Convert PHI getIncomingValue() to foreach over incoming_values(). NFC.
[oota-llvm.git] / lib / Transforms / Utils / BasicBlockUtils.cpp
1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CFG.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <algorithm>
32 using namespace llvm;
33
34 /// DeleteDeadBlock - Delete the specified block, which must have no
35 /// predecessors.
36 void llvm::DeleteDeadBlock(BasicBlock *BB) {
37   assert((pred_begin(BB) == pred_end(BB) ||
38          // Can delete self loop.
39          BB->getSinglePredecessor() == BB) && "Block is not dead!");
40   TerminatorInst *BBTerm = BB->getTerminator();
41
42   // Loop through all of our successors and make sure they know that one
43   // of their predecessors is going away.
44   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
45     BBTerm->getSuccessor(i)->removePredecessor(BB);
46
47   // Zap all the instructions in the block.
48   while (!BB->empty()) {
49     Instruction &I = BB->back();
50     // If this instruction is used, replace uses with an arbitrary value.
51     // Because control flow can't get here, we don't care what we replace the
52     // value with.  Note that since this block is unreachable, and all values
53     // contained within it must dominate their uses, that all uses will
54     // eventually be removed (they are themselves dead).
55     if (!I.use_empty())
56       I.replaceAllUsesWith(UndefValue::get(I.getType()));
57     BB->getInstList().pop_back();
58   }
59
60   // Zap the block!
61   BB->eraseFromParent();
62 }
63
64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
65 /// any single-entry PHI nodes in it, fold them away.  This handles the case
66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
67 /// when the block has exactly one predecessor.
68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, AliasAnalysis *AA,
69                                    MemoryDependenceAnalysis *MemDep) {
70   if (!isa<PHINode>(BB->begin())) return;
71
72   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
73     if (PN->getIncomingValue(0) != PN)
74       PN->replaceAllUsesWith(PN->getIncomingValue(0));
75     else
76       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
77
78     if (MemDep)
79       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
80     else if (AA && isa<PointerType>(PN->getType()))
81       AA->deleteValue(PN);
82
83     PN->eraseFromParent();
84   }
85 }
86
87
88 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
89 /// is dead. Also recursively delete any operands that become dead as
90 /// a result. This includes tracing the def-use list from the PHI to see if
91 /// it is ultimately unused or if it reaches an unused cycle.
92 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
93   // Recursively deleting a PHI may cause multiple PHIs to be deleted
94   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
95   SmallVector<WeakVH, 8> PHIs;
96   for (BasicBlock::iterator I = BB->begin();
97        PHINode *PN = dyn_cast<PHINode>(I); ++I)
98     PHIs.push_back(PN);
99
100   bool Changed = false;
101   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
102     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
103       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
104
105   return Changed;
106 }
107
108 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
109 /// if possible.  The return value indicates success or failure.
110 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
111                                      LoopInfo *LI, AliasAnalysis *AA,
112                                      MemoryDependenceAnalysis *MemDep) {
113   // Don't merge away blocks who have their address taken.
114   if (BB->hasAddressTaken()) return false;
115
116   // Can't merge if there are multiple predecessors, or no predecessors.
117   BasicBlock *PredBB = BB->getUniquePredecessor();
118   if (!PredBB) return false;
119
120   // Don't break self-loops.
121   if (PredBB == BB) return false;
122   // Don't break invokes.
123   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
124
125   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
126   BasicBlock *OnlySucc = BB;
127   for (; SI != SE; ++SI)
128     if (*SI != OnlySucc) {
129       OnlySucc = nullptr;     // There are multiple distinct successors!
130       break;
131     }
132
133   // Can't merge if there are multiple successors.
134   if (!OnlySucc) return false;
135
136   // Can't merge if there is PHI loop.
137   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
138     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
139       for (Value *IncValue : PN->incoming_values())
140         if (IncValue == PN)
141           return false;
142     } else
143       break;
144   }
145
146   // Begin by getting rid of unneeded PHIs.
147   if (isa<PHINode>(BB->front()))
148     FoldSingleEntryPHINodes(BB, AA, MemDep);
149
150   // Delete the unconditional branch from the predecessor...
151   PredBB->getInstList().pop_back();
152
153   // Make all PHI nodes that referred to BB now refer to Pred as their
154   // source...
155   BB->replaceAllUsesWith(PredBB);
156
157   // Move all definitions in the successor to the predecessor...
158   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
159
160   // Inherit predecessors name if it exists.
161   if (!PredBB->hasName())
162     PredBB->takeName(BB);
163
164   // Finally, erase the old block and update dominator info.
165   if (DT)
166     if (DomTreeNode *DTN = DT->getNode(BB)) {
167       DomTreeNode *PredDTN = DT->getNode(PredBB);
168       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
169       for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
170                                                     DE = Children.end();
171            DI != DE; ++DI)
172         DT->changeImmediateDominator(*DI, PredDTN);
173
174       DT->eraseNode(BB);
175     }
176
177   if (LI)
178     LI->removeBlock(BB);
179
180   if (MemDep)
181     MemDep->invalidateCachedPredecessors();
182
183   BB->eraseFromParent();
184   return true;
185 }
186
187 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
188 /// with a value, then remove and delete the original instruction.
189 ///
190 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
191                                 BasicBlock::iterator &BI, Value *V) {
192   Instruction &I = *BI;
193   // Replaces all of the uses of the instruction with uses of the value
194   I.replaceAllUsesWith(V);
195
196   // Make sure to propagate a name if there is one already.
197   if (I.hasName() && !V->hasName())
198     V->takeName(&I);
199
200   // Delete the unnecessary instruction now...
201   BI = BIL.erase(BI);
202 }
203
204
205 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
206 /// instruction specified by I.  The original instruction is deleted and BI is
207 /// updated to point to the new instruction.
208 ///
209 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
210                                BasicBlock::iterator &BI, Instruction *I) {
211   assert(I->getParent() == nullptr &&
212          "ReplaceInstWithInst: Instruction already inserted into basic block!");
213
214   // Insert the new instruction into the basic block...
215   BasicBlock::iterator New = BIL.insert(BI, I);
216
217   // Replace all uses of the old instruction, and delete it.
218   ReplaceInstWithValue(BIL, BI, I);
219
220   // Move BI back to point to the newly inserted instruction
221   BI = New;
222 }
223
224 /// ReplaceInstWithInst - Replace the instruction specified by From with the
225 /// instruction specified by To.
226 ///
227 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
228   BasicBlock::iterator BI(From);
229   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
230 }
231
232 /// SplitEdge -  Split the edge connecting specified block. Pass P must
233 /// not be NULL.
234 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
235                             LoopInfo *LI) {
236   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
237
238   // If this is a critical edge, let SplitCriticalEdge do it.
239   TerminatorInst *LatchTerm = BB->getTerminator();
240   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
241                                                 .setPreserveLCSSA()))
242     return LatchTerm->getSuccessor(SuccNum);
243
244   // If the edge isn't critical, then BB has a single successor or Succ has a
245   // single pred.  Split the block.
246   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
247     // If the successor only has a single pred, split the top of the successor
248     // block.
249     assert(SP == BB && "CFG broken");
250     SP = nullptr;
251     return SplitBlock(Succ, Succ->begin(), DT, LI);
252   }
253
254   // Otherwise, if BB has a single successor, split it at the bottom of the
255   // block.
256   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
257          "Should have a single succ!");
258   return SplitBlock(BB, BB->getTerminator(), DT, LI);
259 }
260
261 unsigned
262 llvm::SplitAllCriticalEdges(Function &F,
263                             const CriticalEdgeSplittingOptions &Options) {
264   unsigned NumBroken = 0;
265   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
266     TerminatorInst *TI = I->getTerminator();
267     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
268       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
269         if (SplitCriticalEdge(TI, i, Options))
270           ++NumBroken;
271   }
272   return NumBroken;
273 }
274
275 /// SplitBlock - Split the specified block at the specified instruction - every
276 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
277 /// to a new block.  The two blocks are joined by an unconditional branch and
278 /// the loop info is updated.
279 ///
280 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
281                              DominatorTree *DT, LoopInfo *LI) {
282   BasicBlock::iterator SplitIt = SplitPt;
283   while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
284     ++SplitIt;
285   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
286
287   // The new block lives in whichever loop the old one did. This preserves
288   // LCSSA as well, because we force the split point to be after any PHI nodes.
289   if (LI)
290     if (Loop *L = LI->getLoopFor(Old))
291       L->addBasicBlockToLoop(New, *LI);
292
293   if (DT)
294     // Old dominates New. New node dominates all other nodes dominated by Old.
295     if (DomTreeNode *OldNode = DT->getNode(Old)) {
296       std::vector<DomTreeNode *> Children;
297       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
298            I != E; ++I)
299         Children.push_back(*I);
300
301       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
302       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
303              E = Children.end(); I != E; ++I)
304         DT->changeImmediateDominator(*I, NewNode);
305     }
306
307   return New;
308 }
309
310 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
311 /// analysis information.
312 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
313                                       ArrayRef<BasicBlock *> Preds,
314                                       DominatorTree *DT, LoopInfo *LI,
315                                       bool PreserveLCSSA, bool &HasLoopExit) {
316   // Update dominator tree if available.
317   if (DT)
318     DT->splitBlock(NewBB);
319
320   // The rest of the logic is only relevant for updating the loop structures.
321   if (!LI)
322     return;
323
324   Loop *L = LI->getLoopFor(OldBB);
325
326   // If we need to preserve loop analyses, collect some information about how
327   // this split will affect loops.
328   bool IsLoopEntry = !!L;
329   bool SplitMakesNewLoopHeader = false;
330   for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
331        i != e; ++i) {
332     BasicBlock *Pred = *i;
333
334     // If we need to preserve LCSSA, determine if any of the preds is a loop
335     // exit.
336     if (PreserveLCSSA)
337       if (Loop *PL = LI->getLoopFor(Pred))
338         if (!PL->contains(OldBB))
339           HasLoopExit = true;
340
341     // If we need to preserve LoopInfo, note whether any of the preds crosses
342     // an interesting loop boundary.
343     if (!L)
344       continue;
345     if (L->contains(Pred))
346       IsLoopEntry = false;
347     else
348       SplitMakesNewLoopHeader = true;
349   }
350
351   // Unless we have a loop for OldBB, nothing else to do here.
352   if (!L)
353     return;
354
355   if (IsLoopEntry) {
356     // Add the new block to the nearest enclosing loop (and not an adjacent
357     // loop). To find this, examine each of the predecessors and determine which
358     // loops enclose them, and select the most-nested loop which contains the
359     // loop containing the block being split.
360     Loop *InnermostPredLoop = nullptr;
361     for (ArrayRef<BasicBlock*>::iterator
362            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
363       BasicBlock *Pred = *i;
364       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
365         // Seek a loop which actually contains the block being split (to avoid
366         // adjacent loops).
367         while (PredLoop && !PredLoop->contains(OldBB))
368           PredLoop = PredLoop->getParentLoop();
369
370         // Select the most-nested of these loops which contains the block.
371         if (PredLoop && PredLoop->contains(OldBB) &&
372             (!InnermostPredLoop ||
373              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
374           InnermostPredLoop = PredLoop;
375       }
376     }
377
378     if (InnermostPredLoop)
379       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
380   } else {
381     L->addBasicBlockToLoop(NewBB, *LI);
382     if (SplitMakesNewLoopHeader)
383       L->moveToHeader(NewBB);
384   }
385 }
386
387 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
388 /// from NewBB. This also updates AliasAnalysis, if available.
389 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
390                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
391                            AliasAnalysis *AA, bool HasLoopExit) {
392   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
393   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
394   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
395     PHINode *PN = cast<PHINode>(I++);
396
397     // Check to see if all of the values coming in are the same.  If so, we
398     // don't need to create a new PHI node, unless it's needed for LCSSA.
399     Value *InVal = nullptr;
400     if (!HasLoopExit) {
401       InVal = PN->getIncomingValueForBlock(Preds[0]);
402       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
403         if (!PredSet.count(PN->getIncomingBlock(i)))
404           continue;
405         if (!InVal)
406           InVal = PN->getIncomingValue(i);
407         else if (InVal != PN->getIncomingValue(i)) {
408           InVal = nullptr;
409           break;
410         }
411       }
412     }
413
414     if (InVal) {
415       // If all incoming values for the new PHI would be the same, just don't
416       // make a new PHI.  Instead, just remove the incoming values from the old
417       // PHI.
418
419       // NOTE! This loop walks backwards for a reason! First off, this minimizes
420       // the cost of removal if we end up removing a large number of values, and
421       // second off, this ensures that the indices for the incoming values
422       // aren't invalidated when we remove one.
423       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
424         if (PredSet.count(PN->getIncomingBlock(i)))
425           PN->removeIncomingValue(i, false);
426
427       // Add an incoming value to the PHI node in the loop for the preheader
428       // edge.
429       PN->addIncoming(InVal, NewBB);
430       continue;
431     }
432
433     // If the values coming into the block are not the same, we need a new
434     // PHI.
435     // Create the new PHI node, insert it into NewBB at the end of the block
436     PHINode *NewPHI =
437         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
438     if (AA)
439       AA->copyValue(PN, NewPHI);
440
441     // NOTE! This loop walks backwards for a reason! First off, this minimizes
442     // the cost of removal if we end up removing a large number of values, and
443     // second off, this ensures that the indices for the incoming values aren't
444     // invalidated when we remove one.
445     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
446       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
447       if (PredSet.count(IncomingBB)) {
448         Value *V = PN->removeIncomingValue(i, false);
449         NewPHI->addIncoming(V, IncomingBB);
450       }
451     }
452
453     PN->addIncoming(NewPHI, NewBB);
454   }
455 }
456
457 /// SplitBlockPredecessors - This method introduces at least one new basic block
458 /// into the function and moves some of the predecessors of BB to be
459 /// predecessors of the new block. The new predecessors are indicated by the
460 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
461 /// block to which predecessors from Preds are now pointing.
462 ///
463 /// If BB is a landingpad block then additional basicblock might be introduced.
464 /// It will have suffix of 'Suffix'+".split_lp".
465 /// See SplitLandingPadPredecessors for more details on this case.
466 ///
467 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
468 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
469 /// preserve LoopSimplify (because it's complicated to handle the case where one
470 /// of the edges being split is an exit of a loop with other exits).
471 ///
472 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
473                                          ArrayRef<BasicBlock *> Preds,
474                                          const char *Suffix, AliasAnalysis *AA,
475                                          DominatorTree *DT, LoopInfo *LI,
476                                          bool PreserveLCSSA) {
477   // For the landingpads we need to act a bit differently.
478   // Delegate this work to the SplitLandingPadPredecessors.
479   if (BB->isLandingPad()) {
480     SmallVector<BasicBlock*, 2> NewBBs;
481     std::string NewName = std::string(Suffix) + ".split-lp";
482
483     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(),
484                                 NewBBs, AA, DT, LI, PreserveLCSSA);
485     return NewBBs[0];
486   }
487
488   // Create new basic block, insert right before the original block.
489   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
490                                          BB->getParent(), BB);
491
492   // The new block unconditionally branches to the old block.
493   BranchInst *BI = BranchInst::Create(BB, NewBB);
494
495   // Move the edges from Preds to point to NewBB instead of BB.
496   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
497     // This is slightly more strict than necessary; the minimum requirement
498     // is that there be no more than one indirectbr branching to BB. And
499     // all BlockAddress uses would need to be updated.
500     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
501            "Cannot split an edge from an IndirectBrInst");
502     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
503   }
504
505   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
506   // node becomes an incoming value for BB's phi node.  However, if the Preds
507   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
508   // account for the newly created predecessor.
509   if (Preds.size() == 0) {
510     // Insert dummy values as the incoming value.
511     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
512       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
513     return NewBB;
514   }
515
516   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
517   bool HasLoopExit = false;
518   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
519                             HasLoopExit);
520
521   // Update the PHI nodes in BB with the values coming from NewBB.
522   UpdatePHINodes(BB, NewBB, Preds, BI, AA, HasLoopExit);
523   return NewBB;
524 }
525
526 /// SplitLandingPadPredecessors - This method transforms the landing pad,
527 /// OrigBB, by introducing two new basic blocks into the function. One of those
528 /// new basic blocks gets the predecessors listed in Preds. The other basic
529 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
530 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
531 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
532 ///
533 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
534 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
535 /// it does not preserve LoopSimplify (because it's complicated to handle the
536 /// case where one of the edges being split is an exit of a loop with other
537 /// exits).
538 ///
539 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
540                                        ArrayRef<BasicBlock *> Preds,
541                                        const char *Suffix1, const char *Suffix2,
542                                        SmallVectorImpl<BasicBlock *> &NewBBs,
543                                        AliasAnalysis *AA, DominatorTree *DT,
544                                        LoopInfo *LI, bool PreserveLCSSA) {
545   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
546
547   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
548   // it right before the original block.
549   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
550                                           OrigBB->getName() + Suffix1,
551                                           OrigBB->getParent(), OrigBB);
552   NewBBs.push_back(NewBB1);
553
554   // The new block unconditionally branches to the old block.
555   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
556
557   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
558   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
559     // This is slightly more strict than necessary; the minimum requirement
560     // is that there be no more than one indirectbr branching to BB. And
561     // all BlockAddress uses would need to be updated.
562     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
563            "Cannot split an edge from an IndirectBrInst");
564     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
565   }
566
567   bool HasLoopExit = false;
568   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
569                             HasLoopExit);
570
571   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
572   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, AA, HasLoopExit);
573
574   // Move the remaining edges from OrigBB to point to NewBB2.
575   SmallVector<BasicBlock*, 8> NewBB2Preds;
576   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
577        i != e; ) {
578     BasicBlock *Pred = *i++;
579     if (Pred == NewBB1) continue;
580     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
581            "Cannot split an edge from an IndirectBrInst");
582     NewBB2Preds.push_back(Pred);
583     e = pred_end(OrigBB);
584   }
585
586   BasicBlock *NewBB2 = nullptr;
587   if (!NewBB2Preds.empty()) {
588     // Create another basic block for the rest of OrigBB's predecessors.
589     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
590                                 OrigBB->getName() + Suffix2,
591                                 OrigBB->getParent(), OrigBB);
592     NewBBs.push_back(NewBB2);
593
594     // The new block unconditionally branches to the old block.
595     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
596
597     // Move the remaining edges from OrigBB to point to NewBB2.
598     for (SmallVectorImpl<BasicBlock*>::iterator
599            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
600       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
601
602     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
603     HasLoopExit = false;
604     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
605                               PreserveLCSSA, HasLoopExit);
606
607     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
608     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, AA, HasLoopExit);
609   }
610
611   LandingPadInst *LPad = OrigBB->getLandingPadInst();
612   Instruction *Clone1 = LPad->clone();
613   Clone1->setName(Twine("lpad") + Suffix1);
614   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
615
616   if (NewBB2) {
617     Instruction *Clone2 = LPad->clone();
618     Clone2->setName(Twine("lpad") + Suffix2);
619     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
620
621     // Create a PHI node for the two cloned landingpad instructions.
622     PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
623     PN->addIncoming(Clone1, NewBB1);
624     PN->addIncoming(Clone2, NewBB2);
625     LPad->replaceAllUsesWith(PN);
626     LPad->eraseFromParent();
627   } else {
628     // There is no second clone. Just replace the landing pad with the first
629     // clone.
630     LPad->replaceAllUsesWith(Clone1);
631     LPad->eraseFromParent();
632   }
633 }
634
635 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
636 /// instruction into a predecessor which ends in an unconditional branch. If
637 /// the return instruction returns a value defined by a PHI, propagate the
638 /// right value into the return. It returns the new return instruction in the
639 /// predecessor.
640 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
641                                              BasicBlock *Pred) {
642   Instruction *UncondBranch = Pred->getTerminator();
643   // Clone the return and add it to the end of the predecessor.
644   Instruction *NewRet = RI->clone();
645   Pred->getInstList().push_back(NewRet);
646
647   // If the return instruction returns a value, and if the value was a
648   // PHI node in "BB", propagate the right value into the return.
649   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
650        i != e; ++i) {
651     Value *V = *i;
652     Instruction *NewBC = nullptr;
653     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
654       // Return value might be bitcasted. Clone and insert it before the
655       // return instruction.
656       V = BCI->getOperand(0);
657       NewBC = BCI->clone();
658       Pred->getInstList().insert(NewRet, NewBC);
659       *i = NewBC;
660     }
661     if (PHINode *PN = dyn_cast<PHINode>(V)) {
662       if (PN->getParent() == BB) {
663         if (NewBC)
664           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
665         else
666           *i = PN->getIncomingValueForBlock(Pred);
667       }
668     }
669   }
670
671   // Update any PHI nodes in the returning block to realize that we no
672   // longer branch to them.
673   BB->removePredecessor(Pred);
674   UncondBranch->eraseFromParent();
675   return cast<ReturnInst>(NewRet);
676 }
677
678 /// SplitBlockAndInsertIfThen - Split the containing block at the
679 /// specified instruction - everything before and including SplitBefore stays
680 /// in the old basic block, and everything after SplitBefore is moved to a
681 /// new block. The two blocks are connected by a conditional branch
682 /// (with value of Cmp being the condition).
683 /// Before:
684 ///   Head
685 ///   SplitBefore
686 ///   Tail
687 /// After:
688 ///   Head
689 ///   if (Cond)
690 ///     ThenBlock
691 ///   SplitBefore
692 ///   Tail
693 ///
694 /// If Unreachable is true, then ThenBlock ends with
695 /// UnreachableInst, otherwise it branches to Tail.
696 /// Returns the NewBasicBlock's terminator.
697
698 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
699                                                 Instruction *SplitBefore,
700                                                 bool Unreachable,
701                                                 MDNode *BranchWeights,
702                                                 DominatorTree *DT) {
703   BasicBlock *Head = SplitBefore->getParent();
704   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
705   TerminatorInst *HeadOldTerm = Head->getTerminator();
706   LLVMContext &C = Head->getContext();
707   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
708   TerminatorInst *CheckTerm;
709   if (Unreachable)
710     CheckTerm = new UnreachableInst(C, ThenBlock);
711   else
712     CheckTerm = BranchInst::Create(Tail, ThenBlock);
713   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
714   BranchInst *HeadNewTerm =
715     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
716   HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
717   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
718   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
719
720   if (DT) {
721     if (DomTreeNode *OldNode = DT->getNode(Head)) {
722       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
723
724       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
725       for (auto Child : Children)
726         DT->changeImmediateDominator(Child, NewNode);
727
728       // Head dominates ThenBlock.
729       DT->addNewBlock(ThenBlock, Head);
730     }
731   }
732
733   return CheckTerm;
734 }
735
736 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
737 /// but also creates the ElseBlock.
738 /// Before:
739 ///   Head
740 ///   SplitBefore
741 ///   Tail
742 /// After:
743 ///   Head
744 ///   if (Cond)
745 ///     ThenBlock
746 ///   else
747 ///     ElseBlock
748 ///   SplitBefore
749 ///   Tail
750 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
751                                          TerminatorInst **ThenTerm,
752                                          TerminatorInst **ElseTerm,
753                                          MDNode *BranchWeights) {
754   BasicBlock *Head = SplitBefore->getParent();
755   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
756   TerminatorInst *HeadOldTerm = Head->getTerminator();
757   LLVMContext &C = Head->getContext();
758   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
759   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
760   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
761   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
762   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
763   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
764   BranchInst *HeadNewTerm =
765     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
766   HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
767   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
768   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
769 }
770
771
772 /// GetIfCondition - Given a basic block (BB) with two predecessors,
773 /// check to see if the merge at this block is due
774 /// to an "if condition".  If so, return the boolean condition that determines
775 /// which entry into BB will be taken.  Also, return by references the block
776 /// that will be entered from if the condition is true, and the block that will
777 /// be entered if the condition is false.
778 ///
779 /// This does no checking to see if the true/false blocks have large or unsavory
780 /// instructions in them.
781 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
782                              BasicBlock *&IfFalse) {
783   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
784   BasicBlock *Pred1 = nullptr;
785   BasicBlock *Pred2 = nullptr;
786
787   if (SomePHI) {
788     if (SomePHI->getNumIncomingValues() != 2)
789       return nullptr;
790     Pred1 = SomePHI->getIncomingBlock(0);
791     Pred2 = SomePHI->getIncomingBlock(1);
792   } else {
793     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
794     if (PI == PE) // No predecessor
795       return nullptr;
796     Pred1 = *PI++;
797     if (PI == PE) // Only one predecessor
798       return nullptr;
799     Pred2 = *PI++;
800     if (PI != PE) // More than two predecessors
801       return nullptr;
802   }
803
804   // We can only handle branches.  Other control flow will be lowered to
805   // branches if possible anyway.
806   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
807   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
808   if (!Pred1Br || !Pred2Br)
809     return nullptr;
810
811   // Eliminate code duplication by ensuring that Pred1Br is conditional if
812   // either are.
813   if (Pred2Br->isConditional()) {
814     // If both branches are conditional, we don't have an "if statement".  In
815     // reality, we could transform this case, but since the condition will be
816     // required anyway, we stand no chance of eliminating it, so the xform is
817     // probably not profitable.
818     if (Pred1Br->isConditional())
819       return nullptr;
820
821     std::swap(Pred1, Pred2);
822     std::swap(Pred1Br, Pred2Br);
823   }
824
825   if (Pred1Br->isConditional()) {
826     // The only thing we have to watch out for here is to make sure that Pred2
827     // doesn't have incoming edges from other blocks.  If it does, the condition
828     // doesn't dominate BB.
829     if (!Pred2->getSinglePredecessor())
830       return nullptr;
831
832     // If we found a conditional branch predecessor, make sure that it branches
833     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
834     if (Pred1Br->getSuccessor(0) == BB &&
835         Pred1Br->getSuccessor(1) == Pred2) {
836       IfTrue = Pred1;
837       IfFalse = Pred2;
838     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
839                Pred1Br->getSuccessor(1) == BB) {
840       IfTrue = Pred2;
841       IfFalse = Pred1;
842     } else {
843       // We know that one arm of the conditional goes to BB, so the other must
844       // go somewhere unrelated, and this must not be an "if statement".
845       return nullptr;
846     }
847
848     return Pred1Br->getCondition();
849   }
850
851   // Ok, if we got here, both predecessors end with an unconditional branch to
852   // BB.  Don't panic!  If both blocks only have a single (identical)
853   // predecessor, and THAT is a conditional branch, then we're all ok!
854   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
855   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
856     return nullptr;
857
858   // Otherwise, if this is a conditional branch, then we can use it!
859   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
860   if (!BI) return nullptr;
861
862   assert(BI->isConditional() && "Two successors but not conditional?");
863   if (BI->getSuccessor(0) == Pred1) {
864     IfTrue = Pred1;
865     IfFalse = Pred2;
866   } else {
867     IfTrue = Pred2;
868     IfFalse = Pred1;
869   }
870   return BI->getCondition();
871 }