI, unsigned VecWidth,
263 unsigned UnrollFactor)
264 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
265 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
266 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
269 // Perform the actual loop widening (vectorization).
270 void vectorize(LoopVectorizationLegality *L) {
272 // Create a new empty loop. Unlink the old loop and connect the new one.
274 // Widen each instruction in the old loop to a new one in the new loop.
275 // Use the Legality module to find the induction and reduction variables.
277 // Register the new loop and update the analysis passes.
281 virtual ~InnerLoopVectorizer() {}
284 /// A small list of PHINodes.
285 typedef SmallVector<PHINode*, 4> PhiVector;
286 /// When we unroll loops we have multiple vector values for each scalar.
287 /// This data structure holds the unrolled and vectorized values that
288 /// originated from one scalar instruction.
289 typedef SmallVector<Value*, 2> VectorParts;
291 // When we if-convert we need create edge masks. We have to cache values so
292 // that we don't end up with exponential recursion/IR.
293 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
294 VectorParts> EdgeMaskCache;
296 /// \brief Add code that checks at runtime if the accessed arrays overlap.
298 /// Returns a pair of instructions where the first element is the first
299 /// instruction generated in possibly a sequence of instructions and the
300 /// second value is the final comparator value or NULL if no check is needed.
301 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
303 /// \brief Add checks for strides that where assumed to be 1.
305 /// Returns the last check instruction and the first check instruction in the
306 /// pair as (first, last).
307 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
309 /// Create an empty loop, based on the loop ranges of the old loop.
310 void createEmptyLoop();
311 /// Copy and widen the instructions from the old loop.
312 virtual void vectorizeLoop();
314 /// \brief The Loop exit block may have single value PHI nodes where the
315 /// incoming value is 'Undef'. While vectorizing we only handled real values
316 /// that were defined inside the loop. Here we fix the 'undef case'.
320 /// A helper function that computes the predicate of the block BB, assuming
321 /// that the header block of the loop is set to True. It returns the *entry*
322 /// mask for the block BB.
323 VectorParts createBlockInMask(BasicBlock *BB);
324 /// A helper function that computes the predicate of the edge between SRC
326 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
328 /// A helper function to vectorize a single BB within the innermost loop.
329 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
331 /// Vectorize a single PHINode in a block. This method handles the induction
332 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
333 /// arbitrary length vectors.
334 void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
335 unsigned UF, unsigned VF, PhiVector *PV);
337 /// Insert the new loop to the loop hierarchy and pass manager
338 /// and update the analysis passes.
339 void updateAnalysis();
341 /// This instruction is un-vectorizable. Implement it as a sequence
342 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
343 /// scalarized instruction behind an if block predicated on the control
344 /// dependence of the instruction.
345 virtual void scalarizeInstruction(Instruction *Instr,
346 bool IfPredicateStore=false);
348 /// Vectorize Load and Store instructions,
349 virtual void vectorizeMemoryInstruction(Instruction *Instr);
351 /// Create a broadcast instruction. This method generates a broadcast
352 /// instruction (shuffle) for loop invariant values and for the induction
353 /// value. If this is the induction variable then we extend it to N, N+1, ...
354 /// this is needed because each iteration in the loop corresponds to a SIMD
356 virtual Value *getBroadcastInstrs(Value *V);
358 /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
359 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
360 /// The sequence starts at StartIndex.
361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
363 /// When we go over instructions in the basic block we rely on previous
364 /// values within the current basic block or on loop invariant values.
365 /// When we widen (vectorize) values we place them in the map. If the values
366 /// are not within the map, they have to be loop invariant, so we simply
367 /// broadcast them into a vector.
368 VectorParts &getVectorValue(Value *V);
370 /// Generate a shuffle sequence that will reverse the vector Vec.
371 virtual Value *reverseVector(Value *Vec);
373 /// This is a helper class that holds the vectorizer state. It maps scalar
374 /// instructions to vector instructions. When the code is 'unrolled' then
375 /// then a single scalar value is mapped to multiple vector parts. The parts
376 /// are stored in the VectorPart type.
378 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
380 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
382 /// \return True if 'Key' is saved in the Value Map.
383 bool has(Value *Key) const { return MapStorage.count(Key); }
385 /// Initializes a new entry in the map. Sets all of the vector parts to the
386 /// save value in 'Val'.
387 /// \return A reference to a vector with splat values.
388 VectorParts &splat(Value *Key, Value *Val) {
389 VectorParts &Entry = MapStorage[Key];
390 Entry.assign(UF, Val);
394 ///\return A reference to the value that is stored at 'Key'.
395 VectorParts &get(Value *Key) {
396 VectorParts &Entry = MapStorage[Key];
399 assert(Entry.size() == UF);
404 /// The unroll factor. Each entry in the map stores this number of vector
408 /// Map storage. We use std::map and not DenseMap because insertions to a
409 /// dense map invalidates its iterators.
410 std::map<Value *, VectorParts> MapStorage;
413 /// The original loop.
415 /// Scev analysis to use.
424 const DataLayout *DL;
425 /// Target Library Info.
426 const TargetLibraryInfo *TLI;
428 /// The vectorization SIMD factor to use. Each vector will have this many
433 /// The vectorization unroll factor to use. Each scalar is vectorized to this
434 /// many different vector instructions.
437 /// The builder that we use
440 // --- Vectorization state ---
442 /// The vector-loop preheader.
443 BasicBlock *LoopVectorPreHeader;
444 /// The scalar-loop preheader.
445 BasicBlock *LoopScalarPreHeader;
446 /// Middle Block between the vector and the scalar.
447 BasicBlock *LoopMiddleBlock;
448 ///The ExitBlock of the scalar loop.
449 BasicBlock *LoopExitBlock;
450 ///The vector loop body.
451 SmallVector<BasicBlock *, 4> LoopVectorBody;
452 ///The scalar loop body.
453 BasicBlock *LoopScalarBody;
454 /// A list of all bypass blocks. The first block is the entry of the loop.
455 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
457 /// The new Induction variable which was added to the new block.
459 /// The induction variable of the old basic block.
460 PHINode *OldInduction;
461 /// Holds the extended (to the widest induction type) start index.
463 /// Maps scalars to widened vectors.
465 EdgeMaskCache MaskCache;
467 LoopVectorizationLegality *Legal;
470 class InnerLoopUnroller : public InnerLoopVectorizer {
472 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
473 DominatorTree *DT, const DataLayout *DL,
474 const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
475 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
478 void scalarizeInstruction(Instruction *Instr,
479 bool IfPredicateStore = false) override;
480 void vectorizeMemoryInstruction(Instruction *Instr) override;
481 Value *getBroadcastInstrs(Value *V) override;
482 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
483 Value *reverseVector(Value *Vec) override;
486 /// \brief Look for a meaningful debug location on the instruction or it's
488 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
493 if (I->getDebugLoc() != Empty)
496 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
497 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
498 if (OpInst->getDebugLoc() != Empty)
505 /// \brief Set the debug location in the builder using the debug location in the
507 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
508 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
509 B.SetCurrentDebugLocation(Inst->getDebugLoc());
511 B.SetCurrentDebugLocation(DebugLoc());
515 /// \return string containing a file name and a line # for the given loop.
516 static std::string getDebugLocString(const Loop *L) {
519 raw_string_ostream OS(Result);
520 const DebugLoc LoopDbgLoc = L->getStartLoc();
521 if (!LoopDbgLoc.isUnknown())
522 LoopDbgLoc.print(L->getHeader()->getContext(), OS);
524 // Just print the module name.
525 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
532 /// \brief Propagate known metadata from one instruction to another.
533 static void propagateMetadata(Instruction *To, const Instruction *From) {
534 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
535 From->getAllMetadataOtherThanDebugLoc(Metadata);
537 for (auto M : Metadata) {
538 unsigned Kind = M.first;
540 // These are safe to transfer (this is safe for TBAA, even when we
541 // if-convert, because should that metadata have had a control dependency
542 // on the condition, and thus actually aliased with some other
543 // non-speculated memory access when the condition was false, this would be
544 // caught by the runtime overlap checks).
545 if (Kind != LLVMContext::MD_tbaa &&
546 Kind != LLVMContext::MD_alias_scope &&
547 Kind != LLVMContext::MD_noalias &&
548 Kind != LLVMContext::MD_fpmath)
551 To->setMetadata(Kind, M.second);
555 /// \brief Propagate known metadata from one instruction to a vector of others.
556 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
558 if (Instruction *I = dyn_cast<Instruction>(V))
559 propagateMetadata(I, From);
562 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
563 /// to what vectorization factor.
564 /// This class does not look at the profitability of vectorization, only the
565 /// legality. This class has two main kinds of checks:
566 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
567 /// will change the order of memory accesses in a way that will change the
568 /// correctness of the program.
569 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
570 /// checks for a number of different conditions, such as the availability of a
571 /// single induction variable, that all types are supported and vectorize-able,
572 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
573 /// This class is also used by InnerLoopVectorizer for identifying
574 /// induction variable and the different reduction variables.
575 class LoopVectorizationLegality {
579 unsigned NumPredStores;
581 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
582 DominatorTree *DT, TargetLibraryInfo *TLI,
583 AliasAnalysis *AA, Function *F)
584 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
585 DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr),
586 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
589 /// This enum represents the kinds of reductions that we support.
591 RK_NoReduction, ///< Not a reduction.
592 RK_IntegerAdd, ///< Sum of integers.
593 RK_IntegerMult, ///< Product of integers.
594 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
595 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
596 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
597 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
598 RK_FloatAdd, ///< Sum of floats.
599 RK_FloatMult, ///< Product of floats.
600 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
603 /// This enum represents the kinds of inductions that we support.
605 IK_NoInduction, ///< Not an induction variable.
606 IK_IntInduction, ///< Integer induction variable. Step = 1.
607 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
608 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
609 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
612 // This enum represents the kind of minmax reduction.
613 enum MinMaxReductionKind {
623 /// This struct holds information about reduction variables.
624 struct ReductionDescriptor {
625 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
626 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
628 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
629 MinMaxReductionKind MK)
630 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
632 // The starting value of the reduction.
633 // It does not have to be zero!
634 TrackingVH<Value> StartValue;
635 // The instruction who's value is used outside the loop.
636 Instruction *LoopExitInstr;
637 // The kind of the reduction.
639 // If this a min/max reduction the kind of reduction.
640 MinMaxReductionKind MinMaxKind;
643 /// This POD struct holds information about a potential reduction operation.
644 struct ReductionInstDesc {
645 ReductionInstDesc(bool IsRedux, Instruction *I) :
646 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
648 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
649 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
651 // Is this instruction a reduction candidate.
653 // The last instruction in a min/max pattern (select of the select(icmp())
654 // pattern), or the current reduction instruction otherwise.
655 Instruction *PatternLastInst;
656 // If this is a min/max pattern the comparison predicate.
657 MinMaxReductionKind MinMaxKind;
660 /// This struct holds information about the memory runtime legality
661 /// check that a group of pointers do not overlap.
662 struct RuntimePointerCheck {
663 RuntimePointerCheck() : Need(false) {}
665 /// Reset the state of the pointer runtime information.
672 DependencySetId.clear();
676 /// Insert a pointer and calculate the start and end SCEVs.
677 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
678 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
680 /// This flag indicates if we need to add the runtime check.
682 /// Holds the pointers that we need to check.
683 SmallVector<TrackingVH<Value>, 2> Pointers;
684 /// Holds the pointer value at the beginning of the loop.
685 SmallVector<const SCEV*, 2> Starts;
686 /// Holds the pointer value at the end of the loop.
687 SmallVector<const SCEV*, 2> Ends;
688 /// Holds the information if this pointer is used for writing to memory.
689 SmallVector<bool, 2> IsWritePtr;
690 /// Holds the id of the set of pointers that could be dependent because of a
691 /// shared underlying object.
692 SmallVector<unsigned, 2> DependencySetId;
693 /// Holds the id of the disjoint alias set to which this pointer belongs.
694 SmallVector<unsigned, 2> AliasSetId;
697 /// A struct for saving information about induction variables.
698 struct InductionInfo {
699 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
700 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
702 TrackingVH<Value> StartValue;
707 /// ReductionList contains the reduction descriptors for all
708 /// of the reductions that were found in the loop.
709 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
711 /// InductionList saves induction variables and maps them to the
712 /// induction descriptor.
713 typedef MapVector<PHINode*, InductionInfo> InductionList;
715 /// Returns true if it is legal to vectorize this loop.
716 /// This does not mean that it is profitable to vectorize this
717 /// loop, only that it is legal to do so.
720 /// Returns the Induction variable.
721 PHINode *getInduction() { return Induction; }
723 /// Returns the reduction variables found in the loop.
724 ReductionList *getReductionVars() { return &Reductions; }
726 /// Returns the induction variables found in the loop.
727 InductionList *getInductionVars() { return &Inductions; }
729 /// Returns the widest induction type.
730 Type *getWidestInductionType() { return WidestIndTy; }
732 /// Returns True if V is an induction variable in this loop.
733 bool isInductionVariable(const Value *V);
735 /// Return true if the block BB needs to be predicated in order for the loop
736 /// to be vectorized.
737 bool blockNeedsPredication(BasicBlock *BB);
739 /// Check if this pointer is consecutive when vectorizing. This happens
740 /// when the last index of the GEP is the induction variable, or that the
741 /// pointer itself is an induction variable.
742 /// This check allows us to vectorize A[idx] into a wide load/store.
744 /// 0 - Stride is unknown or non-consecutive.
745 /// 1 - Address is consecutive.
746 /// -1 - Address is consecutive, and decreasing.
747 int isConsecutivePtr(Value *Ptr);
749 /// Returns true if the value V is uniform within the loop.
750 bool isUniform(Value *V);
752 /// Returns true if this instruction will remain scalar after vectorization.
753 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
755 /// Returns the information that we collected about runtime memory check.
756 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
758 /// This function returns the identity element (or neutral element) for
760 static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
762 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
764 bool hasStride(Value *V) { return StrideSet.count(V); }
765 bool mustCheckStrides() { return !StrideSet.empty(); }
766 SmallPtrSet<Value *, 8>::iterator strides_begin() {
767 return StrideSet.begin();
769 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
772 /// Check if a single basic block loop is vectorizable.
773 /// At this point we know that this is a loop with a constant trip count
774 /// and we only need to check individual instructions.
775 bool canVectorizeInstrs();
777 /// When we vectorize loops we may change the order in which
778 /// we read and write from memory. This method checks if it is
779 /// legal to vectorize the code, considering only memory constrains.
780 /// Returns true if the loop is vectorizable
781 bool canVectorizeMemory();
783 /// Return true if we can vectorize this loop using the IF-conversion
785 bool canVectorizeWithIfConvert();
787 /// Collect the variables that need to stay uniform after vectorization.
788 void collectLoopUniforms();
790 /// Return true if all of the instructions in the block can be speculatively
791 /// executed. \p SafePtrs is a list of addresses that are known to be legal
792 /// and we know that we can read from them without segfault.
793 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
795 /// Returns True, if 'Phi' is the kind of reduction variable for type
796 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
797 bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
798 /// Returns a struct describing if the instruction 'I' can be a reduction
799 /// variable of type 'Kind'. If the reduction is a min/max pattern of
800 /// select(icmp()) this function advances the instruction pointer 'I' from the
801 /// compare instruction to the select instruction and stores this pointer in
802 /// 'PatternLastInst' member of the returned struct.
803 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
804 ReductionInstDesc &Desc);
805 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
806 /// pattern corresponding to a min(X, Y) or max(X, Y).
807 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
808 ReductionInstDesc &Prev);
809 /// Returns the induction kind of Phi. This function may return NoInduction
810 /// if the PHI is not an induction variable.
811 InductionKind isInductionVariable(PHINode *Phi);
813 /// \brief Collect memory access with loop invariant strides.
815 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
817 void collectStridedAcccess(Value *LoadOrStoreInst);
819 /// Report an analysis message to assist the user in diagnosing loops that are
821 void emitAnalysis(Report &Message) {
822 DebugLoc DL = TheLoop->getStartLoc();
823 if (Instruction *I = Message.getInstr())
824 DL = I->getDebugLoc();
825 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
826 *TheFunction, DL, Message.str());
829 /// The loop that we evaluate.
833 /// DataLayout analysis.
834 const DataLayout *DL;
837 /// Target Library Info.
838 TargetLibraryInfo *TLI;
842 Function *TheFunction;
844 // --- vectorization state --- //
846 /// Holds the integer induction variable. This is the counter of the
849 /// Holds the reduction variables.
850 ReductionList Reductions;
851 /// Holds all of the induction variables that we found in the loop.
852 /// Notice that inductions don't need to start at zero and that induction
853 /// variables can be pointers.
854 InductionList Inductions;
855 /// Holds the widest induction type encountered.
858 /// Allowed outside users. This holds the reduction
859 /// vars which can be accessed from outside the loop.
860 SmallPtrSet<Value*, 4> AllowedExit;
861 /// This set holds the variables which are known to be uniform after
863 SmallPtrSet<Instruction*, 4> Uniforms;
864 /// We need to check that all of the pointers in this list are disjoint
866 RuntimePointerCheck PtrRtCheck;
867 /// Can we assume the absence of NaNs.
868 bool HasFunNoNaNAttr;
870 unsigned MaxSafeDepDistBytes;
872 ValueToValueMap Strides;
873 SmallPtrSet<Value *, 8> StrideSet;
876 /// LoopVectorizationCostModel - estimates the expected speedups due to
878 /// In many cases vectorization is not profitable. This can happen because of
879 /// a number of reasons. In this class we mainly attempt to predict the
880 /// expected speedup/slowdowns due to the supported instruction set. We use the
881 /// TargetTransformInfo to query the different backends for the cost of
882 /// different operations.
883 class LoopVectorizationCostModel {
885 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
886 LoopVectorizationLegality *Legal,
887 const TargetTransformInfo &TTI,
888 const DataLayout *DL, const TargetLibraryInfo *TLI,
889 AssumptionTracker *AT, const Function *F,
890 const LoopVectorizeHints *Hints)
891 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI),
892 TheFunction(F), Hints(Hints) {
893 CodeMetrics::collectEphemeralValues(L, AT, EphValues);
896 /// Information about vectorization costs
897 struct VectorizationFactor {
898 unsigned Width; // Vector width with best cost
899 unsigned Cost; // Cost of the loop with that width
901 /// \return The most profitable vectorization factor and the cost of that VF.
902 /// This method checks every power of two up to VF. If UserVF is not ZERO
903 /// then this vectorization factor will be selected if vectorization is
905 VectorizationFactor selectVectorizationFactor(bool OptForSize);
907 /// \return The size (in bits) of the widest type in the code that
908 /// needs to be vectorized. We ignore values that remain scalar such as
909 /// 64 bit loop indices.
910 unsigned getWidestType();
912 /// \return The most profitable unroll factor.
913 /// If UserUF is non-zero then this method finds the best unroll-factor
914 /// based on register pressure and other parameters.
915 /// VF and LoopCost are the selected vectorization factor and the cost of the
917 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost);
919 /// \brief A struct that represents some properties of the register usage
921 struct RegisterUsage {
922 /// Holds the number of loop invariant values that are used in the loop.
923 unsigned LoopInvariantRegs;
924 /// Holds the maximum number of concurrent live intervals in the loop.
925 unsigned MaxLocalUsers;
926 /// Holds the number of instructions in the loop.
927 unsigned NumInstructions;
930 /// \return information about the register usage of the loop.
931 RegisterUsage calculateRegisterUsage();
934 /// Returns the expected execution cost. The unit of the cost does
935 /// not matter because we use the 'cost' units to compare different
936 /// vector widths. The cost that is returned is *not* normalized by
937 /// the factor width.
938 unsigned expectedCost(unsigned VF);
940 /// Returns the execution time cost of an instruction for a given vector
941 /// width. Vector width of one means scalar.
942 unsigned getInstructionCost(Instruction *I, unsigned VF);
944 /// A helper function for converting Scalar types to vector types.
945 /// If the incoming type is void, we return void. If the VF is 1, we return
947 static Type* ToVectorTy(Type *Scalar, unsigned VF);
949 /// Returns whether the instruction is a load or store and will be a emitted
950 /// as a vector operation.
951 bool isConsecutiveLoadOrStore(Instruction *I);
953 /// Report an analysis message to assist the user in diagnosing loops that are
955 void emitAnalysis(Report &Message) {
956 DebugLoc DL = TheLoop->getStartLoc();
957 if (Instruction *I = Message.getInstr())
958 DL = I->getDebugLoc();
959 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
960 *TheFunction, DL, Message.str());
963 /// Values used only by @llvm.assume calls.
964 SmallPtrSet<const Value *, 32> EphValues;
966 /// The loop that we evaluate.
970 /// Loop Info analysis.
972 /// Vectorization legality.
973 LoopVectorizationLegality *Legal;
974 /// Vector target information.
975 const TargetTransformInfo &TTI;
976 /// Target data layout information.
977 const DataLayout *DL;
978 /// Target Library Info.
979 const TargetLibraryInfo *TLI;
980 const Function *TheFunction;
981 // Loop Vectorize Hint.
982 const LoopVectorizeHints *Hints;
985 /// Utility class for getting and setting loop vectorizer hints in the form
986 /// of loop metadata.
987 /// This class keeps a number of loop annotations locally (as member variables)
988 /// and can, upon request, write them back as metadata on the loop. It will
989 /// initially scan the loop for existing metadata, and will update the local
990 /// values based on information in the loop.
991 /// We cannot write all values to metadata, as the mere presence of some info,
992 /// for example 'force', means a decision has been made. So, we need to be
993 /// careful NOT to add them if the user hasn't specifically asked so.
994 class LoopVectorizeHints {
1001 /// Hint - associates name and validation with the hint value.
1004 unsigned Value; // This may have to change for non-numeric values.
1007 Hint(const char * Name, unsigned Value, HintKind Kind)
1008 : Name(Name), Value(Value), Kind(Kind) { }
1010 bool validate(unsigned Val) {
1013 return isPowerOf2_32(Val) && Val <= MaxVectorWidth;
1015 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1023 /// Vectorization width.
1025 /// Vectorization interleave factor.
1027 /// Vectorization forced
1030 /// Return the loop metadata prefix.
1031 static StringRef Prefix() { return "llvm.loop."; }
1035 FK_Undefined = -1, ///< Not selected.
1036 FK_Disabled = 0, ///< Forcing disabled.
1037 FK_Enabled = 1, ///< Forcing enabled.
1040 LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
1041 : Width("vectorize.width", VectorizationFactor, HK_WIDTH),
1042 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1043 Force("vectorize.enable", FK_Undefined, HK_FORCE),
1045 // Populate values with existing loop metadata.
1046 getHintsFromMetadata();
1048 // force-vector-interleave overrides DisableInterleaving.
1049 if (VectorizationInterleave.getNumOccurrences() > 0)
1050 Interleave.Value = VectorizationInterleave;
1052 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1053 << "LV: Interleaving disabled by the pass manager\n");
1056 /// Mark the loop L as already vectorized by setting the width to 1.
1057 void setAlreadyVectorized() {
1058 Width.Value = Interleave.Value = 1;
1059 Hint Hints[] = {Width, Interleave};
1060 writeHintsToMetadata(Hints);
1063 /// Dumps all the hint information.
1064 std::string emitRemark() const {
1066 if (Force.Value == LoopVectorizeHints::FK_Disabled)
1067 R << "vectorization is explicitly disabled";
1069 R << "use -Rpass-analysis=loop-vectorize for more info";
1070 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1071 R << " (Force=true";
1072 if (Width.Value != 0)
1073 R << ", Vector Width=" << Width.Value;
1074 if (Interleave.Value != 0)
1075 R << ", Interleave Count=" << Interleave.Value;
1083 unsigned getWidth() const { return Width.Value; }
1084 unsigned getInterleave() const { return Interleave.Value; }
1085 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1088 /// Find hints specified in the loop metadata and update local values.
1089 void getHintsFromMetadata() {
1090 MDNode *LoopID = TheLoop->getLoopID();
1094 // First operand should refer to the loop id itself.
1095 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1096 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1098 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1099 const MDString *S = nullptr;
1100 SmallVector<Value*, 4> Args;
1102 // The expected hint is either a MDString or a MDNode with the first
1103 // operand a MDString.
1104 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1105 if (!MD || MD->getNumOperands() == 0)
1107 S = dyn_cast<MDString>(MD->getOperand(0));
1108 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1109 Args.push_back(MD->getOperand(i));
1111 S = dyn_cast<MDString>(LoopID->getOperand(i));
1112 assert(Args.size() == 0 && "too many arguments for MDString");
1118 // Check if the hint starts with the loop metadata prefix.
1119 StringRef Name = S->getString();
1120 if (Args.size() == 1)
1121 setHint(Name, Args[0]);
1125 /// Checks string hint with one operand and set value if valid.
1126 void setHint(StringRef Name, Value *Arg) {
1127 if (!Name.startswith(Prefix()))
1129 Name = Name.substr(Prefix().size(), StringRef::npos);
1131 const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
1133 unsigned Val = C->getZExtValue();
1135 Hint *Hints[] = {&Width, &Interleave, &Force};
1136 for (auto H : Hints) {
1137 if (Name == H->Name) {
1138 if (H->validate(Val))
1141 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1147 /// Create a new hint from name / value pair.
1148 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1149 LLVMContext &Context = TheLoop->getHeader()->getContext();
1150 Value *Vals[] = {MDString::get(Context, Name),
1151 ConstantInt::get(Type::getInt32Ty(Context), V)};
1152 return MDNode::get(Context, Vals);
1155 /// Matches metadata with hint name.
1156 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1157 MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
1161 for (auto H : HintTypes)
1162 if (Name->getName().endswith(H.Name))
1167 /// Sets current hints into loop metadata, keeping other values intact.
1168 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1169 if (HintTypes.size() == 0)
1172 // Reserve the first element to LoopID (see below).
1173 SmallVector<Value*, 4> Vals(1);
1174 // If the loop already has metadata, then ignore the existing operands.
1175 MDNode *LoopID = TheLoop->getLoopID();
1177 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1178 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1179 // If node in update list, ignore old value.
1180 if (!matchesHintMetadataName(Node, HintTypes))
1181 Vals.push_back(Node);
1185 // Now, add the missing hints.
1186 for (auto H : HintTypes)
1188 createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1190 // Replace current metadata node with new one.
1191 LLVMContext &Context = TheLoop->getHeader()->getContext();
1192 MDNode *NewLoopID = MDNode::get(Context, Vals);
1193 // Set operand 0 to refer to the loop id itself.
1194 NewLoopID->replaceOperandWith(0, NewLoopID);
1196 TheLoop->setLoopID(NewLoopID);
1198 LoopID->replaceAllUsesWith(NewLoopID);
1202 /// The loop these hints belong to.
1203 const Loop *TheLoop;
1206 static void emitMissedWarning(Function *F, Loop *L,
1207 const LoopVectorizeHints &LH) {
1208 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
1209 L->getStartLoc(), LH.emitRemark());
1211 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1212 if (LH.getWidth() != 1)
1213 emitLoopVectorizeWarning(
1214 F->getContext(), *F, L->getStartLoc(),
1215 "failed explicitly specified loop vectorization");
1216 else if (LH.getInterleave() != 1)
1217 emitLoopInterleaveWarning(
1218 F->getContext(), *F, L->getStartLoc(),
1219 "failed explicitly specified loop interleaving");
1223 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1225 return V.push_back(&L);
1227 for (Loop *InnerL : L)
1228 addInnerLoop(*InnerL, V);
1231 /// The LoopVectorize Pass.
1232 struct LoopVectorize : public FunctionPass {
1233 /// Pass identification, replacement for typeid
1236 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1238 DisableUnrolling(NoUnrolling),
1239 AlwaysVectorize(AlwaysVectorize) {
1240 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1243 ScalarEvolution *SE;
1244 const DataLayout *DL;
1246 TargetTransformInfo *TTI;
1248 BlockFrequencyInfo *BFI;
1249 TargetLibraryInfo *TLI;
1251 AssumptionTracker *AT;
1252 bool DisableUnrolling;
1253 bool AlwaysVectorize;
1255 BlockFrequency ColdEntryFreq;
1257 bool runOnFunction(Function &F) override {
1258 SE = &getAnalysis<ScalarEvolution>();
1259 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1260 DL = DLP ? &DLP->getDataLayout() : nullptr;
1261 LI = &getAnalysis<LoopInfo>();
1262 TTI = &getAnalysis<TargetTransformInfo>();
1263 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1264 BFI = &getAnalysis<BlockFrequencyInfo>();
1265 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1266 AA = &getAnalysis<AliasAnalysis>();
1267 AT = &getAnalysis<AssumptionTracker>();
1269 // Compute some weights outside of the loop over the loops. Compute this
1270 // using a BranchProbability to re-use its scaling math.
1271 const BranchProbability ColdProb(1, 5); // 20%
1272 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1274 // If the target claims to have no vector registers don't attempt
1276 if (!TTI->getNumberOfRegisters(true))
1280 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
1281 << ": Missing data layout\n");
1285 // Build up a worklist of inner-loops to vectorize. This is necessary as
1286 // the act of vectorizing or partially unrolling a loop creates new loops
1287 // and can invalidate iterators across the loops.
1288 SmallVector<Loop *, 8> Worklist;
1291 addInnerLoop(*L, Worklist);
1293 LoopsAnalyzed += Worklist.size();
1295 // Now walk the identified inner loops.
1296 bool Changed = false;
1297 while (!Worklist.empty())
1298 Changed |= processLoop(Worklist.pop_back_val());
1300 // Process each loop nest in the function.
1304 bool processLoop(Loop *L) {
1305 assert(L->empty() && "Only process inner loops.");
1308 const std::string DebugLocStr = getDebugLocString(L);
1311 DEBUG(dbgs() << "\nLV: Checking a loop in \""
1312 << L->getHeader()->getParent()->getName() << "\" from "
1313 << DebugLocStr << "\n");
1315 LoopVectorizeHints Hints(L, DisableUnrolling);
1317 DEBUG(dbgs() << "LV: Loop hints:"
1319 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1321 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1323 : "?")) << " width=" << Hints.getWidth()
1324 << " unroll=" << Hints.getInterleave() << "\n");
1326 // Function containing loop
1327 Function *F = L->getHeader()->getParent();
1329 // Looking at the diagnostic output is the only way to determine if a loop
1330 // was vectorized (other than looking at the IR or machine code), so it
1331 // is important to generate an optimization remark for each loop. Most of
1332 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1333 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1334 // less verbose reporting vectorized loops and unvectorized loops that may
1335 // benefit from vectorization, respectively.
1337 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
1338 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1339 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1340 L->getStartLoc(), Hints.emitRemark());
1344 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
1345 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1346 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1347 L->getStartLoc(), Hints.emitRemark());
1351 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) {
1352 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1353 emitOptimizationRemarkAnalysis(
1354 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1355 "loop not vectorized: vector width and interleave count are "
1356 "explicitly set to 1");
1360 // Check the loop for a trip count threshold:
1361 // do not vectorize loops with a tiny trip count.
1362 const unsigned TC = SE->getSmallConstantTripCount(L);
1363 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1364 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1365 << "This loop is not worth vectorizing.");
1366 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1367 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1369 DEBUG(dbgs() << "\n");
1370 emitOptimizationRemarkAnalysis(
1371 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1372 "vectorization is not beneficial and is not explicitly forced");
1377 // Check if it is legal to vectorize the loop.
1378 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F);
1379 if (!LVL.canVectorize()) {
1380 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1381 emitMissedWarning(F, L, Hints);
1385 // Use the cost model.
1386 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AT, F,
1389 // Check the function attributes to find out if this function should be
1390 // optimized for size.
1391 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1392 F->hasFnAttribute(Attribute::OptimizeForSize);
1394 // Compute the weighted frequency of this loop being executed and see if it
1395 // is less than 20% of the function entry baseline frequency. Note that we
1396 // always have a canonical loop here because we think we *can* vectoriez.
1397 // FIXME: This is hidden behind a flag due to pervasive problems with
1398 // exactly what block frequency models.
1399 if (LoopVectorizeWithBlockFrequency) {
1400 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1401 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1402 LoopEntryFreq < ColdEntryFreq)
1406 // Check the function attributes to see if implicit floats are allowed.a
1407 // FIXME: This check doesn't seem possibly correct -- what if the loop is
1408 // an integer loop and the vector instructions selected are purely integer
1409 // vector instructions?
1410 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1411 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1412 "attribute is used.\n");
1413 emitOptimizationRemarkAnalysis(
1414 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1415 "loop not vectorized due to NoImplicitFloat attribute");
1416 emitMissedWarning(F, L, Hints);
1420 // Select the optimal vectorization factor.
1421 const LoopVectorizationCostModel::VectorizationFactor VF =
1422 CM.selectVectorizationFactor(OptForSize);
1424 // Select the unroll factor.
1426 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost);
1428 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1429 << DebugLocStr << '\n');
1430 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
1432 if (VF.Width == 1) {
1433 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
1436 emitOptimizationRemarkAnalysis(
1437 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1438 "not beneficial to vectorize and user disabled interleaving");
1441 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
1443 // Report the unrolling decision.
1444 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1445 Twine("unrolled with interleaving factor " +
1447 " (vectorization not beneficial)"));
1449 // We decided not to vectorize, but we may want to unroll.
1451 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
1452 Unroller.vectorize(&LVL);
1454 // If we decided that it is *legal* to vectorize the loop then do it.
1455 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
1459 // Report the vectorization decision.
1460 emitOptimizationRemark(
1461 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1462 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
1463 ", unrolling interleave factor: " + Twine(UF) + ")");
1466 // Mark the loop as already vectorized to avoid vectorizing again.
1467 Hints.setAlreadyVectorized();
1469 DEBUG(verifyFunction(*L->getHeader()->getParent()));
1473 void getAnalysisUsage(AnalysisUsage &AU) const override {
1474 AU.addRequired<AssumptionTracker>();
1475 AU.addRequiredID(LoopSimplifyID);
1476 AU.addRequiredID(LCSSAID);
1477 AU.addRequired<BlockFrequencyInfo>();
1478 AU.addRequired<DominatorTreeWrapperPass>();
1479 AU.addRequired<LoopInfo>();
1480 AU.addRequired<ScalarEvolution>();
1481 AU.addRequired<TargetTransformInfo>();
1482 AU.addRequired<AliasAnalysis>();
1483 AU.addPreserved<LoopInfo>();
1484 AU.addPreserved<DominatorTreeWrapperPass>();
1485 AU.addPreserved<AliasAnalysis>();
1490 } // end anonymous namespace
1492 //===----------------------------------------------------------------------===//
1493 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1494 // LoopVectorizationCostModel.
1495 //===----------------------------------------------------------------------===//
1497 static Value *stripIntegerCast(Value *V) {
1498 if (CastInst *CI = dyn_cast<CastInst>(V))
1499 if (CI->getOperand(0)->getType()->isIntegerTy())
1500 return CI->getOperand(0);
1504 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
1506 /// If \p OrigPtr is not null, use it to look up the stride value instead of
1508 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
1509 ValueToValueMap &PtrToStride,
1510 Value *Ptr, Value *OrigPtr = nullptr) {
1512 const SCEV *OrigSCEV = SE->getSCEV(Ptr);
1514 // If there is an entry in the map return the SCEV of the pointer with the
1515 // symbolic stride replaced by one.
1516 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1517 if (SI != PtrToStride.end()) {
1518 Value *StrideVal = SI->second;
1521 StrideVal = stripIntegerCast(StrideVal);
1523 // Replace symbolic stride by one.
1524 Value *One = ConstantInt::get(StrideVal->getType(), 1);
1525 ValueToValueMap RewriteMap;
1526 RewriteMap[StrideVal] = One;
1529 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
1530 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
1535 // Otherwise, just return the SCEV of the original pointer.
1536 return SE->getSCEV(Ptr);
1539 void LoopVectorizationLegality::RuntimePointerCheck::insert(
1540 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
1541 unsigned ASId, ValueToValueMap &Strides) {
1542 // Get the stride replaced scev.
1543 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
1544 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1545 assert(AR && "Invalid addrec expression");
1546 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1547 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1548 Pointers.push_back(Ptr);
1549 Starts.push_back(AR->getStart());
1550 Ends.push_back(ScEnd);
1551 IsWritePtr.push_back(WritePtr);
1552 DependencySetId.push_back(DepSetId);
1553 AliasSetId.push_back(ASId);
1556 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1557 // We need to place the broadcast of invariant variables outside the loop.
1558 Instruction *Instr = dyn_cast<Instruction>(V);
1560 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1561 Instr->getParent()) != LoopVectorBody.end());
1562 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1564 // Place the code for broadcasting invariant variables in the new preheader.
1565 IRBuilder<>::InsertPointGuard Guard(Builder);
1567 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1569 // Broadcast the scalar into all locations in the vector.
1570 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1575 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1577 assert(Val->getType()->isVectorTy() && "Must be a vector");
1578 assert(Val->getType()->getScalarType()->isIntegerTy() &&
1579 "Elem must be an integer");
1580 // Create the types.
1581 Type *ITy = Val->getType()->getScalarType();
1582 VectorType *Ty = cast<VectorType>(Val->getType());
1583 int VLen = Ty->getNumElements();
1584 SmallVector<Constant*, 8> Indices;
1586 // Create a vector of consecutive numbers from zero to VF.
1587 for (int i = 0; i < VLen; ++i) {
1588 int64_t Idx = Negate ? (-i) : i;
1589 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1592 // Add the consecutive indices to the vector value.
1593 Constant *Cv = ConstantVector::get(Indices);
1594 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1595 return Builder.CreateAdd(Val, Cv, "induction");
1598 /// \brief Find the operand of the GEP that should be checked for consecutive
1599 /// stores. This ignores trailing indices that have no effect on the final
1601 static unsigned getGEPInductionOperand(const DataLayout *DL,
1602 const GetElementPtrInst *Gep) {
1603 unsigned LastOperand = Gep->getNumOperands() - 1;
1604 unsigned GEPAllocSize = DL->getTypeAllocSize(
1605 cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1607 // Walk backwards and try to peel off zeros.
1608 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1609 // Find the type we're currently indexing into.
1610 gep_type_iterator GEPTI = gep_type_begin(Gep);
1611 std::advance(GEPTI, LastOperand - 1);
1613 // If it's a type with the same allocation size as the result of the GEP we
1614 // can peel off the zero index.
1615 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1623 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1624 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1625 // Make sure that the pointer does not point to structs.
1626 if (Ptr->getType()->getPointerElementType()->isAggregateType())
1629 // If this value is a pointer induction variable we know it is consecutive.
1630 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1631 if (Phi && Inductions.count(Phi)) {
1632 InductionInfo II = Inductions[Phi];
1633 if (IK_PtrInduction == II.IK)
1635 else if (IK_ReversePtrInduction == II.IK)
1639 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1643 unsigned NumOperands = Gep->getNumOperands();
1644 Value *GpPtr = Gep->getPointerOperand();
1645 // If this GEP value is a consecutive pointer induction variable and all of
1646 // the indices are constant then we know it is consecutive. We can
1647 Phi = dyn_cast<PHINode>(GpPtr);
1648 if (Phi && Inductions.count(Phi)) {
1650 // Make sure that the pointer does not point to structs.
1651 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1652 if (GepPtrType->getElementType()->isAggregateType())
1655 // Make sure that all of the index operands are loop invariant.
1656 for (unsigned i = 1; i < NumOperands; ++i)
1657 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1660 InductionInfo II = Inductions[Phi];
1661 if (IK_PtrInduction == II.IK)
1663 else if (IK_ReversePtrInduction == II.IK)
1667 unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1669 // Check that all of the gep indices are uniform except for our induction
1671 for (unsigned i = 0; i != NumOperands; ++i)
1672 if (i != InductionOperand &&
1673 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1676 // We can emit wide load/stores only if the last non-zero index is the
1677 // induction variable.
1678 const SCEV *Last = nullptr;
1679 if (!Strides.count(Gep))
1680 Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1682 // Because of the multiplication by a stride we can have a s/zext cast.
1683 // We are going to replace this stride by 1 so the cast is safe to ignore.
1685 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1686 // %0 = trunc i64 %indvars.iv to i32
1687 // %mul = mul i32 %0, %Stride1
1688 // %idxprom = zext i32 %mul to i64 << Safe cast.
1689 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
1691 Last = replaceSymbolicStrideSCEV(SE, Strides,
1692 Gep->getOperand(InductionOperand), Gep);
1693 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
1695 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
1699 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1700 const SCEV *Step = AR->getStepRecurrence(*SE);
1702 // The memory is consecutive because the last index is consecutive
1703 // and all other indices are loop invariant.
1706 if (Step->isAllOnesValue())
1713 bool LoopVectorizationLegality::isUniform(Value *V) {
1714 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1717 InnerLoopVectorizer::VectorParts&
1718 InnerLoopVectorizer::getVectorValue(Value *V) {
1719 assert(V != Induction && "The new induction variable should not be used.");
1720 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1722 // If we have a stride that is replaced by one, do it here.
1723 if (Legal->hasStride(V))
1724 V = ConstantInt::get(V->getType(), 1);
1726 // If we have this scalar in the map, return it.
1727 if (WidenMap.has(V))
1728 return WidenMap.get(V);
1730 // If this scalar is unknown, assume that it is a constant or that it is
1731 // loop invariant. Broadcast V and save the value for future uses.
1732 Value *B = getBroadcastInstrs(V);
1733 return WidenMap.splat(V, B);
1736 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1737 assert(Vec->getType()->isVectorTy() && "Invalid type");
1738 SmallVector<Constant*, 8> ShuffleMask;
1739 for (unsigned i = 0; i < VF; ++i)
1740 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1742 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1743 ConstantVector::get(ShuffleMask),
1747 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
1748 // Attempt to issue a wide load.
1749 LoadInst *LI = dyn_cast<LoadInst>(Instr);
1750 StoreInst *SI = dyn_cast<StoreInst>(Instr);
1752 assert((LI || SI) && "Invalid Load/Store instruction");
1754 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1755 Type *DataTy = VectorType::get(ScalarDataTy, VF);
1756 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1757 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1758 // An alignment of 0 means target abi alignment. We need to use the scalar's
1759 // target abi alignment in such a case.
1761 Alignment = DL->getABITypeAlignment(ScalarDataTy);
1762 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1763 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1764 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1766 if (SI && Legal->blockNeedsPredication(SI->getParent()))
1767 return scalarizeInstruction(Instr, true);
1769 if (ScalarAllocatedSize != VectorElementSize)
1770 return scalarizeInstruction(Instr);
1772 // If the pointer is loop invariant or if it is non-consecutive,
1773 // scalarize the load.
1774 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1775 bool Reverse = ConsecutiveStride < 0;
1776 bool UniformLoad = LI && Legal->isUniform(Ptr);
1777 if (!ConsecutiveStride || UniformLoad)
1778 return scalarizeInstruction(Instr);
1780 Constant *Zero = Builder.getInt32(0);
1781 VectorParts &Entry = WidenMap.get(Instr);
1783 // Handle consecutive loads/stores.
1784 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1785 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1786 setDebugLocFromInst(Builder, Gep);
1787 Value *PtrOperand = Gep->getPointerOperand();
1788 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1789 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1791 // Create the new GEP with the new induction variable.
1792 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1793 Gep2->setOperand(0, FirstBasePtr);
1794 Gep2->setName("gep.indvar.base");
1795 Ptr = Builder.Insert(Gep2);
1797 setDebugLocFromInst(Builder, Gep);
1798 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1799 OrigLoop) && "Base ptr must be invariant");
1801 // The last index does not have to be the induction. It can be
1802 // consecutive and be a function of the index. For example A[I+1];
1803 unsigned NumOperands = Gep->getNumOperands();
1804 unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1805 // Create the new GEP with the new induction variable.
1806 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1808 for (unsigned i = 0; i < NumOperands; ++i) {
1809 Value *GepOperand = Gep->getOperand(i);
1810 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1812 // Update last index or loop invariant instruction anchored in loop.
1813 if (i == InductionOperand ||
1814 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1815 assert((i == InductionOperand ||
1816 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1817 "Must be last index or loop invariant");
1819 VectorParts &GEPParts = getVectorValue(GepOperand);
1820 Value *Index = GEPParts[0];
1821 Index = Builder.CreateExtractElement(Index, Zero);
1822 Gep2->setOperand(i, Index);
1823 Gep2->setName("gep.indvar.idx");
1826 Ptr = Builder.Insert(Gep2);
1828 // Use the induction element ptr.
1829 assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1830 setDebugLocFromInst(Builder, Ptr);
1831 VectorParts &PtrVal = getVectorValue(Ptr);
1832 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1837 assert(!Legal->isUniform(SI->getPointerOperand()) &&
1838 "We do not allow storing to uniform addresses");
1839 setDebugLocFromInst(Builder, SI);
1840 // We don't want to update the value in the map as it might be used in
1841 // another expression. So don't use a reference type for "StoredVal".
1842 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1844 for (unsigned Part = 0; Part < UF; ++Part) {
1845 // Calculate the pointer for the specific unroll-part.
1846 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1849 // If we store to reverse consecutive memory locations then we need
1850 // to reverse the order of elements in the stored value.
1851 StoredVal[Part] = reverseVector(StoredVal[Part]);
1852 // If the address is consecutive but reversed, then the
1853 // wide store needs to start at the last vector element.
1854 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1855 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1858 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1859 DataTy->getPointerTo(AddressSpace));
1861 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
1862 propagateMetadata(NewSI, SI);
1868 assert(LI && "Must have a load instruction");
1869 setDebugLocFromInst(Builder, LI);
1870 for (unsigned Part = 0; Part < UF; ++Part) {
1871 // Calculate the pointer for the specific unroll-part.
1872 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1875 // If the address is consecutive but reversed, then the
1876 // wide store needs to start at the last vector element.
1877 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1878 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1881 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1882 DataTy->getPointerTo(AddressSpace));
1883 LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
1884 propagateMetadata(NewLI, LI);
1885 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
1889 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
1890 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1891 // Holds vector parameters or scalars, in case of uniform vals.
1892 SmallVector<VectorParts, 4> Params;
1894 setDebugLocFromInst(Builder, Instr);
1896 // Find all of the vectorized parameters.
1897 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1898 Value *SrcOp = Instr->getOperand(op);
1900 // If we are accessing the old induction variable, use the new one.
1901 if (SrcOp == OldInduction) {
1902 Params.push_back(getVectorValue(SrcOp));
1906 // Try using previously calculated values.
1907 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1909 // If the src is an instruction that appeared earlier in the basic block
1910 // then it should already be vectorized.
1911 if (SrcInst && OrigLoop->contains(SrcInst)) {
1912 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1913 // The parameter is a vector value from earlier.
1914 Params.push_back(WidenMap.get(SrcInst));
1916 // The parameter is a scalar from outside the loop. Maybe even a constant.
1917 VectorParts Scalars;
1918 Scalars.append(UF, SrcOp);
1919 Params.push_back(Scalars);
1923 assert(Params.size() == Instr->getNumOperands() &&
1924 "Invalid number of operands");
1926 // Does this instruction return a value ?
1927 bool IsVoidRetTy = Instr->getType()->isVoidTy();
1929 Value *UndefVec = IsVoidRetTy ? nullptr :
1930 UndefValue::get(VectorType::get(Instr->getType(), VF));
1931 // Create a new entry in the WidenMap and initialize it to Undef or Null.
1932 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1934 Instruction *InsertPt = Builder.GetInsertPoint();
1935 BasicBlock *IfBlock = Builder.GetInsertBlock();
1936 BasicBlock *CondBlock = nullptr;
1939 Loop *VectorLp = nullptr;
1940 if (IfPredicateStore) {
1941 assert(Instr->getParent()->getSinglePredecessor() &&
1942 "Only support single predecessor blocks");
1943 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
1944 Instr->getParent());
1945 VectorLp = LI->getLoopFor(IfBlock);
1946 assert(VectorLp && "Must have a loop for this block");
1949 // For each vector unroll 'part':
1950 for (unsigned Part = 0; Part < UF; ++Part) {
1951 // For each scalar that we create:
1952 for (unsigned Width = 0; Width < VF; ++Width) {
1955 Value *Cmp = nullptr;
1956 if (IfPredicateStore) {
1957 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
1958 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
1959 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1960 LoopVectorBody.push_back(CondBlock);
1961 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
1962 // Update Builder with newly created basic block.
1963 Builder.SetInsertPoint(InsertPt);
1966 Instruction *Cloned = Instr->clone();
1968 Cloned->setName(Instr->getName() + ".cloned");
1969 // Replace the operands of the cloned instructions with extracted scalars.
1970 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1971 Value *Op = Params[op][Part];
1972 // Param is a vector. Need to extract the right lane.
1973 if (Op->getType()->isVectorTy())
1974 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1975 Cloned->setOperand(op, Op);
1978 // Place the cloned scalar in the new loop.
1979 Builder.Insert(Cloned);
1981 // If the original scalar returns a value we need to place it in a vector
1982 // so that future users will be able to use it.
1984 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1985 Builder.getInt32(Width));
1987 if (IfPredicateStore) {
1988 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1989 LoopVectorBody.push_back(NewIfBlock);
1990 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
1991 Builder.SetInsertPoint(InsertPt);
1992 Instruction *OldBr = IfBlock->getTerminator();
1993 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1994 OldBr->eraseFromParent();
1995 IfBlock = NewIfBlock;
2001 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2005 if (Instruction *I = dyn_cast<Instruction>(V))
2006 return I->getParent() == Loc->getParent() ? I : nullptr;
2010 std::pair<Instruction *, Instruction *>
2011 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
2012 Instruction *tnullptr = nullptr;
2013 if (!Legal->mustCheckStrides())
2014 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2016 IRBuilder<> ChkBuilder(Loc);
2019 Value *Check = nullptr;
2020 Instruction *FirstInst = nullptr;
2021 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
2022 SE = Legal->strides_end();
2024 Value *Ptr = stripIntegerCast(*SI);
2025 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
2027 // Store the first instruction we create.
2028 FirstInst = getFirstInst(FirstInst, C, Loc);
2030 Check = ChkBuilder.CreateOr(Check, C);
2035 // We have to do this trickery because the IRBuilder might fold the check to a
2036 // constant expression in which case there is no Instruction anchored in a
2038 LLVMContext &Ctx = Loc->getContext();
2039 Instruction *TheCheck =
2040 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
2041 ChkBuilder.Insert(TheCheck, "stride.not.one");
2042 FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
2044 return std::make_pair(FirstInst, TheCheck);
2047 std::pair<Instruction *, Instruction *>
2048 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
2049 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
2050 Legal->getRuntimePointerCheck();
2052 Instruction *tnullptr = nullptr;
2053 if (!PtrRtCheck->Need)
2054 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2056 unsigned NumPointers = PtrRtCheck->Pointers.size();
2057 SmallVector<TrackingVH<Value> , 2> Starts;
2058 SmallVector<TrackingVH<Value> , 2> Ends;
2060 LLVMContext &Ctx = Loc->getContext();
2061 SCEVExpander Exp(*SE, "induction");
2062 Instruction *FirstInst = nullptr;
2064 for (unsigned i = 0; i < NumPointers; ++i) {
2065 Value *Ptr = PtrRtCheck->Pointers[i];
2066 const SCEV *Sc = SE->getSCEV(Ptr);
2068 if (SE->isLoopInvariant(Sc, OrigLoop)) {
2069 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
2071 Starts.push_back(Ptr);
2072 Ends.push_back(Ptr);
2074 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
2075 unsigned AS = Ptr->getType()->getPointerAddressSpace();
2077 // Use this type for pointer arithmetic.
2078 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2080 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
2081 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
2082 Starts.push_back(Start);
2083 Ends.push_back(End);
2087 IRBuilder<> ChkBuilder(Loc);
2088 // Our instructions might fold to a constant.
2089 Value *MemoryRuntimeCheck = nullptr;
2090 for (unsigned i = 0; i < NumPointers; ++i) {
2091 for (unsigned j = i+1; j < NumPointers; ++j) {
2092 // No need to check if two readonly pointers intersect.
2093 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
2096 // Only need to check pointers between two different dependency sets.
2097 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
2099 // Only need to check pointers in the same alias set.
2100 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j])
2103 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
2104 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
2106 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
2107 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
2108 "Trying to bounds check pointers with different address spaces");
2110 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2111 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
2113 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
2114 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
2115 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
2116 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
2118 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
2119 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2120 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
2121 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2122 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2123 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2124 if (MemoryRuntimeCheck) {
2125 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
2127 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2129 MemoryRuntimeCheck = IsConflict;
2133 // We have to do this trickery because the IRBuilder might fold the check to a
2134 // constant expression in which case there is no Instruction anchored in a
2136 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2137 ConstantInt::getTrue(Ctx));
2138 ChkBuilder.Insert(Check, "memcheck.conflict");
2139 FirstInst = getFirstInst(FirstInst, Check, Loc);
2140 return std::make_pair(FirstInst, Check);
2143 void InnerLoopVectorizer::createEmptyLoop() {
2145 In this function we generate a new loop. The new loop will contain
2146 the vectorized instructions while the old loop will continue to run the
2149 [ ] <-- Back-edge taken count overflow check.
2152 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2155 || [ ] <-- vector pre header.
2159 || [ ]_| <-- vector loop.
2162 | >[ ] <--- middle-block.
2165 -|- >[ ] <--- new preheader.
2169 | [ ]_| <-- old scalar loop to handle remainder.
2172 >[ ] <-- exit block.
2176 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2177 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
2178 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2179 assert(BypassBlock && "Invalid loop structure");
2180 assert(ExitBlock && "Must have an exit block");
2182 // Some loops have a single integer induction variable, while other loops
2183 // don't. One example is c++ iterators that often have multiple pointer
2184 // induction variables. In the code below we also support a case where we
2185 // don't have a single induction variable.
2186 OldInduction = Legal->getInduction();
2187 Type *IdxTy = Legal->getWidestInductionType();
2189 // Find the loop boundaries.
2190 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
2191 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
2193 // The exit count might have the type of i64 while the phi is i32. This can
2194 // happen if we have an induction variable that is sign extended before the
2195 // compare. The only way that we get a backedge taken count is that the
2196 // induction variable was signed and as such will not overflow. In such a case
2197 // truncation is legal.
2198 if (ExitCount->getType()->getPrimitiveSizeInBits() >
2199 IdxTy->getPrimitiveSizeInBits())
2200 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
2202 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
2203 // Get the total trip count from the count by adding 1.
2204 ExitCount = SE->getAddExpr(BackedgeTakeCount,
2205 SE->getConstant(BackedgeTakeCount->getType(), 1));
2207 // Expand the trip count and place the new instructions in the preheader.
2208 // Notice that the pre-header does not change, only the loop body.
2209 SCEVExpander Exp(*SE, "induction");
2211 // We need to test whether the backedge-taken count is uint##_max. Adding one
2212 // to it will cause overflow and an incorrect loop trip count in the vector
2213 // body. In case of overflow we want to directly jump to the scalar remainder
2215 Value *BackedgeCount =
2216 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
2217 BypassBlock->getTerminator());
2218 if (BackedgeCount->getType()->isPointerTy())
2219 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
2220 "backedge.ptrcnt.to.int",
2221 BypassBlock->getTerminator());
2222 Instruction *CheckBCOverflow =
2223 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
2224 Constant::getAllOnesValue(BackedgeCount->getType()),
2225 "backedge.overflow", BypassBlock->getTerminator());
2227 // The loop index does not have to start at Zero. Find the original start
2228 // value from the induction PHI node. If we don't have an induction variable
2229 // then we know that it starts at zero.
2230 Builder.SetInsertPoint(BypassBlock->getTerminator());
2231 Value *StartIdx = ExtendedIdx = OldInduction ?
2232 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
2234 ConstantInt::get(IdxTy, 0);
2236 // We need an instruction to anchor the overflow check on. StartIdx needs to
2237 // be defined before the overflow check branch. Because the scalar preheader
2238 // is going to merge the start index and so the overflow branch block needs to
2239 // contain a definition of the start index.
2240 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
2241 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
2242 BypassBlock->getTerminator());
2244 // Count holds the overall loop count (N).
2245 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2246 BypassBlock->getTerminator());
2248 LoopBypassBlocks.push_back(BypassBlock);
2250 // Split the single block loop into the two loop structure described above.
2251 BasicBlock *VectorPH =
2252 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
2253 BasicBlock *VecBody =
2254 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2255 BasicBlock *MiddleBlock =
2256 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2257 BasicBlock *ScalarPH =
2258 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2260 // Create and register the new vector loop.
2261 Loop* Lp = new Loop();
2262 Loop *ParentLoop = OrigLoop->getParentLoop();
2264 // Insert the new loop into the loop nest and register the new basic blocks
2265 // before calling any utilities such as SCEV that require valid LoopInfo.
2267 ParentLoop->addChildLoop(Lp);
2268 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
2269 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
2270 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
2272 LI->addTopLevelLoop(Lp);
2274 Lp->addBasicBlockToLoop(VecBody, LI->getBase());
2276 // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
2278 Builder.SetInsertPoint(VecBody->getFirstNonPHI());
2280 // Generate the induction variable.
2281 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2282 Induction = Builder.CreatePHI(IdxTy, 2, "index");
2283 // The loop step is equal to the vectorization factor (num of SIMD elements)
2284 // times the unroll factor (num of SIMD instructions).
2285 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2287 // This is the IR builder that we use to add all of the logic for bypassing
2288 // the new vector loop.
2289 IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
2290 setDebugLocFromInst(BypassBuilder,
2291 getDebugLocFromInstOrOperands(OldInduction));
2293 // We may need to extend the index in case there is a type mismatch.
2294 // We know that the count starts at zero and does not overflow.
2295 if (Count->getType() != IdxTy) {
2296 // The exit count can be of pointer type. Convert it to the correct
2298 if (ExitCount->getType()->isPointerTy())
2299 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
2301 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
2304 // Add the start index to the loop count to get the new end index.
2305 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
2307 // Now we need to generate the expression for N - (N % VF), which is
2308 // the part that the vectorized body will execute.
2309 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
2310 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
2311 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
2312 "end.idx.rnd.down");
2314 // Now, compare the new count to zero. If it is zero skip the vector loop and
2315 // jump to the scalar loop.
2317 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
2319 BasicBlock *LastBypassBlock = BypassBlock;
2321 // Generate code to check that the loops trip count that we computed by adding
2322 // one to the backedge-taken count will not overflow.
2324 auto PastOverflowCheck =
2325 std::next(BasicBlock::iterator(OverflowCheckAnchor));
2326 BasicBlock *CheckBlock =
2327 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
2329 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2330 LoopBypassBlocks.push_back(CheckBlock);
2331 Instruction *OldTerm = LastBypassBlock->getTerminator();
2332 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
2333 OldTerm->eraseFromParent();
2334 LastBypassBlock = CheckBlock;
2337 // Generate the code to check that the strides we assumed to be one are really
2338 // one. We want the new basic block to start at the first instruction in a
2339 // sequence of instructions that form a check.
2340 Instruction *StrideCheck;
2341 Instruction *FirstCheckInst;
2342 std::tie(FirstCheckInst, StrideCheck) =
2343 addStrideCheck(LastBypassBlock->getTerminator());
2345 // Create a new block containing the stride check.
2346 BasicBlock *CheckBlock =
2347 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
2349 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2350 LoopBypassBlocks.push_back(CheckBlock);
2352 // Replace the branch into the memory check block with a conditional branch
2353 // for the "few elements case".
2354 Instruction *OldTerm = LastBypassBlock->getTerminator();
2355 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2356 OldTerm->eraseFromParent();
2359 LastBypassBlock = CheckBlock;
2362 // Generate the code that checks in runtime if arrays overlap. We put the
2363 // checks into a separate block to make the more common case of few elements
2365 Instruction *MemRuntimeCheck;
2366 std::tie(FirstCheckInst, MemRuntimeCheck) =
2367 addRuntimeCheck(LastBypassBlock->getTerminator());
2368 if (MemRuntimeCheck) {
2369 // Create a new block containing the memory check.
2370 BasicBlock *CheckBlock =
2371 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
2373 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2374 LoopBypassBlocks.push_back(CheckBlock);
2376 // Replace the branch into the memory check block with a conditional branch
2377 // for the "few elements case".
2378 Instruction *OldTerm = LastBypassBlock->getTerminator();
2379 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2380 OldTerm->eraseFromParent();
2382 Cmp = MemRuntimeCheck;
2383 LastBypassBlock = CheckBlock;
2386 LastBypassBlock->getTerminator()->eraseFromParent();
2387 BranchInst::Create(MiddleBlock, VectorPH, Cmp,
2390 // We are going to resume the execution of the scalar loop.
2391 // Go over all of the induction variables that we found and fix the
2392 // PHIs that are left in the scalar version of the loop.
2393 // The starting values of PHI nodes depend on the counter of the last
2394 // iteration in the vectorized loop.
2395 // If we come from a bypass edge then we need to start from the original
2398 // This variable saves the new starting index for the scalar loop.
2399 PHINode *ResumeIndex = nullptr;
2400 LoopVectorizationLegality::InductionList::iterator I, E;
2401 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2402 // Set builder to point to last bypass block.
2403 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
2404 for (I = List->begin(), E = List->end(); I != E; ++I) {
2405 PHINode *OrigPhi = I->first;
2406 LoopVectorizationLegality::InductionInfo II = I->second;
2408 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
2409 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
2410 MiddleBlock->getTerminator());
2411 // We might have extended the type of the induction variable but we need a
2412 // truncated version for the scalar loop.
2413 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
2414 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
2415 MiddleBlock->getTerminator()) : nullptr;
2417 // Create phi nodes to merge from the backedge-taken check block.
2418 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
2419 ScalarPH->getTerminator());
2420 BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
2422 PHINode *BCTruncResumeVal = nullptr;
2423 if (OrigPhi == OldInduction) {
2425 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
2426 ScalarPH->getTerminator());
2427 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
2430 Value *EndValue = nullptr;
2432 case LoopVectorizationLegality::IK_NoInduction:
2433 llvm_unreachable("Unknown induction");
2434 case LoopVectorizationLegality::IK_IntInduction: {
2435 // Handle the integer induction counter.
2436 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
2438 // We have the canonical induction variable.
2439 if (OrigPhi == OldInduction) {
2440 // Create a truncated version of the resume value for the scalar loop,
2441 // we might have promoted the type to a larger width.
2443 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
2444 // The new PHI merges the original incoming value, in case of a bypass,
2445 // or the value at the end of the vectorized loop.
2446 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2447 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2448 TruncResumeVal->addIncoming(EndValue, VecBody);
2450 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2452 // We know what the end value is.
2453 EndValue = IdxEndRoundDown;
2454 // We also know which PHI node holds it.
2455 ResumeIndex = ResumeVal;
2459 // Not the canonical induction variable - add the vector loop count to the
2461 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2462 II.StartValue->getType(),
2464 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
2467 case LoopVectorizationLegality::IK_ReverseIntInduction: {
2468 // Convert the CountRoundDown variable to the PHI size.
2469 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2470 II.StartValue->getType(),
2472 // Handle reverse integer induction counter.
2473 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
2476 case LoopVectorizationLegality::IK_PtrInduction: {
2477 // For pointer induction variables, calculate the offset using
2479 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
2483 case LoopVectorizationLegality::IK_ReversePtrInduction: {
2484 // The value at the end of the loop for the reverse pointer is calculated
2485 // by creating a GEP with a negative index starting from the start value.
2486 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
2487 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
2489 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
2495 // The new PHI merges the original incoming value, in case of a bypass,
2496 // or the value at the end of the vectorized loop.
2497 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
2498 if (OrigPhi == OldInduction)
2499 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
2501 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2503 ResumeVal->addIncoming(EndValue, VecBody);
2505 // Fix the scalar body counter (PHI node).
2506 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2508 // The old induction's phi node in the scalar body needs the truncated
2510 if (OrigPhi == OldInduction) {
2511 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
2512 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
2514 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2515 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2519 // If we are generating a new induction variable then we also need to
2520 // generate the code that calculates the exit value. This value is not
2521 // simply the end of the counter because we may skip the vectorized body
2522 // in case of a runtime check.
2524 assert(!ResumeIndex && "Unexpected resume value found");
2525 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
2526 MiddleBlock->getTerminator());
2527 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2528 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
2529 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
2532 // Make sure that we found the index where scalar loop needs to continue.
2533 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
2534 "Invalid resume Index");
2536 // Add a check in the middle block to see if we have completed
2537 // all of the iterations in the first vector loop.
2538 // If (N - N%VF) == N, then we *don't* need to run the remainder.
2539 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
2540 ResumeIndex, "cmp.n",
2541 MiddleBlock->getTerminator());
2543 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
2544 // Remove the old terminator.
2545 MiddleBlock->getTerminator()->eraseFromParent();
2547 // Create i+1 and fill the PHINode.
2548 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
2549 Induction->addIncoming(StartIdx, VectorPH);
2550 Induction->addIncoming(NextIdx, VecBody);
2551 // Create the compare.
2552 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
2553 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
2555 // Now we have two terminators. Remove the old one from the block.
2556 VecBody->getTerminator()->eraseFromParent();
2558 // Get ready to start creating new instructions into the vectorized body.
2559 Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
2562 LoopVectorPreHeader = VectorPH;
2563 LoopScalarPreHeader = ScalarPH;
2564 LoopMiddleBlock = MiddleBlock;
2565 LoopExitBlock = ExitBlock;
2566 LoopVectorBody.push_back(VecBody);
2567 LoopScalarBody = OldBasicBlock;
2569 LoopVectorizeHints Hints(Lp, true);
2570 Hints.setAlreadyVectorized();
2573 /// This function returns the identity element (or neutral element) for
2574 /// the operation K.
2576 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
2581 // Adding, Xoring, Oring zero to a number does not change it.
2582 return ConstantInt::get(Tp, 0);
2583 case RK_IntegerMult:
2584 // Multiplying a number by 1 does not change it.
2585 return ConstantInt::get(Tp, 1);
2587 // AND-ing a number with an all-1 value does not change it.
2588 return ConstantInt::get(Tp, -1, true);
2590 // Multiplying a number by 1 does not change it.
2591 return ConstantFP::get(Tp, 1.0L);
2593 // Adding zero to a number does not change it.
2594 return ConstantFP::get(Tp, 0.0L);
2596 llvm_unreachable("Unknown reduction kind");
2600 /// This function translates the reduction kind to an LLVM binary operator.
2602 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
2604 case LoopVectorizationLegality::RK_IntegerAdd:
2605 return Instruction::Add;
2606 case LoopVectorizationLegality::RK_IntegerMult:
2607 return Instruction::Mul;
2608 case LoopVectorizationLegality::RK_IntegerOr:
2609 return Instruction::Or;
2610 case LoopVectorizationLegality::RK_IntegerAnd:
2611 return Instruction::And;
2612 case LoopVectorizationLegality::RK_IntegerXor:
2613 return Instruction::Xor;
2614 case LoopVectorizationLegality::RK_FloatMult:
2615 return Instruction::FMul;
2616 case LoopVectorizationLegality::RK_FloatAdd:
2617 return Instruction::FAdd;
2618 case LoopVectorizationLegality::RK_IntegerMinMax:
2619 return Instruction::ICmp;
2620 case LoopVectorizationLegality::RK_FloatMinMax:
2621 return Instruction::FCmp;
2623 llvm_unreachable("Unknown reduction operation");
2627 Value *createMinMaxOp(IRBuilder<> &Builder,
2628 LoopVectorizationLegality::MinMaxReductionKind RK,
2631 CmpInst::Predicate P = CmpInst::ICMP_NE;
2634 llvm_unreachable("Unknown min/max reduction kind");
2635 case LoopVectorizationLegality::MRK_UIntMin:
2636 P = CmpInst::ICMP_ULT;
2638 case LoopVectorizationLegality::MRK_UIntMax:
2639 P = CmpInst::ICMP_UGT;
2641 case LoopVectorizationLegality::MRK_SIntMin:
2642 P = CmpInst::ICMP_SLT;
2644 case LoopVectorizationLegality::MRK_SIntMax:
2645 P = CmpInst::ICMP_SGT;
2647 case LoopVectorizationLegality::MRK_FloatMin:
2648 P = CmpInst::FCMP_OLT;
2650 case LoopVectorizationLegality::MRK_FloatMax:
2651 P = CmpInst::FCMP_OGT;
2656 if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2657 RK == LoopVectorizationLegality::MRK_FloatMax)
2658 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2660 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2662 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2667 struct CSEDenseMapInfo {
2668 static bool canHandle(Instruction *I) {
2669 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2670 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2672 static inline Instruction *getEmptyKey() {
2673 return DenseMapInfo<Instruction *>::getEmptyKey();
2675 static inline Instruction *getTombstoneKey() {
2676 return DenseMapInfo<Instruction *>::getTombstoneKey();
2678 static unsigned getHashValue(Instruction *I) {
2679 assert(canHandle(I) && "Unknown instruction!");
2680 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2681 I->value_op_end()));
2683 static bool isEqual(Instruction *LHS, Instruction *RHS) {
2684 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2685 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2687 return LHS->isIdenticalTo(RHS);
2692 /// \brief Check whether this block is a predicated block.
2693 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
2694 /// = ...; " blocks. We start with one vectorized basic block. For every
2695 /// conditional block we split this vectorized block. Therefore, every second
2696 /// block will be a predicated one.
2697 static bool isPredicatedBlock(unsigned BlockNum) {
2698 return BlockNum % 2;
2701 ///\brief Perform cse of induction variable instructions.
2702 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
2703 // Perform simple cse.
2704 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2705 for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
2706 BasicBlock *BB = BBs[i];
2707 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2708 Instruction *In = I++;
2710 if (!CSEDenseMapInfo::canHandle(In))
2713 // Check if we can replace this instruction with any of the
2714 // visited instructions.
2715 if (Instruction *V = CSEMap.lookup(In)) {
2716 In->replaceAllUsesWith(V);
2717 In->eraseFromParent();
2720 // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
2721 // ...;" blocks for predicated stores. Every second block is a predicated
2723 if (isPredicatedBlock(i))
2731 /// \brief Adds a 'fast' flag to floating point operations.
2732 static Value *addFastMathFlag(Value *V) {
2733 if (isa<FPMathOperator>(V)){
2734 FastMathFlags Flags;
2735 Flags.setUnsafeAlgebra();
2736 cast<Instruction>(V)->setFastMathFlags(Flags);
2741 void InnerLoopVectorizer::vectorizeLoop() {
2742 //===------------------------------------------------===//
2744 // Notice: any optimization or new instruction that go
2745 // into the code below should be also be implemented in
2748 //===------------------------------------------------===//
2749 Constant *Zero = Builder.getInt32(0);
2751 // In order to support reduction variables we need to be able to vectorize
2752 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2753 // stages. First, we create a new vector PHI node with no incoming edges.
2754 // We use this value when we vectorize all of the instructions that use the
2755 // PHI. Next, after all of the instructions in the block are complete we
2756 // add the new incoming edges to the PHI. At this point all of the
2757 // instructions in the basic block are vectorized, so we can use them to
2758 // construct the PHI.
2759 PhiVector RdxPHIsToFix;
2761 // Scan the loop in a topological order to ensure that defs are vectorized
2763 LoopBlocksDFS DFS(OrigLoop);
2766 // Vectorize all of the blocks in the original loop.
2767 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2768 be = DFS.endRPO(); bb != be; ++bb)
2769 vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
2771 // At this point every instruction in the original loop is widened to
2772 // a vector form. We are almost done. Now, we need to fix the PHI nodes
2773 // that we vectorized. The PHI nodes are currently empty because we did
2774 // not want to introduce cycles. Notice that the remaining PHI nodes
2775 // that we need to fix are reduction variables.
2777 // Create the 'reduced' values for each of the induction vars.
2778 // The reduced values are the vector values that we scalarize and combine
2779 // after the loop is finished.
2780 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2782 PHINode *RdxPhi = *it;
2783 assert(RdxPhi && "Unable to recover vectorized PHI");
2785 // Find the reduction variable descriptor.
2786 assert(Legal->getReductionVars()->count(RdxPhi) &&
2787 "Unable to find the reduction variable");
2788 LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2789 (*Legal->getReductionVars())[RdxPhi];
2791 setDebugLocFromInst(Builder, RdxDesc.StartValue);
2793 // We need to generate a reduction vector from the incoming scalar.
2794 // To do so, we need to generate the 'identity' vector and override
2795 // one of the elements with the incoming scalar reduction. We need
2796 // to do it in the vector-loop preheader.
2797 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
2799 // This is the vector-clone of the value that leaves the loop.
2800 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2801 Type *VecTy = VectorExit[0]->getType();
2803 // Find the reduction identity variable. Zero for addition, or, xor,
2804 // one for multiplication, -1 for And.
2807 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2808 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2809 // MinMax reduction have the start value as their identify.
2811 VectorStart = Identity = RdxDesc.StartValue;
2813 VectorStart = Identity = Builder.CreateVectorSplat(VF,
2818 // Handle other reduction kinds:
2820 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2821 VecTy->getScalarType());
2824 // This vector is the Identity vector where the first element is the
2825 // incoming scalar reduction.
2826 VectorStart = RdxDesc.StartValue;
2828 Identity = ConstantVector::getSplat(VF, Iden);
2830 // This vector is the Identity vector where the first element is the
2831 // incoming scalar reduction.
2832 VectorStart = Builder.CreateInsertElement(Identity,
2833 RdxDesc.StartValue, Zero);
2837 // Fix the vector-loop phi.
2838 // We created the induction variable so we know that the
2839 // preheader is the first entry.
2840 BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2842 // Reductions do not have to start at zero. They can start with
2843 // any loop invariant values.
2844 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2845 BasicBlock *Latch = OrigLoop->getLoopLatch();
2846 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2847 VectorParts &Val = getVectorValue(LoopVal);
2848 for (unsigned part = 0; part < UF; ++part) {
2849 // Make sure to add the reduction stat value only to the
2850 // first unroll part.
2851 Value *StartVal = (part == 0) ? VectorStart : Identity;
2852 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2853 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
2854 LoopVectorBody.back());
2857 // Before each round, move the insertion point right between
2858 // the PHIs and the values we are going to write.
2859 // This allows us to write both PHINodes and the extractelement
2861 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2863 VectorParts RdxParts;
2864 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2865 for (unsigned part = 0; part < UF; ++part) {
2866 // This PHINode contains the vectorized reduction variable, or
2867 // the initial value vector, if we bypass the vector loop.
2868 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2869 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2870 Value *StartVal = (part == 0) ? VectorStart : Identity;
2871 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2872 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2873 NewPhi->addIncoming(RdxExitVal[part],
2874 LoopVectorBody.back());
2875 RdxParts.push_back(NewPhi);
2878 // Reduce all of the unrolled parts into a single vector.
2879 Value *ReducedPartRdx = RdxParts[0];
2880 unsigned Op = getReductionBinOp(RdxDesc.Kind);
2881 setDebugLocFromInst(Builder, ReducedPartRdx);
2882 for (unsigned part = 1; part < UF; ++part) {
2883 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2884 // Floating point operations had to be 'fast' to enable the reduction.
2885 ReducedPartRdx = addFastMathFlag(
2886 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
2887 ReducedPartRdx, "bin.rdx"));
2889 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2890 ReducedPartRdx, RdxParts[part]);
2894 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2895 // and vector ops, reducing the set of values being computed by half each
2897 assert(isPowerOf2_32(VF) &&
2898 "Reduction emission only supported for pow2 vectors!");
2899 Value *TmpVec = ReducedPartRdx;
2900 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
2901 for (unsigned i = VF; i != 1; i >>= 1) {
2902 // Move the upper half of the vector to the lower half.
2903 for (unsigned j = 0; j != i/2; ++j)
2904 ShuffleMask[j] = Builder.getInt32(i/2 + j);
2906 // Fill the rest of the mask with undef.
2907 std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2908 UndefValue::get(Builder.getInt32Ty()));
2911 Builder.CreateShuffleVector(TmpVec,
2912 UndefValue::get(TmpVec->getType()),
2913 ConstantVector::get(ShuffleMask),
2916 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2917 // Floating point operations had to be 'fast' to enable the reduction.
2918 TmpVec = addFastMathFlag(Builder.CreateBinOp(
2919 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
2921 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2924 // The result is in the first element of the vector.
2925 ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2926 Builder.getInt32(0));
2929 // Create a phi node that merges control-flow from the backedge-taken check
2930 // block and the middle block.
2931 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
2932 LoopScalarPreHeader->getTerminator());
2933 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
2934 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2936 // Now, we need to fix the users of the reduction variable
2937 // inside and outside of the scalar remainder loop.
2938 // We know that the loop is in LCSSA form. We need to update the
2939 // PHI nodes in the exit blocks.
2940 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2941 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2942 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2943 if (!LCSSAPhi) break;
2945 // All PHINodes need to have a single entry edge, or two if
2946 // we already fixed them.
2947 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2949 // We found our reduction value exit-PHI. Update it with the
2950 // incoming bypass edge.
2951 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2952 // Add an edge coming from the bypass.
2953 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2956 }// end of the LCSSA phi scan.
2958 // Fix the scalar loop reduction variable with the incoming reduction sum
2959 // from the vector body and from the backedge value.
2960 int IncomingEdgeBlockIdx =
2961 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2962 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2963 // Pick the other block.
2964 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2965 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
2966 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2967 }// end of for each redux variable.
2971 // Remove redundant induction instructions.
2972 cse(LoopVectorBody);
2975 void InnerLoopVectorizer::fixLCSSAPHIs() {
2976 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2977 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2978 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2979 if (!LCSSAPhi) break;
2980 if (LCSSAPhi->getNumIncomingValues() == 1)
2981 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2986 InnerLoopVectorizer::VectorParts
2987 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2988 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2991 // Look for cached value.
2992 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2993 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2994 if (ECEntryIt != MaskCache.end())
2995 return ECEntryIt->second;
2997 VectorParts SrcMask = createBlockInMask(Src);
2999 // The terminator has to be a branch inst!
3000 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3001 assert(BI && "Unexpected terminator found");
3003 if (BI->isConditional()) {
3004 VectorParts EdgeMask = getVectorValue(BI->getCondition());
3006 if (BI->getSuccessor(0) != Dst)
3007 for (unsigned part = 0; part < UF; ++part)
3008 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3010 for (unsigned part = 0; part < UF; ++part)
3011 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3013 MaskCache[Edge] = EdgeMask;
3017 MaskCache[Edge] = SrcMask;
3021 InnerLoopVectorizer::VectorParts
3022 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3023 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3025 // Loop incoming mask is all-one.
3026 if (OrigLoop->getHeader() == BB) {
3027 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3028 return getVectorValue(C);
3031 // This is the block mask. We OR all incoming edges, and with zero.
3032 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3033 VectorParts BlockMask = getVectorValue(Zero);
3036 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3037 VectorParts EM = createEdgeMask(*it, BB);
3038 for (unsigned part = 0; part < UF; ++part)
3039 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3045 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
3046 InnerLoopVectorizer::VectorParts &Entry,
3047 unsigned UF, unsigned VF, PhiVector *PV) {
3048 PHINode* P = cast<PHINode>(PN);
3049 // Handle reduction variables:
3050 if (Legal->getReductionVars()->count(P)) {
3051 for (unsigned part = 0; part < UF; ++part) {
3052 // This is phase one of vectorizing PHIs.
3053 Type *VecTy = (VF == 1) ? PN->getType() :
3054 VectorType::get(PN->getType(), VF);
3055 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
3056 LoopVectorBody.back()-> getFirstInsertionPt());
3062 setDebugLocFromInst(Builder, P);
3063 // Check for PHI nodes that are lowered to vector selects.
3064 if (P->getParent() != OrigLoop->getHeader()) {
3065 // We know that all PHIs in non-header blocks are converted into
3066 // selects, so we don't have to worry about the insertion order and we
3067 // can just use the builder.
3068 // At this point we generate the predication tree. There may be
3069 // duplications since this is a simple recursive scan, but future
3070 // optimizations will clean it up.
3072 unsigned NumIncoming = P->getNumIncomingValues();
3074 // Generate a sequence of selects of the form:
3075 // SELECT(Mask3, In3,
3076 // SELECT(Mask2, In2,
3078 for (unsigned In = 0; In < NumIncoming; In++) {
3079 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
3081 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3083 for (unsigned part = 0; part < UF; ++part) {
3084 // We might have single edge PHIs (blocks) - use an identity
3085 // 'select' for the first PHI operand.
3087 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3090 // Select between the current value and the previous incoming edge
3091 // based on the incoming mask.
3092 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3093 Entry[part], "predphi");
3099 // This PHINode must be an induction variable.
3100 // Make sure that we know about it.
3101 assert(Legal->getInductionVars()->count(P) &&
3102 "Not an induction variable");
3104 LoopVectorizationLegality::InductionInfo II =
3105 Legal->getInductionVars()->lookup(P);
3108 case LoopVectorizationLegality::IK_NoInduction:
3109 llvm_unreachable("Unknown induction");
3110 case LoopVectorizationLegality::IK_IntInduction: {
3111 assert(P->getType() == II.StartValue->getType() && "Types must match");
3112 Type *PhiTy = P->getType();
3114 if (P == OldInduction) {
3115 // Handle the canonical induction variable. We might have had to
3117 Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
3119 // Handle other induction variables that are now based on the
3121 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
3123 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
3124 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
3127 Broadcasted = getBroadcastInstrs(Broadcasted);
3128 // After broadcasting the induction variable we need to make the vector
3129 // consecutive by adding 0, 1, 2, etc.
3130 for (unsigned part = 0; part < UF; ++part)
3131 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
3134 case LoopVectorizationLegality::IK_ReverseIntInduction:
3135 case LoopVectorizationLegality::IK_PtrInduction:
3136 case LoopVectorizationLegality::IK_ReversePtrInduction:
3137 // Handle reverse integer and pointer inductions.
3138 Value *StartIdx = ExtendedIdx;
3139 // This is the normalized GEP that starts counting at zero.
3140 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
3143 // Handle the reverse integer induction variable case.
3144 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
3145 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
3146 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
3148 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
3151 // This is a new value so do not hoist it out.
3152 Value *Broadcasted = getBroadcastInstrs(ReverseInd);
3153 // After broadcasting the induction variable we need to make the
3154 // vector consecutive by adding ... -3, -2, -1, 0.
3155 for (unsigned part = 0; part < UF; ++part)
3156 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
3161 // Handle the pointer induction variable case.
3162 assert(P->getType()->isPointerTy() && "Unexpected type.");
3164 // Is this a reverse induction ptr or a consecutive induction ptr.
3165 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
3168 // This is the vector of results. Notice that we don't generate
3169 // vector geps because scalar geps result in better code.
3170 for (unsigned part = 0; part < UF; ++part) {
3172 int EltIndex = (part) * (Reverse ? -1 : 1);
3173 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3176 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3178 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3180 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3182 Entry[part] = SclrGep;
3186 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3187 for (unsigned int i = 0; i < VF; ++i) {
3188 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
3189 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3192 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3194 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3196 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3198 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3199 Builder.getInt32(i),
3202 Entry[part] = VecVal;
3208 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3209 // For each instruction in the old loop.
3210 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3211 VectorParts &Entry = WidenMap.get(it);
3212 switch (it->getOpcode()) {
3213 case Instruction::Br:
3214 // Nothing to do for PHIs and BR, since we already took care of the
3215 // loop control flow instructions.
3217 case Instruction::PHI:{
3218 // Vectorize PHINodes.
3219 widenPHIInstruction(it, Entry, UF, VF, PV);
3223 case Instruction::Add:
3224 case Instruction::FAdd:
3225 case Instruction::Sub:
3226 case Instruction::FSub:
3227 case Instruction::Mul:
3228 case Instruction::FMul:
3229 case Instruction::UDiv:
3230 case Instruction::SDiv:
3231 case Instruction::FDiv:
3232 case Instruction::URem:
3233 case Instruction::SRem:
3234 case Instruction::FRem:
3235 case Instruction::Shl:
3236 case Instruction::LShr:
3237 case Instruction::AShr:
3238 case Instruction::And:
3239 case Instruction::Or:
3240 case Instruction::Xor: {
3241 // Just widen binops.
3242 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3243 setDebugLocFromInst(Builder, BinOp);
3244 VectorParts &A = getVectorValue(it->getOperand(0));
3245 VectorParts &B = getVectorValue(it->getOperand(1));
3247 // Use this vector value for all users of the original instruction.
3248 for (unsigned Part = 0; Part < UF; ++Part) {
3249 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3251 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
3252 VecOp->copyIRFlags(BinOp);
3257 propagateMetadata(Entry, it);
3260 case Instruction::Select: {
3262 // If the selector is loop invariant we can create a select
3263 // instruction with a scalar condition. Otherwise, use vector-select.
3264 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
3266 setDebugLocFromInst(Builder, it);
3268 // The condition can be loop invariant but still defined inside the
3269 // loop. This means that we can't just use the original 'cond' value.
3270 // We have to take the 'vectorized' value and pick the first lane.
3271 // Instcombine will make this a no-op.
3272 VectorParts &Cond = getVectorValue(it->getOperand(0));
3273 VectorParts &Op0 = getVectorValue(it->getOperand(1));
3274 VectorParts &Op1 = getVectorValue(it->getOperand(2));
3276 Value *ScalarCond = (VF == 1) ? Cond[0] :
3277 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3279 for (unsigned Part = 0; Part < UF; ++Part) {
3280 Entry[Part] = Builder.CreateSelect(
3281 InvariantCond ? ScalarCond : Cond[Part],
3286 propagateMetadata(Entry, it);
3290 case Instruction::ICmp:
3291 case Instruction::FCmp: {
3292 // Widen compares. Generate vector compares.
3293 bool FCmp = (it->getOpcode() == Instruction::FCmp);
3294 CmpInst *Cmp = dyn_cast<CmpInst>(it);
3295 setDebugLocFromInst(Builder, it);
3296 VectorParts &A = getVectorValue(it->getOperand(0));
3297 VectorParts &B = getVectorValue(it->getOperand(1));
3298 for (unsigned Part = 0; Part < UF; ++Part) {
3301 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3303 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
3307 propagateMetadata(Entry, it);