Transforms: Stop using DIDescriptor::is*() and auto-casting
[oota-llvm.git] / lib / Transforms / Utils / CloneFunction.cpp
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/ValueMapper.h"
34 #include <map>
35 using namespace llvm;
36
37 /// See comments in Cloning.h.
38 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
39                                   ValueToValueMapTy &VMap,
40                                   const Twine &NameSuffix, Function *F,
41                                   ClonedCodeInfo *CodeInfo) {
42   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
43   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
44
45   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
46   
47   // Loop over all instructions, and copy them over.
48   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
49        II != IE; ++II) {
50     Instruction *NewInst = II->clone();
51     if (II->hasName())
52       NewInst->setName(II->getName()+NameSuffix);
53     NewBB->getInstList().push_back(NewInst);
54     VMap[II] = NewInst;                // Add instruction map to value.
55     
56     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
57     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
58       if (isa<ConstantInt>(AI->getArraySize()))
59         hasStaticAllocas = true;
60       else
61         hasDynamicAllocas = true;
62     }
63   }
64   
65   if (CodeInfo) {
66     CodeInfo->ContainsCalls          |= hasCalls;
67     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
68     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
69                                         BB != &BB->getParent()->getEntryBlock();
70   }
71   return NewBB;
72 }
73
74 // Clone OldFunc into NewFunc, transforming the old arguments into references to
75 // VMap values.
76 //
77 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
78                              ValueToValueMapTy &VMap,
79                              bool ModuleLevelChanges,
80                              SmallVectorImpl<ReturnInst*> &Returns,
81                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
82                              ValueMapTypeRemapper *TypeMapper,
83                              ValueMaterializer *Materializer) {
84   assert(NameSuffix && "NameSuffix cannot be null!");
85
86 #ifndef NDEBUG
87   for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
88        E = OldFunc->arg_end(); I != E; ++I)
89     assert(VMap.count(I) && "No mapping from source argument specified!");
90 #endif
91
92   // Copy all attributes other than those stored in the AttributeSet.  We need
93   // to remap the parameter indices of the AttributeSet.
94   AttributeSet NewAttrs = NewFunc->getAttributes();
95   NewFunc->copyAttributesFrom(OldFunc);
96   NewFunc->setAttributes(NewAttrs);
97
98   AttributeSet OldAttrs = OldFunc->getAttributes();
99   // Clone any argument attributes that are present in the VMap.
100   for (const Argument &OldArg : OldFunc->args())
101     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
102       AttributeSet attrs =
103           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
104       if (attrs.getNumSlots() > 0)
105         NewArg->addAttr(attrs);
106     }
107
108   NewFunc->setAttributes(
109       NewFunc->getAttributes()
110           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
111                          OldAttrs.getRetAttributes())
112           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
113                          OldAttrs.getFnAttributes()));
114
115   // Loop over all of the basic blocks in the function, cloning them as
116   // appropriate.  Note that we save BE this way in order to handle cloning of
117   // recursive functions into themselves.
118   //
119   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
120        BI != BE; ++BI) {
121     const BasicBlock &BB = *BI;
122
123     // Create a new basic block and copy instructions into it!
124     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
125
126     // Add basic block mapping.
127     VMap[&BB] = CBB;
128
129     // It is only legal to clone a function if a block address within that
130     // function is never referenced outside of the function.  Given that, we
131     // want to map block addresses from the old function to block addresses in
132     // the clone. (This is different from the generic ValueMapper
133     // implementation, which generates an invalid blockaddress when
134     // cloning a function.)
135     if (BB.hasAddressTaken()) {
136       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
137                                               const_cast<BasicBlock*>(&BB));
138       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);                                         
139     }
140
141     // Note return instructions for the caller.
142     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
143       Returns.push_back(RI);
144   }
145
146   // Loop over all of the instructions in the function, fixing up operand
147   // references as we go.  This uses VMap to do all the hard work.
148   for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
149          BE = NewFunc->end(); BB != BE; ++BB)
150     // Loop over all instructions, fixing each one as we find it...
151     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
152       RemapInstruction(II, VMap,
153                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
154                        TypeMapper, Materializer);
155 }
156
157 // Find the MDNode which corresponds to the DISubprogram data that described F.
158 static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) {
159   for (DISubprogram Subprogram : Finder.subprograms()) {
160     if (Subprogram.describes(F)) return Subprogram;
161   }
162   return nullptr;
163 }
164
165 // Add an operand to an existing MDNode. The new operand will be added at the
166 // back of the operand list.
167 static void AddOperand(DICompileUnit CU, DIArray SPs, Metadata *NewSP) {
168   SmallVector<Metadata *, 16> NewSPs;
169   NewSPs.reserve(SPs->getNumOperands() + 1);
170   for (unsigned I = 0, E = SPs->getNumOperands(); I != E; ++I)
171     NewSPs.push_back(SPs->getOperand(I));
172   NewSPs.push_back(NewSP);
173   CU.replaceSubprograms(DIArray(MDNode::get(CU->getContext(), NewSPs)));
174 }
175
176 // Clone the module-level debug info associated with OldFunc. The cloned data
177 // will point to NewFunc instead.
178 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
179                             ValueToValueMapTy &VMap) {
180   DebugInfoFinder Finder;
181   Finder.processModule(*OldFunc->getParent());
182
183   const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
184   if (!OldSubprogramMDNode) return;
185
186   // Ensure that OldFunc appears in the map.
187   // (if it's already there it must point to NewFunc anyway)
188   VMap[OldFunc] = NewFunc;
189   DISubprogram NewSubprogram =
190       cast<MDSubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
191
192   for (DICompileUnit CU : Finder.compile_units()) {
193     DIArray Subprograms(CU.getSubprograms());
194
195     // If the compile unit's function list contains the old function, it should
196     // also contain the new one.
197     for (unsigned i = 0; i < Subprograms.getNumElements(); i++) {
198       if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) {
199         AddOperand(CU, Subprograms, NewSubprogram);
200         break;
201       }
202     }
203   }
204 }
205
206 /// Return a copy of the specified function, but without
207 /// embedding the function into another module.  Also, any references specified
208 /// in the VMap are changed to refer to their mapped value instead of the
209 /// original one.  If any of the arguments to the function are in the VMap,
210 /// the arguments are deleted from the resultant function.  The VMap is
211 /// updated to include mappings from all of the instructions and basicblocks in
212 /// the function from their old to new values.
213 ///
214 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
215                               bool ModuleLevelChanges,
216                               ClonedCodeInfo *CodeInfo) {
217   std::vector<Type*> ArgTypes;
218
219   // The user might be deleting arguments to the function by specifying them in
220   // the VMap.  If so, we need to not add the arguments to the arg ty vector
221   //
222   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
223        I != E; ++I)
224     if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
225       ArgTypes.push_back(I->getType());
226
227   // Create a new function type...
228   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
229                                     ArgTypes, F->getFunctionType()->isVarArg());
230
231   // Create the new function...
232   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
233
234   // Loop over the arguments, copying the names of the mapped arguments over...
235   Function::arg_iterator DestI = NewF->arg_begin();
236   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
237        I != E; ++I)
238     if (VMap.count(I) == 0) {   // Is this argument preserved?
239       DestI->setName(I->getName()); // Copy the name over...
240       VMap[I] = DestI++;        // Add mapping to VMap
241     }
242
243   if (ModuleLevelChanges)
244     CloneDebugInfoMetadata(NewF, F, VMap);
245
246   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
247   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
248   return NewF;
249 }
250
251
252
253 namespace {
254   /// This is a private class used to implement CloneAndPruneFunctionInto.
255   struct PruningFunctionCloner {
256     Function *NewFunc;
257     const Function *OldFunc;
258     ValueToValueMapTy &VMap;
259     bool ModuleLevelChanges;
260     const char *NameSuffix;
261     ClonedCodeInfo *CodeInfo;
262     CloningDirector *Director;
263     ValueMapTypeRemapper *TypeMapper;
264     ValueMaterializer *Materializer;
265
266   public:
267     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
268                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
269                           const char *nameSuffix, ClonedCodeInfo *codeInfo,
270                           CloningDirector *Director)
271         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
272           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
273           CodeInfo(codeInfo), Director(Director) {
274       // These are optional components.  The Director may return null.
275       if (Director) {
276         TypeMapper = Director->getTypeRemapper();
277         Materializer = Director->getValueMaterializer();
278       } else {
279         TypeMapper = nullptr;
280         Materializer = nullptr;
281       }
282     }
283
284     /// The specified block is found to be reachable, clone it and
285     /// anything that it can reach.
286     void CloneBlock(const BasicBlock *BB, 
287                     BasicBlock::const_iterator StartingInst,
288                     std::vector<const BasicBlock*> &ToClone);
289   };
290 }
291
292 /// The specified block is found to be reachable, clone it and
293 /// anything that it can reach.
294 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
295                                        BasicBlock::const_iterator StartingInst,
296                                        std::vector<const BasicBlock*> &ToClone){
297   WeakVH &BBEntry = VMap[BB];
298
299   // Have we already cloned this block?
300   if (BBEntry) return;
301   
302   // Nope, clone it now.
303   BasicBlock *NewBB;
304   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
305   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
306
307   // It is only legal to clone a function if a block address within that
308   // function is never referenced outside of the function.  Given that, we
309   // want to map block addresses from the old function to block addresses in
310   // the clone. (This is different from the generic ValueMapper
311   // implementation, which generates an invalid blockaddress when
312   // cloning a function.)
313   //
314   // Note that we don't need to fix the mapping for unreachable blocks;
315   // the default mapping there is safe.
316   if (BB->hasAddressTaken()) {
317     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
318                                             const_cast<BasicBlock*>(BB));
319     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
320   }
321
322   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
323
324   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
325   // loop doesn't include the terminator.
326   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
327        II != IE; ++II) {
328     // If the "Director" remaps the instruction, don't clone it.
329     if (Director) {
330       CloningDirector::CloningAction Action 
331                               = Director->handleInstruction(VMap, II, NewBB);
332       // If the cloning director says stop, we want to stop everything, not
333       // just break out of the loop (which would cause the terminator to be
334       // cloned).  The cloning director is responsible for inserting a proper
335       // terminator into the new basic block in this case.
336       if (Action == CloningDirector::StopCloningBB)
337         return;
338       // If the cloning director says skip, continue to the next instruction.
339       // In this case, the cloning director is responsible for mapping the
340       // skipped instruction to some value that is defined in the new
341       // basic block.
342       if (Action == CloningDirector::SkipInstruction)
343         continue;
344     }
345
346     Instruction *NewInst = II->clone();
347
348     // Eagerly remap operands to the newly cloned instruction, except for PHI
349     // nodes for which we defer processing until we update the CFG.
350     if (!isa<PHINode>(NewInst)) {
351       RemapInstruction(NewInst, VMap,
352                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
353                        TypeMapper, Materializer);
354
355       // If we can simplify this instruction to some other value, simply add
356       // a mapping to that value rather than inserting a new instruction into
357       // the basic block.
358       if (Value *V =
359               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
360         // On the off-chance that this simplifies to an instruction in the old
361         // function, map it back into the new function.
362         if (Value *MappedV = VMap.lookup(V))
363           V = MappedV;
364
365         VMap[II] = V;
366         delete NewInst;
367         continue;
368       }
369     }
370
371     if (II->hasName())
372       NewInst->setName(II->getName()+NameSuffix);
373     VMap[II] = NewInst;                // Add instruction map to value.
374     NewBB->getInstList().push_back(NewInst);
375     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
376     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
377       if (isa<ConstantInt>(AI->getArraySize()))
378         hasStaticAllocas = true;
379       else
380         hasDynamicAllocas = true;
381     }
382   }
383   
384   // Finally, clone over the terminator.
385   const TerminatorInst *OldTI = BB->getTerminator();
386   bool TerminatorDone = false;
387   if (Director) {
388     CloningDirector::CloningAction Action 
389                            = Director->handleInstruction(VMap, OldTI, NewBB);
390     // If the cloning director says stop, we want to stop everything, not
391     // just break out of the loop (which would cause the terminator to be
392     // cloned).  The cloning director is responsible for inserting a proper
393     // terminator into the new basic block in this case.
394     if (Action == CloningDirector::StopCloningBB)
395       return;
396     if (Action == CloningDirector::CloneSuccessors) {
397       // If the director says to skip with a terminate instruction, we still
398       // need to clone this block's successors.
399       const TerminatorInst *TI = BB->getTerminator();
400       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
401         ToClone.push_back(TI->getSuccessor(i));
402       return;
403     }
404     assert(Action != CloningDirector::SkipInstruction && 
405            "SkipInstruction is not valid for terminators.");
406   }
407   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
408     if (BI->isConditional()) {
409       // If the condition was a known constant in the callee...
410       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
411       // Or is a known constant in the caller...
412       if (!Cond) {
413         Value *V = VMap[BI->getCondition()];
414         Cond = dyn_cast_or_null<ConstantInt>(V);
415       }
416
417       // Constant fold to uncond branch!
418       if (Cond) {
419         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
420         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
421         ToClone.push_back(Dest);
422         TerminatorDone = true;
423       }
424     }
425   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
426     // If switching on a value known constant in the caller.
427     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
428     if (!Cond) { // Or known constant after constant prop in the callee...
429       Value *V = VMap[SI->getCondition()];
430       Cond = dyn_cast_or_null<ConstantInt>(V);
431     }
432     if (Cond) {     // Constant fold to uncond branch!
433       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
434       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
435       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
436       ToClone.push_back(Dest);
437       TerminatorDone = true;
438     }
439   }
440   
441   if (!TerminatorDone) {
442     Instruction *NewInst = OldTI->clone();
443     if (OldTI->hasName())
444       NewInst->setName(OldTI->getName()+NameSuffix);
445     NewBB->getInstList().push_back(NewInst);
446     VMap[OldTI] = NewInst;             // Add instruction map to value.
447     
448     // Recursively clone any reachable successor blocks.
449     const TerminatorInst *TI = BB->getTerminator();
450     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
451       ToClone.push_back(TI->getSuccessor(i));
452   }
453   
454   if (CodeInfo) {
455     CodeInfo->ContainsCalls          |= hasCalls;
456     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
457     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
458       BB != &BB->getParent()->front();
459   }
460 }
461
462 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
463 /// entire function. Instead it starts at an instruction provided by the caller
464 /// and copies (and prunes) only the code reachable from that instruction.
465 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
466                                      const Instruction *StartingInst,
467                                      ValueToValueMapTy &VMap,
468                                      bool ModuleLevelChanges,
469                                      SmallVectorImpl<ReturnInst *> &Returns,
470                                      const char *NameSuffix, 
471                                      ClonedCodeInfo *CodeInfo,
472                                      CloningDirector *Director) {
473   assert(NameSuffix && "NameSuffix cannot be null!");
474
475   ValueMapTypeRemapper *TypeMapper = nullptr;
476   ValueMaterializer *Materializer = nullptr;
477
478   if (Director) {
479     TypeMapper = Director->getTypeRemapper();
480     Materializer = Director->getValueMaterializer();
481   }
482
483 #ifndef NDEBUG
484   // If the cloning starts at the begining of the function, verify that
485   // the function arguments are mapped.
486   if (!StartingInst)
487     for (Function::const_arg_iterator II = OldFunc->arg_begin(),
488          E = OldFunc->arg_end(); II != E; ++II)
489       assert(VMap.count(II) && "No mapping from source argument specified!");
490 #endif
491
492   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
493                             NameSuffix, CodeInfo, Director);
494   const BasicBlock *StartingBB;
495   if (StartingInst)
496     StartingBB = StartingInst->getParent();
497   else {
498     StartingBB = &OldFunc->getEntryBlock();
499     StartingInst = StartingBB->begin();
500   }
501
502   // Clone the entry block, and anything recursively reachable from it.
503   std::vector<const BasicBlock*> CloneWorklist;
504   PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist);
505   while (!CloneWorklist.empty()) {
506     const BasicBlock *BB = CloneWorklist.back();
507     CloneWorklist.pop_back();
508     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
509   }
510   
511   // Loop over all of the basic blocks in the old function.  If the block was
512   // reachable, we have cloned it and the old block is now in the value map:
513   // insert it into the new function in the right order.  If not, ignore it.
514   //
515   // Defer PHI resolution until rest of function is resolved.
516   SmallVector<const PHINode*, 16> PHIToResolve;
517   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
518        BI != BE; ++BI) {
519     Value *V = VMap[BI];
520     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
521     if (!NewBB) continue;  // Dead block.
522
523     // Add the new block to the new function.
524     NewFunc->getBasicBlockList().push_back(NewBB);
525
526     // Handle PHI nodes specially, as we have to remove references to dead
527     // blocks.
528     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
529       // PHI nodes may have been remapped to non-PHI nodes by the caller or
530       // during the cloning process.
531       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
532         if (isa<PHINode>(VMap[PN]))
533           PHIToResolve.push_back(PN);
534         else
535           break;
536       } else {
537         break;
538       }
539     }
540
541     // Finally, remap the terminator instructions, as those can't be remapped
542     // until all BBs are mapped.
543     RemapInstruction(NewBB->getTerminator(), VMap,
544                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
545                      TypeMapper, Materializer);
546   }
547   
548   // Defer PHI resolution until rest of function is resolved, PHI resolution
549   // requires the CFG to be up-to-date.
550   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
551     const PHINode *OPN = PHIToResolve[phino];
552     unsigned NumPreds = OPN->getNumIncomingValues();
553     const BasicBlock *OldBB = OPN->getParent();
554     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
555
556     // Map operands for blocks that are live and remove operands for blocks
557     // that are dead.
558     for (; phino != PHIToResolve.size() &&
559          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
560       OPN = PHIToResolve[phino];
561       PHINode *PN = cast<PHINode>(VMap[OPN]);
562       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
563         Value *V = VMap[PN->getIncomingBlock(pred)];
564         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
565           Value *InVal = MapValue(PN->getIncomingValue(pred),
566                                   VMap, 
567                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
568           assert(InVal && "Unknown input value?");
569           PN->setIncomingValue(pred, InVal);
570           PN->setIncomingBlock(pred, MappedBlock);
571         } else {
572           PN->removeIncomingValue(pred, false);
573           --pred, --e;  // Revisit the next entry.
574         }
575       } 
576     }
577     
578     // The loop above has removed PHI entries for those blocks that are dead
579     // and has updated others.  However, if a block is live (i.e. copied over)
580     // but its terminator has been changed to not go to this block, then our
581     // phi nodes will have invalid entries.  Update the PHI nodes in this
582     // case.
583     PHINode *PN = cast<PHINode>(NewBB->begin());
584     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
585     if (NumPreds != PN->getNumIncomingValues()) {
586       assert(NumPreds < PN->getNumIncomingValues());
587       // Count how many times each predecessor comes to this block.
588       std::map<BasicBlock*, unsigned> PredCount;
589       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
590            PI != E; ++PI)
591         --PredCount[*PI];
592       
593       // Figure out how many entries to remove from each PHI.
594       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
595         ++PredCount[PN->getIncomingBlock(i)];
596       
597       // At this point, the excess predecessor entries are positive in the
598       // map.  Loop over all of the PHIs and remove excess predecessor
599       // entries.
600       BasicBlock::iterator I = NewBB->begin();
601       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
602         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
603              E = PredCount.end(); PCI != E; ++PCI) {
604           BasicBlock *Pred     = PCI->first;
605           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
606             PN->removeIncomingValue(Pred, false);
607         }
608       }
609     }
610     
611     // If the loops above have made these phi nodes have 0 or 1 operand,
612     // replace them with undef or the input value.  We must do this for
613     // correctness, because 0-operand phis are not valid.
614     PN = cast<PHINode>(NewBB->begin());
615     if (PN->getNumIncomingValues() == 0) {
616       BasicBlock::iterator I = NewBB->begin();
617       BasicBlock::const_iterator OldI = OldBB->begin();
618       while ((PN = dyn_cast<PHINode>(I++))) {
619         Value *NV = UndefValue::get(PN->getType());
620         PN->replaceAllUsesWith(NV);
621         assert(VMap[OldI] == PN && "VMap mismatch");
622         VMap[OldI] = NV;
623         PN->eraseFromParent();
624         ++OldI;
625       }
626     }
627   }
628
629   // Make a second pass over the PHINodes now that all of them have been
630   // remapped into the new function, simplifying the PHINode and performing any
631   // recursive simplifications exposed. This will transparently update the
632   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
633   // two PHINodes, the iteration over the old PHIs remains valid, and the
634   // mapping will just map us to the new node (which may not even be a PHI
635   // node).
636   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
637     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
638       recursivelySimplifyInstruction(PN);
639
640   // Now that the inlined function body has been fully constructed, go through
641   // and zap unconditional fall-through branches. This happens all the time when
642   // specializing code: code specialization turns conditional branches into
643   // uncond branches, and this code folds them.
644   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]);
645   Function::iterator I = Begin;
646   while (I != NewFunc->end()) {
647     // Check if this block has become dead during inlining or other
648     // simplifications. Note that the first block will appear dead, as it has
649     // not yet been wired up properly.
650     if (I != Begin && (pred_begin(I) == pred_end(I) ||
651                        I->getSinglePredecessor() == I)) {
652       BasicBlock *DeadBB = I++;
653       DeleteDeadBlock(DeadBB);
654       continue;
655     }
656
657     // We need to simplify conditional branches and switches with a constant
658     // operand. We try to prune these out when cloning, but if the
659     // simplification required looking through PHI nodes, those are only
660     // available after forming the full basic block. That may leave some here,
661     // and we still want to prune the dead code as early as possible.
662     ConstantFoldTerminator(I);
663
664     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
665     if (!BI || BI->isConditional()) { ++I; continue; }
666     
667     BasicBlock *Dest = BI->getSuccessor(0);
668     if (!Dest->getSinglePredecessor()) {
669       ++I; continue;
670     }
671
672     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
673     // above should have zapped all of them..
674     assert(!isa<PHINode>(Dest->begin()));
675
676     // We know all single-entry PHI nodes in the inlined function have been
677     // removed, so we just need to splice the blocks.
678     BI->eraseFromParent();
679     
680     // Make all PHI nodes that referred to Dest now refer to I as their source.
681     Dest->replaceAllUsesWith(I);
682
683     // Move all the instructions in the succ to the pred.
684     I->getInstList().splice(I->end(), Dest->getInstList());
685     
686     // Remove the dest block.
687     Dest->eraseFromParent();
688     
689     // Do not increment I, iteratively merge all things this block branches to.
690   }
691
692   // Make a final pass over the basic blocks from the old function to gather
693   // any return instructions which survived folding. We have to do this here
694   // because we can iteratively remove and merge returns above.
695   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]),
696                           E = NewFunc->end();
697        I != E; ++I)
698     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
699       Returns.push_back(RI);
700 }
701
702
703 /// This works exactly like CloneFunctionInto,
704 /// except that it does some simple constant prop and DCE on the fly.  The
705 /// effect of this is to copy significantly less code in cases where (for
706 /// example) a function call with constant arguments is inlined, and those
707 /// constant arguments cause a significant amount of code in the callee to be
708 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
709 /// used for things like CloneFunction or CloneModule.
710 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
711                                      ValueToValueMapTy &VMap,
712                                      bool ModuleLevelChanges,
713                                      SmallVectorImpl<ReturnInst*> &Returns,
714                                      const char *NameSuffix, 
715                                      ClonedCodeInfo *CodeInfo,
716                                      Instruction *TheCall) {
717   CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap,
718                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
719                             nullptr);
720 }