Remove unused simplifyIVUsers
[oota-llvm.git] / lib / Transforms / Utils / SimplifyIndVar.cpp
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "indvars"
17
18 #include "llvm/Instructions.h"
19 #include "llvm/Analysis/Dominators.h"
20 #include "llvm/Analysis/IVUsers.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31
32 using namespace llvm;
33
34 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
35 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
36 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
37 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
38
39 namespace {
40   /// SimplifyIndvar - This is a utility for simplifying induction variables
41   /// based on ScalarEvolution. It is the primary instrument of the
42   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
43   /// other loop passes that preserve SCEV.
44   class SimplifyIndvar {
45     Loop             *L;
46     LoopInfo         *LI;
47     DominatorTree    *DT;
48     ScalarEvolution  *SE;
49     const TargetData *TD; // May be NULL
50
51     SmallVectorImpl<WeakVH> &DeadInsts;
52
53     bool Changed;
54
55   public:
56     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM,
57                    SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = NULL) :
58       L(Loop),
59       LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
60       SE(SE),
61       TD(LPM->getAnalysisIfAvailable<TargetData>()),
62       DeadInsts(Dead),
63       Changed(false) {
64       assert(LI && "IV simplification requires LoopInfo");
65     }
66
67     bool hasChanged() const { return Changed; }
68
69     /// Iteratively perform simplification on a worklist of users of the
70     /// specified induction variable. This is the top-level driver that applies
71     /// all simplicitions to users of an IV.
72     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = NULL);
73
74     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
75
76     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
77     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
78     void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
79                               bool IsSigned);
80   };
81 }
82
83 /// foldIVUser - Fold an IV operand into its use.  This removes increments of an
84 /// aligned IV when used by a instruction that ignores the low bits.
85 ///
86 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
87 ///
88 /// Return the operand of IVOperand for this induction variable if IVOperand can
89 /// be folded (in case more folding opportunities have been exposed).
90 /// Otherwise return null.
91 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
92   Value *IVSrc = 0;
93   unsigned OperIdx = 0;
94   const SCEV *FoldedExpr = 0;
95   switch (UseInst->getOpcode()) {
96   default:
97     return 0;
98   case Instruction::UDiv:
99   case Instruction::LShr:
100     // We're only interested in the case where we know something about
101     // the numerator and have a constant denominator.
102     if (IVOperand != UseInst->getOperand(OperIdx) ||
103         !isa<ConstantInt>(UseInst->getOperand(1)))
104       return 0;
105
106     // Attempt to fold a binary operator with constant operand.
107     // e.g. ((I + 1) >> 2) => I >> 2
108     if (!isa<BinaryOperator>(IVOperand)
109         || !isa<ConstantInt>(IVOperand->getOperand(1)))
110       return 0;
111
112     IVSrc = IVOperand->getOperand(0);
113     // IVSrc must be the (SCEVable) IV, since the other operand is const.
114     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
115
116     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
117     if (UseInst->getOpcode() == Instruction::LShr) {
118       // Get a constant for the divisor. See createSCEV.
119       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
120       if (D->getValue().uge(BitWidth))
121         return 0;
122
123       D = ConstantInt::get(UseInst->getContext(),
124                            APInt(BitWidth, 1).shl(D->getZExtValue()));
125     }
126     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
127   }
128   // We have something that might fold it's operand. Compare SCEVs.
129   if (!SE->isSCEVable(UseInst->getType()))
130     return 0;
131
132   // Bypass the operand if SCEV can prove it has no effect.
133   if (SE->getSCEV(UseInst) != FoldedExpr)
134     return 0;
135
136   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
137         << " -> " << *UseInst << '\n');
138
139   UseInst->setOperand(OperIdx, IVSrc);
140   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
141
142   ++NumElimOperand;
143   Changed = true;
144   if (IVOperand->use_empty())
145     DeadInsts.push_back(IVOperand);
146   return IVSrc;
147 }
148
149 /// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless
150 /// comparisons against an induction variable.
151 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
152   unsigned IVOperIdx = 0;
153   ICmpInst::Predicate Pred = ICmp->getPredicate();
154   if (IVOperand != ICmp->getOperand(0)) {
155     // Swapped
156     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
157     IVOperIdx = 1;
158     Pred = ICmpInst::getSwappedPredicate(Pred);
159   }
160
161   // Get the SCEVs for the ICmp operands.
162   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
163   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
164
165   // Simplify unnecessary loops away.
166   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
167   S = SE->getSCEVAtScope(S, ICmpLoop);
168   X = SE->getSCEVAtScope(X, ICmpLoop);
169
170   // If the condition is always true or always false, replace it with
171   // a constant value.
172   if (SE->isKnownPredicate(Pred, S, X))
173     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
174   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
175     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
176   else
177     return;
178
179   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
180   ++NumElimCmp;
181   Changed = true;
182   DeadInsts.push_back(ICmp);
183 }
184
185 /// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless
186 /// remainder operations operating on an induction variable.
187 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
188                                       Value *IVOperand,
189                                       bool IsSigned) {
190   // We're only interested in the case where we know something about
191   // the numerator.
192   if (IVOperand != Rem->getOperand(0))
193     return;
194
195   // Get the SCEVs for the ICmp operands.
196   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
197   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
198
199   // Simplify unnecessary loops away.
200   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
201   S = SE->getSCEVAtScope(S, ICmpLoop);
202   X = SE->getSCEVAtScope(X, ICmpLoop);
203
204   // i % n  -->  i  if i is in [0,n).
205   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
206       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
207                            S, X))
208     Rem->replaceAllUsesWith(Rem->getOperand(0));
209   else {
210     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
211     const SCEV *LessOne =
212       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
213     if (IsSigned && !SE->isKnownNonNegative(LessOne))
214       return;
215
216     if (!SE->isKnownPredicate(IsSigned ?
217                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
218                               LessOne, X))
219       return;
220
221     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
222                                   Rem->getOperand(0), Rem->getOperand(1));
223     SelectInst *Sel =
224       SelectInst::Create(ICmp,
225                          ConstantInt::get(Rem->getType(), 0),
226                          Rem->getOperand(0), "tmp", Rem);
227     Rem->replaceAllUsesWith(Sel);
228   }
229
230   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
231   ++NumElimRem;
232   Changed = true;
233   DeadInsts.push_back(Rem);
234 }
235
236 /// eliminateIVUser - Eliminate an operation that consumes a simple IV and has
237 /// no observable side-effect given the range of IV values.
238 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
239 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
240                                      Instruction *IVOperand) {
241   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
242     eliminateIVComparison(ICmp, IVOperand);
243     return true;
244   }
245   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
246     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
247     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
248       eliminateIVRemainder(Rem, IVOperand, IsSigned);
249       return true;
250     }
251   }
252
253   // Eliminate any operation that SCEV can prove is an identity function.
254   if (!SE->isSCEVable(UseInst->getType()) ||
255       (UseInst->getType() != IVOperand->getType()) ||
256       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
257     return false;
258
259   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
260
261   UseInst->replaceAllUsesWith(IVOperand);
262   ++NumElimIdentity;
263   Changed = true;
264   DeadInsts.push_back(UseInst);
265   return true;
266 }
267
268 /// pushIVUsers - Add all uses of Def to the current IV's worklist.
269 ///
270 static void pushIVUsers(
271   Instruction *Def,
272   SmallPtrSet<Instruction*,16> &Simplified,
273   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
274
275   for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
276        UI != E; ++UI) {
277     Instruction *User = cast<Instruction>(*UI);
278
279     // Avoid infinite or exponential worklist processing.
280     // Also ensure unique worklist users.
281     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
282     // self edges first.
283     if (User != Def && Simplified.insert(User))
284       SimpleIVUsers.push_back(std::make_pair(User, Def));
285   }
286 }
287
288 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV
289 /// expression in terms of that IV.
290 ///
291 /// This is similar to IVUsers' isInteresting() but processes each instruction
292 /// non-recursively when the operand is already known to be a simpleIVUser.
293 ///
294 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
295   if (!SE->isSCEVable(I->getType()))
296     return false;
297
298   // Get the symbolic expression for this instruction.
299   const SCEV *S = SE->getSCEV(I);
300
301   // Only consider affine recurrences.
302   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
303   if (AR && AR->getLoop() == L)
304     return true;
305
306   return false;
307 }
308
309 /// simplifyUsers - Iteratively perform simplification on a worklist of users
310 /// of the specified induction variable. Each successive simplification may push
311 /// more users which may themselves be candidates for simplification.
312 ///
313 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
314 /// instructions in-place during analysis. Rather than rewriting induction
315 /// variables bottom-up from their users, it transforms a chain of IVUsers
316 /// top-down, updating the IR only when it encouters a clear optimization
317 /// opportunitiy.
318 ///
319 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
320 ///
321 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
322   if (!SE->isSCEVable(CurrIV->getType()))
323     return;
324
325   // Instructions processed by SimplifyIndvar for CurrIV.
326   SmallPtrSet<Instruction*,16> Simplified;
327
328   // Use-def pairs if IV users waiting to be processed for CurrIV.
329   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
330
331   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
332   // called multiple times for the same LoopPhi. This is the proper thing to
333   // do for loop header phis that use each other.
334   pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
335
336   while (!SimpleIVUsers.empty()) {
337     std::pair<Instruction*, Instruction*> UseOper =
338       SimpleIVUsers.pop_back_val();
339     // Bypass back edges to avoid extra work.
340     if (UseOper.first == CurrIV) continue;
341
342     Instruction *IVOperand = UseOper.second;
343     for (unsigned N = 0; IVOperand; ++N) {
344       assert(N <= Simplified.size() && "runaway iteration");
345
346       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
347       if (!NewOper)
348         break; // done folding
349       IVOperand = dyn_cast<Instruction>(NewOper);
350     }
351     if (!IVOperand)
352       continue;
353
354     if (eliminateIVUser(UseOper.first, IVOperand)) {
355       pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
356       continue;
357     }
358     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
359     if (V && Cast) {
360       V->visitCast(Cast);
361       continue;
362     }
363     if (isSimpleIVUser(UseOper.first, L, SE)) {
364       pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
365     }
366   }
367 }
368
369 namespace llvm {
370
371 void IVVisitor::anchor() { }
372
373 /// simplifyUsersOfIV - Simplify instructions that use this induction variable
374 /// by using ScalarEvolution to analyze the IV's recurrence.
375 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
376                        SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
377 {
378   LoopInfo *LI = &LPM->getAnalysis<LoopInfo>();
379   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead);
380   SIV.simplifyUsers(CurrIV, V);
381   return SIV.hasChanged();
382 }
383
384 /// simplifyLoopIVs - Simplify users of induction variables within this
385 /// loop. This does not actually change or add IVs.
386 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
387                      SmallVectorImpl<WeakVH> &Dead) {
388   bool Changed = false;
389   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
390     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead);
391   }
392   return Changed;
393 }
394
395 } // namespace llvm