A pile of long over-due refactorings here. There are some very, *very*
[oota-llvm.git] / lib / Transforms / Scalar / TailRecursionElimination.cpp
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop.  This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 //  1. Trivial instructions between the call and return do not prevent the
16 //     transformation from taking place, though currently the analysis cannot
17 //     support moving any really useful instructions (only dead ones).
18 //  2. This pass transforms functions that are prevented from being tail
19 //     recursive by an associative and commutative expression to use an
20 //     accumulator variable, thus compiling the typical naive factorial or
21 //     'fib' implementation into efficient code.
22 //  3. TRE is performed if the function returns void, if the return
23 //     returns the result returned by the call, or if the function returns a
24 //     run-time constant on all exits from the function.  It is possible, though
25 //     unlikely, that the return returns something else (like constant 0), and
26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27 //     the function return the exact same value.
28 //  4. If it can prove that callees do not access their caller stack frame,
29 //     they are marked as eligible for tail call elimination (by the code
30 //     generator).
31 //
32 // There are several improvements that could be made:
33 //
34 //  1. If the function has any alloca instructions, these instructions will be
35 //     moved out of the entry block of the function, causing them to be
36 //     evaluated each time through the tail recursion.  Safely keeping allocas
37 //     in the entry block requires analysis to proves that the tail-called
38 //     function does not read or write the stack object.
39 //  2. Tail recursion is only performed if the call immediately precedes the
40 //     return instruction.  It's possible that there could be a jump between
41 //     the call and the return.
42 //  3. There can be intervening operations between the call and the return that
43 //     prevent the TRE from occurring.  For example, there could be GEP's and
44 //     stores to memory that will not be read or written by the call.  This
45 //     requires some substantial analysis (such as with DSA) to prove safe to
46 //     move ahead of the call, but doing so could allow many more TREs to be
47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 //  4. The algorithm we use to detect if callees access their caller stack
49 //     frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52
53 #define DEBUG_TYPE "tailcallelim"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Constants.h"
58 #include "llvm/DerivedTypes.h"
59 #include "llvm/Function.h"
60 #include "llvm/Instructions.h"
61 #include "llvm/IntrinsicInst.h"
62 #include "llvm/Module.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Analysis/CaptureTracking.h"
65 #include "llvm/Analysis/InlineCost.h"
66 #include "llvm/Analysis/InstructionSimplify.h"
67 #include "llvm/Analysis/Loads.h"
68 #include "llvm/Support/CallSite.h"
69 #include "llvm/Support/CFG.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/ADT/Statistic.h"
73 #include "llvm/ADT/STLExtras.h"
74 using namespace llvm;
75
76 STATISTIC(NumEliminated, "Number of tail calls removed");
77 STATISTIC(NumRetDuped,   "Number of return duplicated");
78 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
79
80 namespace {
81   struct TailCallElim : public FunctionPass {
82     static char ID; // Pass identification, replacement for typeid
83     TailCallElim() : FunctionPass(ID) {
84       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
85     }
86
87     virtual bool runOnFunction(Function &F);
88
89   private:
90     CallInst *FindTRECandidate(Instruction *I,
91                                bool CannotTailCallElimCallsMarkedTail);
92     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
93                                     BasicBlock *&OldEntry,
94                                     bool &TailCallsAreMarkedTail,
95                                     SmallVector<PHINode*, 8> &ArgumentPHIs,
96                                     bool CannotTailCallElimCallsMarkedTail);
97     bool FoldReturnAndProcessPred(BasicBlock *BB,
98                                   ReturnInst *Ret, BasicBlock *&OldEntry,
99                                   bool &TailCallsAreMarkedTail,
100                                   SmallVector<PHINode*, 8> &ArgumentPHIs,
101                                   bool CannotTailCallElimCallsMarkedTail);
102     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
103                                bool &TailCallsAreMarkedTail,
104                                SmallVector<PHINode*, 8> &ArgumentPHIs,
105                                bool CannotTailCallElimCallsMarkedTail);
106     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
107     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
108   };
109 }
110
111 char TailCallElim::ID = 0;
112 INITIALIZE_PASS(TailCallElim, "tailcallelim",
113                 "Tail Call Elimination", false, false)
114
115 // Public interface to the TailCallElimination pass
116 FunctionPass *llvm::createTailCallEliminationPass() {
117   return new TailCallElim();
118 }
119
120 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
121 /// callees of this function.  We only do very simple analysis right now, this
122 /// could be expanded in the future to use mod/ref information for particular
123 /// call sites if desired.
124 static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
125   // FIXME: do simple 'address taken' analysis.
126   return true;
127 }
128
129 /// CheckForEscapingAllocas - Scan the specified basic block for alloca
130 /// instructions.  If it contains any that might be accessed by calls, return
131 /// true.
132 static bool CheckForEscapingAllocas(BasicBlock *BB,
133                                     bool &CannotTCETailMarkedCall) {
134   bool RetVal = false;
135   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
136     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
137       RetVal |= AllocaMightEscapeToCalls(AI);
138
139       // If this alloca is in the body of the function, or if it is a variable
140       // sized allocation, we cannot tail call eliminate calls marked 'tail'
141       // with this mechanism.
142       if (BB != &BB->getParent()->getEntryBlock() ||
143           !isa<ConstantInt>(AI->getArraySize()))
144         CannotTCETailMarkedCall = true;
145     }
146   return RetVal;
147 }
148
149 bool TailCallElim::runOnFunction(Function &F) {
150   // If this function is a varargs function, we won't be able to PHI the args
151   // right, so don't even try to convert it...
152   if (F.getFunctionType()->isVarArg()) return false;
153
154   BasicBlock *OldEntry = 0;
155   bool TailCallsAreMarkedTail = false;
156   SmallVector<PHINode*, 8> ArgumentPHIs;
157   bool MadeChange = false;
158   bool FunctionContainsEscapingAllocas = false;
159
160   // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
161   // marked with the 'tail' attribute, because doing so would cause the stack
162   // size to increase (real TCE would deallocate variable sized allocas, TCE
163   // doesn't).
164   bool CannotTCETailMarkedCall = false;
165
166   // Loop over the function, looking for any returning blocks, and keeping track
167   // of whether this function has any non-trivially used allocas.
168   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
169     if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
170       break;
171
172     FunctionContainsEscapingAllocas |=
173       CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
174   }
175   
176   /// FIXME: The code generator produces really bad code when an 'escaping
177   /// alloca' is changed from being a static alloca to being a dynamic alloca.
178   /// Until this is resolved, disable this transformation if that would ever
179   /// happen.  This bug is PR962.
180   if (FunctionContainsEscapingAllocas)
181     return false;
182
183   // Second pass, change any tail calls to loops.
184   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
185     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
186       bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
187                                           ArgumentPHIs,CannotTCETailMarkedCall);
188       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
189         Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
190                                           TailCallsAreMarkedTail, ArgumentPHIs,
191                                           CannotTCETailMarkedCall);
192       MadeChange |= Change;
193     }
194   }
195
196   // If we eliminated any tail recursions, it's possible that we inserted some
197   // silly PHI nodes which just merge an initial value (the incoming operand)
198   // with themselves.  Check to see if we did and clean up our mess if so.  This
199   // occurs when a function passes an argument straight through to its tail
200   // call.
201   if (!ArgumentPHIs.empty()) {
202     for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
203       PHINode *PN = ArgumentPHIs[i];
204
205       // If the PHI Node is a dynamic constant, replace it with the value it is.
206       if (Value *PNV = SimplifyInstruction(PN)) {
207         PN->replaceAllUsesWith(PNV);
208         PN->eraseFromParent();
209       }
210     }
211   }
212
213   // Finally, if this function contains no non-escaping allocas, or calls
214   // setjmp, mark all calls in the function as eligible for tail calls
215   //(there is no stack memory for them to access).
216   if (!FunctionContainsEscapingAllocas && !F.callsFunctionThatReturnsTwice())
217     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
218       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
219         if (CallInst *CI = dyn_cast<CallInst>(I)) {
220           CI->setTailCall();
221           MadeChange = true;
222         }
223
224   return MadeChange;
225 }
226
227
228 /// CanMoveAboveCall - Return true if it is safe to move the specified
229 /// instruction from after the call to before the call, assuming that all
230 /// instructions between the call and this instruction are movable.
231 ///
232 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
233   // FIXME: We can move load/store/call/free instructions above the call if the
234   // call does not mod/ref the memory location being processed.
235   if (I->mayHaveSideEffects())  // This also handles volatile loads.
236     return false;
237   
238   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
239     // Loads may always be moved above calls without side effects.
240     if (CI->mayHaveSideEffects()) {
241       // Non-volatile loads may be moved above a call with side effects if it
242       // does not write to memory and the load provably won't trap.
243       // FIXME: Writes to memory only matter if they may alias the pointer
244       // being loaded from.
245       if (CI->mayWriteToMemory() ||
246           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
247                                        L->getAlignment()))
248         return false;
249     }
250   }
251
252   // Otherwise, if this is a side-effect free instruction, check to make sure
253   // that it does not use the return value of the call.  If it doesn't use the
254   // return value of the call, it must only use things that are defined before
255   // the call, or movable instructions between the call and the instruction
256   // itself.
257   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
258     if (I->getOperand(i) == CI)
259       return false;
260   return true;
261 }
262
263 // isDynamicConstant - Return true if the specified value is the same when the
264 // return would exit as it was when the initial iteration of the recursive
265 // function was executed.
266 //
267 // We currently handle static constants and arguments that are not modified as
268 // part of the recursion.
269 //
270 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
271   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
272
273   // Check to see if this is an immutable argument, if so, the value
274   // will be available to initialize the accumulator.
275   if (Argument *Arg = dyn_cast<Argument>(V)) {
276     // Figure out which argument number this is...
277     unsigned ArgNo = 0;
278     Function *F = CI->getParent()->getParent();
279     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
280       ++ArgNo;
281
282     // If we are passing this argument into call as the corresponding
283     // argument operand, then the argument is dynamically constant.
284     // Otherwise, we cannot transform this function safely.
285     if (CI->getArgOperand(ArgNo) == Arg)
286       return true;
287   }
288
289   // Switch cases are always constant integers. If the value is being switched
290   // on and the return is only reachable from one of its cases, it's
291   // effectively constant.
292   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
293     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
294       if (SI->getCondition() == V)
295         return SI->getDefaultDest() != RI->getParent();
296
297   // Not a constant or immutable argument, we can't safely transform.
298   return false;
299 }
300
301 // getCommonReturnValue - Check to see if the function containing the specified
302 // tail call consistently returns the same runtime-constant value at all exit
303 // points except for IgnoreRI.  If so, return the returned value.
304 //
305 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
306   Function *F = CI->getParent()->getParent();
307   Value *ReturnedValue = 0;
308
309   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
310     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
311     if (RI == 0 || RI == IgnoreRI) continue;
312
313     // We can only perform this transformation if the value returned is
314     // evaluatable at the start of the initial invocation of the function,
315     // instead of at the end of the evaluation.
316     //
317     Value *RetOp = RI->getOperand(0);
318     if (!isDynamicConstant(RetOp, CI, RI))
319       return 0;
320
321     if (ReturnedValue && RetOp != ReturnedValue)
322       return 0;     // Cannot transform if differing values are returned.
323     ReturnedValue = RetOp;
324   }
325   return ReturnedValue;
326 }
327
328 /// CanTransformAccumulatorRecursion - If the specified instruction can be
329 /// transformed using accumulator recursion elimination, return the constant
330 /// which is the start of the accumulator value.  Otherwise return null.
331 ///
332 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
333                                                       CallInst *CI) {
334   if (!I->isAssociative() || !I->isCommutative()) return 0;
335   assert(I->getNumOperands() == 2 &&
336          "Associative/commutative operations should have 2 args!");
337
338   // Exactly one operand should be the result of the call instruction.
339   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
340       (I->getOperand(0) != CI && I->getOperand(1) != CI))
341     return 0;
342
343   // The only user of this instruction we allow is a single return instruction.
344   if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
345     return 0;
346
347   // Ok, now we have to check all of the other return instructions in this
348   // function.  If they return non-constants or differing values, then we cannot
349   // transform the function safely.
350   return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
351 }
352
353 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
354   while (isa<DbgInfoIntrinsic>(I))
355     ++I;
356   return &*I;
357 }
358
359 CallInst*
360 TailCallElim::FindTRECandidate(Instruction *TI,
361                                bool CannotTailCallElimCallsMarkedTail) {
362   BasicBlock *BB = TI->getParent();
363   Function *F = BB->getParent();
364
365   if (&BB->front() == TI) // Make sure there is something before the terminator.
366     return 0;
367   
368   // Scan backwards from the return, checking to see if there is a tail call in
369   // this block.  If so, set CI to it.
370   CallInst *CI = 0;
371   BasicBlock::iterator BBI = TI;
372   while (true) {
373     CI = dyn_cast<CallInst>(BBI);
374     if (CI && CI->getCalledFunction() == F)
375       break;
376
377     if (BBI == BB->begin())
378       return 0;          // Didn't find a potential tail call.
379     --BBI;
380   }
381
382   // If this call is marked as a tail call, and if there are dynamic allocas in
383   // the function, we cannot perform this optimization.
384   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
385     return 0;
386
387   // As a special case, detect code like this:
388   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
389   // and disable this xform in this case, because the code generator will
390   // lower the call to fabs into inline code.
391   if (BB == &F->getEntryBlock() && 
392       FirstNonDbg(BB->front()) == CI &&
393       FirstNonDbg(llvm::next(BB->begin())) == TI &&
394       callIsSmall(CI)) {
395     // A single-block function with just a call and a return. Check that
396     // the arguments match.
397     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
398                            E = CallSite(CI).arg_end();
399     Function::arg_iterator FI = F->arg_begin(),
400                            FE = F->arg_end();
401     for (; I != E && FI != FE; ++I, ++FI)
402       if (*I != &*FI) break;
403     if (I == E && FI == FE)
404       return 0;
405   }
406
407   return CI;
408 }
409
410 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
411                                        BasicBlock *&OldEntry,
412                                        bool &TailCallsAreMarkedTail,
413                                        SmallVector<PHINode*, 8> &ArgumentPHIs,
414                                        bool CannotTailCallElimCallsMarkedTail) {
415   // If we are introducing accumulator recursion to eliminate operations after
416   // the call instruction that are both associative and commutative, the initial
417   // value for the accumulator is placed in this variable.  If this value is set
418   // then we actually perform accumulator recursion elimination instead of
419   // simple tail recursion elimination.  If the operation is an LLVM instruction
420   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
421   // we are handling the case when the return instruction returns a constant C
422   // which is different to the constant returned by other return instructions
423   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
424   // special case of accumulator recursion, the operation being "return C".
425   Value *AccumulatorRecursionEliminationInitVal = 0;
426   Instruction *AccumulatorRecursionInstr = 0;
427
428   // Ok, we found a potential tail call.  We can currently only transform the
429   // tail call if all of the instructions between the call and the return are
430   // movable to above the call itself, leaving the call next to the return.
431   // Check that this is the case now.
432   BasicBlock::iterator BBI = CI;
433   for (++BBI; &*BBI != Ret; ++BBI) {
434     if (CanMoveAboveCall(BBI, CI)) continue;
435     
436     // If we can't move the instruction above the call, it might be because it
437     // is an associative and commutative operation that could be transformed
438     // using accumulator recursion elimination.  Check to see if this is the
439     // case, and if so, remember the initial accumulator value for later.
440     if ((AccumulatorRecursionEliminationInitVal =
441                            CanTransformAccumulatorRecursion(BBI, CI))) {
442       // Yes, this is accumulator recursion.  Remember which instruction
443       // accumulates.
444       AccumulatorRecursionInstr = BBI;
445     } else {
446       return false;   // Otherwise, we cannot eliminate the tail recursion!
447     }
448   }
449
450   // We can only transform call/return pairs that either ignore the return value
451   // of the call and return void, ignore the value of the call and return a
452   // constant, return the value returned by the tail call, or that are being
453   // accumulator recursion variable eliminated.
454   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
455       !isa<UndefValue>(Ret->getReturnValue()) &&
456       AccumulatorRecursionEliminationInitVal == 0 &&
457       !getCommonReturnValue(0, CI)) {
458     // One case remains that we are able to handle: the current return
459     // instruction returns a constant, and all other return instructions
460     // return a different constant.
461     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
462       return false; // Current return instruction does not return a constant.
463     // Check that all other return instructions return a common constant.  If
464     // so, record it in AccumulatorRecursionEliminationInitVal.
465     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
466     if (!AccumulatorRecursionEliminationInitVal)
467       return false;
468   }
469
470   BasicBlock *BB = Ret->getParent();
471   Function *F = BB->getParent();
472
473   // OK! We can transform this tail call.  If this is the first one found,
474   // create the new entry block, allowing us to branch back to the old entry.
475   if (OldEntry == 0) {
476     OldEntry = &F->getEntryBlock();
477     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
478     NewEntry->takeName(OldEntry);
479     OldEntry->setName("tailrecurse");
480     BranchInst::Create(OldEntry, NewEntry);
481
482     // If this tail call is marked 'tail' and if there are any allocas in the
483     // entry block, move them up to the new entry block.
484     TailCallsAreMarkedTail = CI->isTailCall();
485     if (TailCallsAreMarkedTail)
486       // Move all fixed sized allocas from OldEntry to NewEntry.
487       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
488              NEBI = NewEntry->begin(); OEBI != E; )
489         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
490           if (isa<ConstantInt>(AI->getArraySize()))
491             AI->moveBefore(NEBI);
492
493     // Now that we have created a new block, which jumps to the entry
494     // block, insert a PHI node for each argument of the function.
495     // For now, we initialize each PHI to only have the real arguments
496     // which are passed in.
497     Instruction *InsertPos = OldEntry->begin();
498     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
499          I != E; ++I) {
500       PHINode *PN = PHINode::Create(I->getType(), 2,
501                                     I->getName() + ".tr", InsertPos);
502       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
503       PN->addIncoming(I, NewEntry);
504       ArgumentPHIs.push_back(PN);
505     }
506   }
507
508   // If this function has self recursive calls in the tail position where some
509   // are marked tail and some are not, only transform one flavor or another.  We
510   // have to choose whether we move allocas in the entry block to the new entry
511   // block or not, so we can't make a good choice for both.  NOTE: We could do
512   // slightly better here in the case that the function has no entry block
513   // allocas.
514   if (TailCallsAreMarkedTail && !CI->isTailCall())
515     return false;
516
517   // Ok, now that we know we have a pseudo-entry block WITH all of the
518   // required PHI nodes, add entries into the PHI node for the actual
519   // parameters passed into the tail-recursive call.
520   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
521     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
522
523   // If we are introducing an accumulator variable to eliminate the recursion,
524   // do so now.  Note that we _know_ that no subsequent tail recursion
525   // eliminations will happen on this function because of the way the
526   // accumulator recursion predicate is set up.
527   //
528   if (AccumulatorRecursionEliminationInitVal) {
529     Instruction *AccRecInstr = AccumulatorRecursionInstr;
530     // Start by inserting a new PHI node for the accumulator.
531     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
532     PHINode *AccPN =
533       PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
534                       std::distance(PB, PE) + 1,
535                       "accumulator.tr", OldEntry->begin());
536
537     // Loop over all of the predecessors of the tail recursion block.  For the
538     // real entry into the function we seed the PHI with the initial value,
539     // computed earlier.  For any other existing branches to this block (due to
540     // other tail recursions eliminated) the accumulator is not modified.
541     // Because we haven't added the branch in the current block to OldEntry yet,
542     // it will not show up as a predecessor.
543     for (pred_iterator PI = PB; PI != PE; ++PI) {
544       BasicBlock *P = *PI;
545       if (P == &F->getEntryBlock())
546         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
547       else
548         AccPN->addIncoming(AccPN, P);
549     }
550
551     if (AccRecInstr) {
552       // Add an incoming argument for the current block, which is computed by
553       // our associative and commutative accumulator instruction.
554       AccPN->addIncoming(AccRecInstr, BB);
555
556       // Next, rewrite the accumulator recursion instruction so that it does not
557       // use the result of the call anymore, instead, use the PHI node we just
558       // inserted.
559       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
560     } else {
561       // Add an incoming argument for the current block, which is just the
562       // constant returned by the current return instruction.
563       AccPN->addIncoming(Ret->getReturnValue(), BB);
564     }
565
566     // Finally, rewrite any return instructions in the program to return the PHI
567     // node instead of the "initval" that they do currently.  This loop will
568     // actually rewrite the return value we are destroying, but that's ok.
569     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
570       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
571         RI->setOperand(0, AccPN);
572     ++NumAccumAdded;
573   }
574
575   // Now that all of the PHI nodes are in place, remove the call and
576   // ret instructions, replacing them with an unconditional branch.
577   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
578   NewBI->setDebugLoc(CI->getDebugLoc());
579
580   BB->getInstList().erase(Ret);  // Remove return.
581   BB->getInstList().erase(CI);   // Remove call.
582   ++NumEliminated;
583   return true;
584 }
585
586 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
587                                        ReturnInst *Ret, BasicBlock *&OldEntry,
588                                        bool &TailCallsAreMarkedTail,
589                                        SmallVector<PHINode*, 8> &ArgumentPHIs,
590                                        bool CannotTailCallElimCallsMarkedTail) {
591   bool Change = false;
592
593   // If the return block contains nothing but the return and PHI's,
594   // there might be an opportunity to duplicate the return in its
595   // predecessors and perform TRC there. Look for predecessors that end
596   // in unconditional branch and recursive call(s).
597   SmallVector<BranchInst*, 8> UncondBranchPreds;
598   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
599     BasicBlock *Pred = *PI;
600     TerminatorInst *PTI = Pred->getTerminator();
601     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
602       if (BI->isUnconditional())
603         UncondBranchPreds.push_back(BI);
604   }
605
606   while (!UncondBranchPreds.empty()) {
607     BranchInst *BI = UncondBranchPreds.pop_back_val();
608     BasicBlock *Pred = BI->getParent();
609     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
610       DEBUG(dbgs() << "FOLDING: " << *BB
611             << "INTO UNCOND BRANCH PRED: " << *Pred);
612       EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
613                                  OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
614                                  CannotTailCallElimCallsMarkedTail);
615       ++NumRetDuped;
616       Change = true;
617     }
618   }
619
620   return Change;
621 }
622
623 bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
624                                          bool &TailCallsAreMarkedTail,
625                                          SmallVector<PHINode*, 8> &ArgumentPHIs,
626                                        bool CannotTailCallElimCallsMarkedTail) {
627   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
628   if (!CI)
629     return false;
630
631   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
632                                     ArgumentPHIs,
633                                     CannotTailCallElimCallsMarkedTail);
634 }