Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used.
[oota-llvm.git] / lib / Transforms / Utils / LoopSimplify.cpp
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header.  This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header).  This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/DependenceAnalysis.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/ScalarEvolution.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/LoopUtils.h"
67 using namespace llvm;
68
69 #define DEBUG_TYPE "loop-simplify"
70
71 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
72 STATISTIC(NumNested  , "Number of nested loops split out");
73
74 // If the block isn't already, move the new block to right after some 'outside
75 // block' block.  This prevents the preheader from being placed inside the loop
76 // body, e.g. when the loop hasn't been rotated.
77 static void placeSplitBlockCarefully(BasicBlock *NewBB,
78                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
79                                      Loop *L) {
80   // Check to see if NewBB is already well placed.
81   Function::iterator BBI = NewBB; --BBI;
82   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
83     if (&*BBI == SplitPreds[i])
84       return;
85   }
86
87   // If it isn't already after an outside block, move it after one.  This is
88   // always good as it makes the uncond branch from the outside block into a
89   // fall-through.
90
91   // Figure out *which* outside block to put this after.  Prefer an outside
92   // block that neighbors a BB actually in the loop.
93   BasicBlock *FoundBB = nullptr;
94   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
95     Function::iterator BBI = SplitPreds[i];
96     if (++BBI != NewBB->getParent()->end() &&
97         L->contains(BBI)) {
98       FoundBB = SplitPreds[i];
99       break;
100     }
101   }
102
103   // If our heuristic for a *good* bb to place this after doesn't find
104   // anything, just pick something.  It's likely better than leaving it within
105   // the loop.
106   if (!FoundBB)
107     FoundBB = SplitPreds[0];
108   NewBB->moveAfter(FoundBB);
109 }
110
111 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
112 /// preheader, this method is called to insert one.  This method has two phases:
113 /// preheader insertion and analysis updating.
114 ///
115 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
116   BasicBlock *Header = L->getHeader();
117
118   // Get analyses that we try to update.
119   auto *AA = PP->getAnalysisIfAvailable<AliasAnalysis>();
120   auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
121   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
122   auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>();
123   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
124   bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
125
126   // Compute the set of predecessors of the loop that are not in the loop.
127   SmallVector<BasicBlock*, 8> OutsideBlocks;
128   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
129        PI != PE; ++PI) {
130     BasicBlock *P = *PI;
131     if (!L->contains(P)) {         // Coming in from outside the loop?
132       // If the loop is branched to from an indirect branch, we won't
133       // be able to fully transform the loop, because it prohibits
134       // edge splitting.
135       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
136
137       // Keep track of it.
138       OutsideBlocks.push_back(P);
139     }
140   }
141
142   // Split out the loop pre-header.
143   BasicBlock *PreheaderBB;
144   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
145                                        AA, DT, LI, PreserveLCSSA);
146
147   PreheaderBB->getTerminator()->setDebugLoc(
148                                       Header->getFirstNonPHI()->getDebugLoc());
149   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
150                << PreheaderBB->getName() << "\n");
151
152   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
153   // code layout too horribly.
154   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
155
156   return PreheaderBB;
157 }
158
159 /// \brief Ensure that the loop preheader dominates all exit blocks.
160 ///
161 /// This method is used to split exit blocks that have predecessors outside of
162 /// the loop.
163 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
164                                         AliasAnalysis *AA, DominatorTree *DT,
165                                         LoopInfo *LI, Pass *PP) {
166   SmallVector<BasicBlock*, 8> LoopBlocks;
167   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
168     BasicBlock *P = *I;
169     if (L->contains(P)) {
170       // Don't do this if the loop is exited via an indirect branch.
171       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
172
173       LoopBlocks.push_back(P);
174     }
175   }
176
177   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
178   BasicBlock *NewExitBB = nullptr;
179
180   bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
181
182   NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", AA, DT,
183                                      LI, PreserveLCSSA);
184
185   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
186                << NewExitBB->getName() << "\n");
187   return NewExitBB;
188 }
189
190 /// Add the specified block, and all of its predecessors, to the specified set,
191 /// if it's not already in there.  Stop predecessor traversal when we reach
192 /// StopBlock.
193 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
194                                   std::set<BasicBlock*> &Blocks) {
195   SmallVector<BasicBlock *, 8> Worklist;
196   Worklist.push_back(InputBB);
197   do {
198     BasicBlock *BB = Worklist.pop_back_val();
199     if (Blocks.insert(BB).second && BB != StopBlock)
200       // If BB is not already processed and it is not a stop block then
201       // insert its predecessor in the work list
202       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
203         BasicBlock *WBB = *I;
204         Worklist.push_back(WBB);
205       }
206   } while (!Worklist.empty());
207 }
208
209 /// \brief The first part of loop-nestification is to find a PHI node that tells
210 /// us how to partition the loops.
211 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
212                                         DominatorTree *DT,
213                                         AssumptionCache *AC) {
214   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
215   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
216     PHINode *PN = cast<PHINode>(I);
217     ++I;
218     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
219       // This is a degenerate PHI already, don't modify it!
220       PN->replaceAllUsesWith(V);
221       if (AA) AA->deleteValue(PN);
222       PN->eraseFromParent();
223       continue;
224     }
225
226     // Scan this PHI node looking for a use of the PHI node by itself.
227     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
228       if (PN->getIncomingValue(i) == PN &&
229           L->contains(PN->getIncomingBlock(i)))
230         // We found something tasty to remove.
231         return PN;
232   }
233   return nullptr;
234 }
235
236 /// \brief If this loop has multiple backedges, try to pull one of them out into
237 /// a nested loop.
238 ///
239 /// This is important for code that looks like
240 /// this:
241 ///
242 ///  Loop:
243 ///     ...
244 ///     br cond, Loop, Next
245 ///     ...
246 ///     br cond2, Loop, Out
247 ///
248 /// To identify this common case, we look at the PHI nodes in the header of the
249 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
250 /// that change in the "outer" loop, but not in the "inner" loop.
251 ///
252 /// If we are able to separate out a loop, return the new outer loop that was
253 /// created.
254 ///
255 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
256                                 AliasAnalysis *AA, DominatorTree *DT,
257                                 LoopInfo *LI, ScalarEvolution *SE, Pass *PP,
258                                 AssumptionCache *AC) {
259   // Don't try to separate loops without a preheader.
260   if (!Preheader)
261     return nullptr;
262
263   // The header is not a landing pad; preheader insertion should ensure this.
264   assert(!L->getHeader()->isLandingPad() &&
265          "Can't insert backedge to landing pad");
266
267   PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AC);
268   if (!PN) return nullptr;  // No known way to partition.
269
270   // Pull out all predecessors that have varying values in the loop.  This
271   // handles the case when a PHI node has multiple instances of itself as
272   // arguments.
273   SmallVector<BasicBlock*, 8> OuterLoopPreds;
274   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
275     if (PN->getIncomingValue(i) != PN ||
276         !L->contains(PN->getIncomingBlock(i))) {
277       // We can't split indirectbr edges.
278       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
279         return nullptr;
280       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
281     }
282   }
283   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
284
285   // If ScalarEvolution is around and knows anything about values in
286   // this loop, tell it to forget them, because we're about to
287   // substantially change it.
288   if (SE)
289     SE->forgetLoop(L);
290
291   bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
292
293   BasicBlock *Header = L->getHeader();
294   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
295                                              AA, DT, LI, PreserveLCSSA);
296
297   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
298   // code layout too horribly.
299   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
300
301   // Create the new outer loop.
302   Loop *NewOuter = new Loop();
303
304   // Change the parent loop to use the outer loop as its child now.
305   if (Loop *Parent = L->getParentLoop())
306     Parent->replaceChildLoopWith(L, NewOuter);
307   else
308     LI->changeTopLevelLoop(L, NewOuter);
309
310   // L is now a subloop of our outer loop.
311   NewOuter->addChildLoop(L);
312
313   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
314        I != E; ++I)
315     NewOuter->addBlockEntry(*I);
316
317   // Now reset the header in L, which had been moved by
318   // SplitBlockPredecessors for the outer loop.
319   L->moveToHeader(Header);
320
321   // Determine which blocks should stay in L and which should be moved out to
322   // the Outer loop now.
323   std::set<BasicBlock*> BlocksInL;
324   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
325     BasicBlock *P = *PI;
326     if (DT->dominates(Header, P))
327       addBlockAndPredsToSet(P, Header, BlocksInL);
328   }
329
330   // Scan all of the loop children of L, moving them to OuterLoop if they are
331   // not part of the inner loop.
332   const std::vector<Loop*> &SubLoops = L->getSubLoops();
333   for (size_t I = 0; I != SubLoops.size(); )
334     if (BlocksInL.count(SubLoops[I]->getHeader()))
335       ++I;   // Loop remains in L
336     else
337       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
338
339   // Now that we know which blocks are in L and which need to be moved to
340   // OuterLoop, move any blocks that need it.
341   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
342     BasicBlock *BB = L->getBlocks()[i];
343     if (!BlocksInL.count(BB)) {
344       // Move this block to the parent, updating the exit blocks sets
345       L->removeBlockFromLoop(BB);
346       if ((*LI)[BB] == L)
347         LI->changeLoopFor(BB, NewOuter);
348       --i;
349     }
350   }
351
352   return NewOuter;
353 }
354
355 /// \brief This method is called when the specified loop has more than one
356 /// backedge in it.
357 ///
358 /// If this occurs, revector all of these backedges to target a new basic block
359 /// and have that block branch to the loop header.  This ensures that loops
360 /// have exactly one backedge.
361 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
362                                              AliasAnalysis *AA,
363                                              DominatorTree *DT, LoopInfo *LI) {
364   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
365
366   // Get information about the loop
367   BasicBlock *Header = L->getHeader();
368   Function *F = Header->getParent();
369
370   // Unique backedge insertion currently depends on having a preheader.
371   if (!Preheader)
372     return nullptr;
373
374   // The header is not a landing pad; preheader insertion should ensure this.
375   assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
376
377   // Figure out which basic blocks contain back-edges to the loop header.
378   std::vector<BasicBlock*> BackedgeBlocks;
379   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
380     BasicBlock *P = *I;
381
382     // Indirectbr edges cannot be split, so we must fail if we find one.
383     if (isa<IndirectBrInst>(P->getTerminator()))
384       return nullptr;
385
386     if (P != Preheader) BackedgeBlocks.push_back(P);
387   }
388
389   // Create and insert the new backedge block...
390   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
391                                            Header->getName()+".backedge", F);
392   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
393
394   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
395                << BEBlock->getName() << "\n");
396
397   // Move the new backedge block to right after the last backedge block.
398   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
399   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
400
401   // Now that the block has been inserted into the function, create PHI nodes in
402   // the backedge block which correspond to any PHI nodes in the header block.
403   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
404     PHINode *PN = cast<PHINode>(I);
405     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
406                                      PN->getName()+".be", BETerminator);
407     if (AA) AA->copyValue(PN, NewPN);
408
409     // Loop over the PHI node, moving all entries except the one for the
410     // preheader over to the new PHI node.
411     unsigned PreheaderIdx = ~0U;
412     bool HasUniqueIncomingValue = true;
413     Value *UniqueValue = nullptr;
414     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
415       BasicBlock *IBB = PN->getIncomingBlock(i);
416       Value *IV = PN->getIncomingValue(i);
417       if (IBB == Preheader) {
418         PreheaderIdx = i;
419       } else {
420         NewPN->addIncoming(IV, IBB);
421         if (HasUniqueIncomingValue) {
422           if (!UniqueValue)
423             UniqueValue = IV;
424           else if (UniqueValue != IV)
425             HasUniqueIncomingValue = false;
426         }
427       }
428     }
429
430     // Delete all of the incoming values from the old PN except the preheader's
431     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
432     if (PreheaderIdx != 0) {
433       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
434       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
435     }
436     // Nuke all entries except the zero'th.
437     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
438       PN->removeIncomingValue(e-i, false);
439
440     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
441     PN->addIncoming(NewPN, BEBlock);
442
443     // As an optimization, if all incoming values in the new PhiNode (which is a
444     // subset of the incoming values of the old PHI node) have the same value,
445     // eliminate the PHI Node.
446     if (HasUniqueIncomingValue) {
447       NewPN->replaceAllUsesWith(UniqueValue);
448       if (AA) AA->deleteValue(NewPN);
449       BEBlock->getInstList().erase(NewPN);
450     }
451   }
452
453   // Now that all of the PHI nodes have been inserted and adjusted, modify the
454   // backedge blocks to just to the BEBlock instead of the header.
455   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
456     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
457     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
458       if (TI->getSuccessor(Op) == Header)
459         TI->setSuccessor(Op, BEBlock);
460   }
461
462   //===--- Update all analyses which we must preserve now -----------------===//
463
464   // Update Loop Information - we know that this block is now in the current
465   // loop and all parent loops.
466   L->addBasicBlockToLoop(BEBlock, *LI);
467
468   // Update dominator information
469   DT->splitBlock(BEBlock);
470
471   return BEBlock;
472 }
473
474 /// \brief Simplify one loop and queue further loops for simplification.
475 ///
476 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw
477 /// Pass pointer. The Pass pointer is used by numerous utilities to update
478 /// specific analyses. Rather than a pass it would be much cleaner and more
479 /// explicit if they accepted the analysis directly and then updated it.
480 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
481                             AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
482                             ScalarEvolution *SE, Pass *PP,
483                             AssumptionCache *AC) {
484   bool Changed = false;
485 ReprocessLoop:
486
487   // Check to see that no blocks (other than the header) in this loop have
488   // predecessors that are not in the loop.  This is not valid for natural
489   // loops, but can occur if the blocks are unreachable.  Since they are
490   // unreachable we can just shamelessly delete those CFG edges!
491   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
492        BB != E; ++BB) {
493     if (*BB == L->getHeader()) continue;
494
495     SmallPtrSet<BasicBlock*, 4> BadPreds;
496     for (pred_iterator PI = pred_begin(*BB),
497          PE = pred_end(*BB); PI != PE; ++PI) {
498       BasicBlock *P = *PI;
499       if (!L->contains(P))
500         BadPreds.insert(P);
501     }
502
503     // Delete each unique out-of-loop (and thus dead) predecessor.
504     for (BasicBlock *P : BadPreds) {
505
506       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
507                    << P->getName() << "\n");
508
509       // Inform each successor of each dead pred.
510       for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
511         (*SI)->removePredecessor(P);
512       // Zap the dead pred's terminator and replace it with unreachable.
513       TerminatorInst *TI = P->getTerminator();
514        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
515       P->getTerminator()->eraseFromParent();
516       new UnreachableInst(P->getContext(), P);
517       Changed = true;
518     }
519   }
520
521   // If there are exiting blocks with branches on undef, resolve the undef in
522   // the direction which will exit the loop. This will help simplify loop
523   // trip count computations.
524   SmallVector<BasicBlock*, 8> ExitingBlocks;
525   L->getExitingBlocks(ExitingBlocks);
526   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
527        E = ExitingBlocks.end(); I != E; ++I)
528     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
529       if (BI->isConditional()) {
530         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
531
532           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
533                        << (*I)->getName() << "\n");
534
535           BI->setCondition(ConstantInt::get(Cond->getType(),
536                                             !L->contains(BI->getSuccessor(0))));
537
538           // This may make the loop analyzable, force SCEV recomputation.
539           if (SE)
540             SE->forgetLoop(L);
541
542           Changed = true;
543         }
544       }
545
546   // Does the loop already have a preheader?  If so, don't insert one.
547   BasicBlock *Preheader = L->getLoopPreheader();
548   if (!Preheader) {
549     Preheader = InsertPreheaderForLoop(L, PP);
550     if (Preheader) {
551       ++NumInserted;
552       Changed = true;
553     }
554   }
555
556   // Next, check to make sure that all exit nodes of the loop only have
557   // predecessors that are inside of the loop.  This check guarantees that the
558   // loop preheader/header will dominate the exit blocks.  If the exit block has
559   // predecessors from outside of the loop, split the edge now.
560   SmallVector<BasicBlock*, 8> ExitBlocks;
561   L->getExitBlocks(ExitBlocks);
562
563   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
564                                                ExitBlocks.end());
565   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
566          E = ExitBlockSet.end(); I != E; ++I) {
567     BasicBlock *ExitBlock = *I;
568     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
569          PI != PE; ++PI)
570       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
571       // allowed.
572       if (!L->contains(*PI)) {
573         if (rewriteLoopExitBlock(L, ExitBlock, AA, DT, LI, PP)) {
574           ++NumInserted;
575           Changed = true;
576         }
577         break;
578       }
579   }
580
581   // If the header has more than two predecessors at this point (from the
582   // preheader and from multiple backedges), we must adjust the loop.
583   BasicBlock *LoopLatch = L->getLoopLatch();
584   if (!LoopLatch) {
585     // If this is really a nested loop, rip it out into a child loop.  Don't do
586     // this for loops with a giant number of backedges, just factor them into a
587     // common backedge instead.
588     if (L->getNumBackEdges() < 8) {
589       if (Loop *OuterL =
590               separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP, AC)) {
591         ++NumNested;
592         // Enqueue the outer loop as it should be processed next in our
593         // depth-first nest walk.
594         Worklist.push_back(OuterL);
595
596         // This is a big restructuring change, reprocess the whole loop.
597         Changed = true;
598         // GCC doesn't tail recursion eliminate this.
599         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
600         goto ReprocessLoop;
601       }
602     }
603
604     // If we either couldn't, or didn't want to, identify nesting of the loops,
605     // insert a new block that all backedges target, then make it jump to the
606     // loop header.
607     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
608     if (LoopLatch) {
609       ++NumInserted;
610       Changed = true;
611     }
612   }
613
614   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
615
616   // Scan over the PHI nodes in the loop header.  Since they now have only two
617   // incoming values (the loop is canonicalized), we may have simplified the PHI
618   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
619   PHINode *PN;
620   for (BasicBlock::iterator I = L->getHeader()->begin();
621        (PN = dyn_cast<PHINode>(I++)); )
622     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
623       if (AA) AA->deleteValue(PN);
624       if (SE) SE->forgetValue(PN);
625       PN->replaceAllUsesWith(V);
626       PN->eraseFromParent();
627     }
628
629   // If this loop has multiple exits and the exits all go to the same
630   // block, attempt to merge the exits. This helps several passes, such
631   // as LoopRotation, which do not support loops with multiple exits.
632   // SimplifyCFG also does this (and this code uses the same utility
633   // function), however this code is loop-aware, where SimplifyCFG is
634   // not. That gives it the advantage of being able to hoist
635   // loop-invariant instructions out of the way to open up more
636   // opportunities, and the disadvantage of having the responsibility
637   // to preserve dominator information.
638   bool UniqueExit = true;
639   if (!ExitBlocks.empty())
640     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
641       if (ExitBlocks[i] != ExitBlocks[0]) {
642         UniqueExit = false;
643         break;
644       }
645   if (UniqueExit) {
646     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
647       BasicBlock *ExitingBlock = ExitingBlocks[i];
648       if (!ExitingBlock->getSinglePredecessor()) continue;
649       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
650       if (!BI || !BI->isConditional()) continue;
651       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
652       if (!CI || CI->getParent() != ExitingBlock) continue;
653
654       // Attempt to hoist out all instructions except for the
655       // comparison and the branch.
656       bool AllInvariant = true;
657       bool AnyInvariant = false;
658       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
659         Instruction *Inst = I++;
660         // Skip debug info intrinsics.
661         if (isa<DbgInfoIntrinsic>(Inst))
662           continue;
663         if (Inst == CI)
664           continue;
665         if (!L->makeLoopInvariant(Inst, AnyInvariant,
666                                   Preheader ? Preheader->getTerminator()
667                                             : nullptr)) {
668           AllInvariant = false;
669           break;
670         }
671       }
672       if (AnyInvariant) {
673         Changed = true;
674         // The loop disposition of all SCEV expressions that depend on any
675         // hoisted values have also changed.
676         if (SE)
677           SE->forgetLoopDispositions(L);
678       }
679       if (!AllInvariant) continue;
680
681       // The block has now been cleared of all instructions except for
682       // a comparison and a conditional branch. SimplifyCFG may be able
683       // to fold it now.
684       if (!FoldBranchToCommonDest(BI))
685         continue;
686
687       // Success. The block is now dead, so remove it from the loop,
688       // update the dominator tree and delete it.
689       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
690                    << ExitingBlock->getName() << "\n");
691
692       // Notify ScalarEvolution before deleting this block. Currently assume the
693       // parent loop doesn't change (spliting edges doesn't count). If blocks,
694       // CFG edges, or other values in the parent loop change, then we need call
695       // to forgetLoop() for the parent instead.
696       if (SE)
697         SE->forgetLoop(L);
698
699       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
700       Changed = true;
701       LI->removeBlock(ExitingBlock);
702
703       DomTreeNode *Node = DT->getNode(ExitingBlock);
704       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
705         Node->getChildren();
706       while (!Children.empty()) {
707         DomTreeNode *Child = Children.front();
708         DT->changeImmediateDominator(Child, Node->getIDom());
709       }
710       DT->eraseNode(ExitingBlock);
711
712       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
713       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
714       ExitingBlock->eraseFromParent();
715     }
716   }
717
718   return Changed;
719 }
720
721 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
722                         AliasAnalysis *AA, ScalarEvolution *SE,
723                         AssumptionCache *AC) {
724   bool Changed = false;
725
726   // Worklist maintains our depth-first queue of loops in this nest to process.
727   SmallVector<Loop *, 4> Worklist;
728   Worklist.push_back(L);
729
730   // Walk the worklist from front to back, pushing newly found sub loops onto
731   // the back. This will let us process loops from back to front in depth-first
732   // order. We can use this simple process because loops form a tree.
733   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
734     Loop *L2 = Worklist[Idx];
735     Worklist.append(L2->begin(), L2->end());
736   }
737
738   while (!Worklist.empty())
739     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
740                                SE, PP, AC);
741
742   return Changed;
743 }
744
745 namespace {
746   struct LoopSimplify : public FunctionPass {
747     static char ID; // Pass identification, replacement for typeid
748     LoopSimplify() : FunctionPass(ID) {
749       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
750     }
751
752     // AA - If we have an alias analysis object to update, this is it, otherwise
753     // this is null.
754     AliasAnalysis *AA;
755     DominatorTree *DT;
756     LoopInfo *LI;
757     ScalarEvolution *SE;
758     AssumptionCache *AC;
759
760     bool runOnFunction(Function &F) override;
761
762     void getAnalysisUsage(AnalysisUsage &AU) const override {
763       AU.addRequired<AssumptionCacheTracker>();
764
765       // We need loop information to identify the loops...
766       AU.addRequired<DominatorTreeWrapperPass>();
767       AU.addPreserved<DominatorTreeWrapperPass>();
768
769       AU.addRequired<LoopInfoWrapperPass>();
770       AU.addPreserved<LoopInfoWrapperPass>();
771
772       AU.addPreserved<AliasAnalysis>();
773       AU.addPreserved<ScalarEvolution>();
774       AU.addPreserved<DependenceAnalysis>();
775       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
776     }
777
778     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
779     void verifyAnalysis() const override;
780   };
781 }
782
783 char LoopSimplify::ID = 0;
784 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
785                 "Canonicalize natural loops", false, false)
786 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
787 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
788 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
789 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
790                 "Canonicalize natural loops", false, false)
791
792 // Publicly exposed interface to pass...
793 char &llvm::LoopSimplifyID = LoopSimplify::ID;
794 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
795
796 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
797 /// it in any convenient order) inserting preheaders...
798 ///
799 bool LoopSimplify::runOnFunction(Function &F) {
800   bool Changed = false;
801   AA = getAnalysisIfAvailable<AliasAnalysis>();
802   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
803   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
804   SE = getAnalysisIfAvailable<ScalarEvolution>();
805   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
806
807   // Simplify each loop nest in the function.
808   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
809     Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, AC);
810
811   return Changed;
812 }
813
814 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
815 // below.
816 #if 0
817 static void verifyLoop(Loop *L) {
818   // Verify subloops.
819   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
820     verifyLoop(*I);
821
822   // It used to be possible to just assert L->isLoopSimplifyForm(), however
823   // with the introduction of indirectbr, there are now cases where it's
824   // not possible to transform a loop as necessary. We can at least check
825   // that there is an indirectbr near any time there's trouble.
826
827   // Indirectbr can interfere with preheader and unique backedge insertion.
828   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
829     bool HasIndBrPred = false;
830     for (pred_iterator PI = pred_begin(L->getHeader()),
831          PE = pred_end(L->getHeader()); PI != PE; ++PI)
832       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
833         HasIndBrPred = true;
834         break;
835       }
836     assert(HasIndBrPred &&
837            "LoopSimplify has no excuse for missing loop header info!");
838     (void)HasIndBrPred;
839   }
840
841   // Indirectbr can interfere with exit block canonicalization.
842   if (!L->hasDedicatedExits()) {
843     bool HasIndBrExiting = false;
844     SmallVector<BasicBlock*, 8> ExitingBlocks;
845     L->getExitingBlocks(ExitingBlocks);
846     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
847       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
848         HasIndBrExiting = true;
849         break;
850       }
851     }
852
853     assert(HasIndBrExiting &&
854            "LoopSimplify has no excuse for missing exit block info!");
855     (void)HasIndBrExiting;
856   }
857 }
858 #endif
859
860 void LoopSimplify::verifyAnalysis() const {
861   // FIXME: This routine is being called mid-way through the loop pass manager
862   // as loop passes destroy this analysis. That's actually fine, but we have no
863   // way of expressing that here. Once all of the passes that destroy this are
864   // hoisted out of the loop pass manager we can add back verification here.
865 #if 0
866   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
867     verifyLoop(*I);
868 #endif
869 }