Get rid of static constructors for pass registration. Instead, every pass exposes...
[oota-llvm.git] / lib / Transforms / Scalar / Sink.cpp
1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks, when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "sink"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Analysis/Dominators.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CFG.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
27
28 STATISTIC(NumSunk, "Number of instructions sunk");
29
30 namespace {
31   class Sinking : public FunctionPass {
32     DominatorTree *DT;
33     LoopInfo *LI;
34     AliasAnalysis *AA;
35
36   public:
37     static char ID; // Pass identification
38     Sinking() : FunctionPass(ID) {
39       initializeSinkingPass(*PassRegistry::getPassRegistry());
40     }
41     
42     virtual bool runOnFunction(Function &F);
43     
44     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45       AU.setPreservesCFG();
46       FunctionPass::getAnalysisUsage(AU);
47       AU.addRequired<AliasAnalysis>();
48       AU.addRequired<DominatorTree>();
49       AU.addRequired<LoopInfo>();
50       AU.addPreserved<DominatorTree>();
51       AU.addPreserved<LoopInfo>();
52     }
53   private:
54     bool ProcessBlock(BasicBlock &BB);
55     bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
56     bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
57   };
58 } // end anonymous namespace
59   
60 char Sinking::ID = 0;
61 INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
62 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
63 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
64 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
65 INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
66
67 FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
68
69 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
70 /// occur in blocks dominated by the specified block.
71 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, 
72                                       BasicBlock *BB) const {
73   // Ignoring debug uses is necessary so debug info doesn't affect the code.
74   // This may leave a referencing dbg_value in the original block, before
75   // the definition of the vreg.  Dwarf generator handles this although the
76   // user might not get the right info at runtime.
77   for (Value::use_iterator I = Inst->use_begin(),
78        E = Inst->use_end(); I != E; ++I) {
79     // Determine the block of the use.
80     Instruction *UseInst = cast<Instruction>(*I);
81     BasicBlock *UseBlock = UseInst->getParent();
82     if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
83       // PHI nodes use the operand in the predecessor block, not the block with
84       // the PHI.
85       unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
86       UseBlock = PN->getIncomingBlock(Num);
87     }
88     // Check that it dominates.
89     if (!DT->dominates(BB, UseBlock))
90       return false;
91   }
92   return true;
93 }
94
95 bool Sinking::runOnFunction(Function &F) {
96   DT = &getAnalysis<DominatorTree>();
97   LI = &getAnalysis<LoopInfo>();
98   AA = &getAnalysis<AliasAnalysis>();
99
100   bool EverMadeChange = false;
101   
102   while (1) {
103     bool MadeChange = false;
104
105     // Process all basic blocks.
106     for (Function::iterator I = F.begin(), E = F.end(); 
107          I != E; ++I)
108       MadeChange |= ProcessBlock(*I);
109     
110     // If this iteration over the code changed anything, keep iterating.
111     if (!MadeChange) break;
112     EverMadeChange = true;
113   } 
114   return EverMadeChange;
115 }
116
117 bool Sinking::ProcessBlock(BasicBlock &BB) {
118   // Can't sink anything out of a block that has less than two successors.
119   if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
120
121   // Don't bother sinking code out of unreachable blocks. In addition to being
122   // unprofitable, it can also lead to infinite looping, because in an unreachable
123   // loop there may be nowhere to stop.
124   if (!DT->isReachableFromEntry(&BB)) return false;
125
126   bool MadeChange = false;
127
128   // Walk the basic block bottom-up.  Remember if we saw a store.
129   BasicBlock::iterator I = BB.end();
130   --I;
131   bool ProcessedBegin = false;
132   SmallPtrSet<Instruction *, 8> Stores;
133   do {
134     Instruction *Inst = I;  // The instruction to sink.
135     
136     // Predecrement I (if it's not begin) so that it isn't invalidated by
137     // sinking.
138     ProcessedBegin = I == BB.begin();
139     if (!ProcessedBegin)
140       --I;
141
142     if (isa<DbgInfoIntrinsic>(Inst))
143       continue;
144
145     if (SinkInstruction(Inst, Stores))
146       ++NumSunk, MadeChange = true;
147     
148     // If we just processed the first instruction in the block, we're done.
149   } while (!ProcessedBegin);
150   
151   return MadeChange;
152 }
153
154 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
155                          SmallPtrSet<Instruction *, 8> &Stores) {
156   if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
157     if (L->isVolatile()) return false;
158
159     Value *Ptr = L->getPointerOperand();
160     unsigned Size = AA->getTypeStoreSize(L->getType());
161     for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
162          E = Stores.end(); I != E; ++I)
163       if (AA->getModRefInfo(*I, Ptr, Size) & AliasAnalysis::Mod)
164         return false;
165   }
166
167   if (Inst->mayWriteToMemory()) {
168     Stores.insert(Inst);
169     return false;
170   }
171
172   return Inst->isSafeToSpeculativelyExecute();
173 }
174
175 /// SinkInstruction - Determine whether it is safe to sink the specified machine
176 /// instruction out of its current block into a successor.
177 bool Sinking::SinkInstruction(Instruction *Inst,
178                               SmallPtrSet<Instruction *, 8> &Stores) {
179   // Check if it's safe to move the instruction.
180   if (!isSafeToMove(Inst, AA, Stores))
181     return false;
182   
183   // FIXME: This should include support for sinking instructions within the
184   // block they are currently in to shorten the live ranges.  We often get
185   // instructions sunk into the top of a large block, but it would be better to
186   // also sink them down before their first use in the block.  This xform has to
187   // be careful not to *increase* register pressure though, e.g. sinking
188   // "x = y + z" down if it kills y and z would increase the live ranges of y
189   // and z and only shrink the live range of x.
190   
191   // Loop over all the operands of the specified instruction.  If there is
192   // anything we can't handle, bail out.
193   BasicBlock *ParentBlock = Inst->getParent();
194   
195   // SuccToSinkTo - This is the successor to sink this instruction to, once we
196   // decide.
197   BasicBlock *SuccToSinkTo = 0;
198   
199   // FIXME: This picks a successor to sink into based on having one
200   // successor that dominates all the uses.  However, there are cases where
201   // sinking can happen but where the sink point isn't a successor.  For
202   // example:
203   //   x = computation
204   //   if () {} else {}
205   //   use x
206   // the instruction could be sunk over the whole diamond for the 
207   // if/then/else (or loop, etc), allowing it to be sunk into other blocks
208   // after that.
209   
210   // Instructions can only be sunk if all their uses are in blocks
211   // dominated by one of the successors.
212   // Look at all the successors and decide which one
213   // we should sink to.
214   for (succ_iterator SI = succ_begin(ParentBlock),
215        E = succ_end(ParentBlock); SI != E; ++SI) {
216     if (AllUsesDominatedByBlock(Inst, *SI)) {
217       SuccToSinkTo = *SI;
218       break;
219     }
220   }
221       
222   // If we couldn't find a block to sink to, ignore this instruction.
223   if (SuccToSinkTo == 0)
224     return false;
225   
226   // It is not possible to sink an instruction into its own block.  This can
227   // happen with loops.
228   if (Inst->getParent() == SuccToSinkTo)
229     return false;
230   
231   DEBUG(dbgs() << "Sink instr " << *Inst);
232   DEBUG(dbgs() << "to block ";
233         WriteAsOperand(dbgs(), SuccToSinkTo, false));
234   
235   // If the block has multiple predecessors, this would introduce computation on
236   // a path that it doesn't already exist.  We could split the critical edge,
237   // but for now we just punt.
238   // FIXME: Split critical edges if not backedges.
239   if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
240     // We cannot sink a load across a critical edge - there may be stores in
241     // other code paths.
242     if (!Inst->isSafeToSpeculativelyExecute()) {
243       DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
244       return false;
245     }
246
247     // We don't want to sink across a critical edge if we don't dominate the
248     // successor. We could be introducing calculations to new code paths.
249     if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
250       DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
251       return false;
252     }
253
254     // Don't sink instructions into a loop.
255     if (LI->isLoopHeader(SuccToSinkTo)) {
256       DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
257       return false;
258     }
259
260     // Otherwise we are OK with sinking along a critical edge.
261     DEBUG(dbgs() << "Sinking along critical edge.\n");
262   }
263   
264   // Determine where to insert into.  Skip phi nodes.
265   BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
266   while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
267     ++InsertPos;
268   
269   // Move the instruction.
270   Inst->moveBefore(InsertPos);
271   return true;
272 }