Convert CallInst and InvokeInst APIs to use ArrayRef.
[oota-llvm.git] / lib / Transforms / Scalar / SimplifyCFGPass.cpp
1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements dead code elimination and basic block merging, along
11 // with a collection of other peephole control flow optimizations.  For example:
12 //
13 //   * Removes basic blocks with no predecessors.
14 //   * Merges a basic block into its predecessor if there is only one and the
15 //     predecessor only has one successor.
16 //   * Eliminates PHI nodes for basic blocks with a single predecessor.
17 //   * Eliminates a basic block that only contains an unconditional branch.
18 //   * Changes invoke instructions to nounwind functions to be calls.
19 //   * Change things like "if (x) if (y)" into "if (x&y)".
20 //   * etc..
21 //
22 //===----------------------------------------------------------------------===//
23
24 #define DEBUG_TYPE "simplifycfg"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Constants.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Module.h"
31 #include "llvm/Attributes.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/Statistic.h"
38 using namespace llvm;
39
40 STATISTIC(NumSimpl, "Number of blocks simplified");
41
42 namespace {
43   struct CFGSimplifyPass : public FunctionPass {
44     static char ID; // Pass identification, replacement for typeid
45     CFGSimplifyPass() : FunctionPass(ID) {
46       initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
47     }
48
49     virtual bool runOnFunction(Function &F);
50   };
51 }
52
53 char CFGSimplifyPass::ID = 0;
54 INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
55                 "Simplify the CFG", false, false)
56
57 // Public interface to the CFGSimplification pass
58 FunctionPass *llvm::createCFGSimplificationPass() {
59   return new CFGSimplifyPass();
60 }
61
62 /// ChangeToUnreachable - Insert an unreachable instruction before the specified
63 /// instruction, making it and the rest of the code in the block dead.
64 static void ChangeToUnreachable(Instruction *I, bool UseLLVMTrap) {
65   BasicBlock *BB = I->getParent();
66   // Loop over all of the successors, removing BB's entry from any PHI
67   // nodes.
68   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
69     (*SI)->removePredecessor(BB);
70   
71   // Insert a call to llvm.trap right before this.  This turns the undefined
72   // behavior into a hard fail instead of falling through into random code.
73   if (UseLLVMTrap) {
74     Function *TrapFn =
75       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
76     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
77     CallTrap->setDebugLoc(I->getDebugLoc());
78   }
79   new UnreachableInst(I->getContext(), I);
80   
81   // All instructions after this are dead.
82   BasicBlock::iterator BBI = I, BBE = BB->end();
83   while (BBI != BBE) {
84     if (!BBI->use_empty())
85       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
86     BB->getInstList().erase(BBI++);
87   }
88 }
89
90 /// ChangeToCall - Convert the specified invoke into a normal call.
91 static void ChangeToCall(InvokeInst *II) {
92   BasicBlock *BB = II->getParent();
93   SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
94   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
95   NewCall->takeName(II);
96   NewCall->setCallingConv(II->getCallingConv());
97   NewCall->setAttributes(II->getAttributes());
98   NewCall->setDebugLoc(II->getDebugLoc());
99   II->replaceAllUsesWith(NewCall);
100
101   // Follow the call by a branch to the normal destination.
102   BranchInst::Create(II->getNormalDest(), II);
103
104   // Update PHI nodes in the unwind destination
105   II->getUnwindDest()->removePredecessor(BB);
106   BB->getInstList().erase(II);
107 }
108
109 static bool MarkAliveBlocks(BasicBlock *BB,
110                             SmallPtrSet<BasicBlock*, 128> &Reachable) {
111   
112   SmallVector<BasicBlock*, 128> Worklist;
113   Worklist.push_back(BB);
114   bool Changed = false;
115   do {
116     BB = Worklist.pop_back_val();
117     
118     if (!Reachable.insert(BB))
119       continue;
120
121     // Do a quick scan of the basic block, turning any obviously unreachable
122     // instructions into LLVM unreachable insts.  The instruction combining pass
123     // canonicalizes unreachable insts into stores to null or undef.
124     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
125       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
126         if (CI->doesNotReturn()) {
127           // If we found a call to a no-return function, insert an unreachable
128           // instruction after it.  Make sure there isn't *already* one there
129           // though.
130           ++BBI;
131           if (!isa<UnreachableInst>(BBI)) {
132             // Don't insert a call to llvm.trap right before the unreachable.
133             ChangeToUnreachable(BBI, false);
134             Changed = true;
135           }
136           break;
137         }
138       }
139       
140       // Store to undef and store to null are undefined and used to signal that
141       // they should be changed to unreachable by passes that can't modify the
142       // CFG.
143       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
144         // Don't touch volatile stores.
145         if (SI->isVolatile()) continue;
146
147         Value *Ptr = SI->getOperand(1);
148         
149         if (isa<UndefValue>(Ptr) ||
150             (isa<ConstantPointerNull>(Ptr) &&
151              SI->getPointerAddressSpace() == 0)) {
152           ChangeToUnreachable(SI, true);
153           Changed = true;
154           break;
155         }
156       }
157     }
158
159     // Turn invokes that call 'nounwind' functions into ordinary calls.
160     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
161       if (II->doesNotThrow()) {
162         ChangeToCall(II);
163         Changed = true;
164       }
165
166     Changed |= ConstantFoldTerminator(BB, true);
167     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
168       Worklist.push_back(*SI);
169   } while (!Worklist.empty());
170   return Changed;
171 }
172
173 /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even 
174 /// if they are in a dead cycle.  Return true if a change was made, false 
175 /// otherwise.
176 static bool RemoveUnreachableBlocksFromFn(Function &F) {
177   SmallPtrSet<BasicBlock*, 128> Reachable;
178   bool Changed = MarkAliveBlocks(F.begin(), Reachable);
179   
180   // If there are unreachable blocks in the CFG...
181   if (Reachable.size() == F.size())
182     return Changed;
183   
184   assert(Reachable.size() < F.size());
185   NumSimpl += F.size()-Reachable.size();
186   
187   // Loop over all of the basic blocks that are not reachable, dropping all of
188   // their internal references...
189   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
190     if (Reachable.count(BB))
191       continue;
192     
193     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
194       if (Reachable.count(*SI))
195         (*SI)->removePredecessor(BB);
196     BB->dropAllReferences();
197   }
198   
199   for (Function::iterator I = ++F.begin(); I != F.end();)
200     if (!Reachable.count(I))
201       I = F.getBasicBlockList().erase(I);
202     else
203       ++I;
204   
205   return true;
206 }
207
208 /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi
209 /// node) return blocks, merge them together to promote recursive block merging.
210 static bool MergeEmptyReturnBlocks(Function &F) {
211   bool Changed = false;
212   
213   BasicBlock *RetBlock = 0;
214   
215   // Scan all the blocks in the function, looking for empty return blocks.
216   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
217     BasicBlock &BB = *BBI++;
218     
219     // Only look at return blocks.
220     ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
221     if (Ret == 0) continue;
222     
223     // Only look at the block if it is empty or the only other thing in it is a
224     // single PHI node that is the operand to the return.
225     if (Ret != &BB.front()) {
226       // Check for something else in the block.
227       BasicBlock::iterator I = Ret;
228       --I;
229       // Skip over debug info.
230       while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
231         --I;
232       if (!isa<DbgInfoIntrinsic>(I) &&
233           (!isa<PHINode>(I) || I != BB.begin() ||
234            Ret->getNumOperands() == 0 ||
235            Ret->getOperand(0) != I))
236         continue;
237     }
238
239     // If this is the first returning block, remember it and keep going.
240     if (RetBlock == 0) {
241       RetBlock = &BB;
242       continue;
243     }
244     
245     // Otherwise, we found a duplicate return block.  Merge the two.
246     Changed = true;
247     
248     // Case when there is no input to the return or when the returned values
249     // agree is trivial.  Note that they can't agree if there are phis in the
250     // blocks.
251     if (Ret->getNumOperands() == 0 ||
252         Ret->getOperand(0) == 
253           cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
254       BB.replaceAllUsesWith(RetBlock);
255       BB.eraseFromParent();
256       continue;
257     }
258     
259     // If the canonical return block has no PHI node, create one now.
260     PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
261     if (RetBlockPHI == 0) {
262       Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
263       pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
264       RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
265                                     std::distance(PB, PE), "merge",
266                                     &RetBlock->front());
267       
268       for (pred_iterator PI = PB; PI != PE; ++PI)
269         RetBlockPHI->addIncoming(InVal, *PI);
270       RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
271     }
272     
273     // Turn BB into a block that just unconditionally branches to the return
274     // block.  This handles the case when the two return blocks have a common
275     // predecessor but that return different things.
276     RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
277     BB.getTerminator()->eraseFromParent();
278     BranchInst::Create(RetBlock, &BB);
279   }
280   
281   return Changed;
282 }
283
284 /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function,
285 /// iterating until no more changes are made.
286 static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) {
287   bool Changed = false;
288   bool LocalChange = true;
289   while (LocalChange) {
290     LocalChange = false;
291     
292     // Loop over all of the basic blocks and remove them if they are unneeded...
293     //
294     for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
295       if (SimplifyCFG(BBIt++, TD)) {
296         LocalChange = true;
297         ++NumSimpl;
298       }
299     }
300     Changed |= LocalChange;
301   }
302   return Changed;
303 }
304
305 // It is possible that we may require multiple passes over the code to fully
306 // simplify the CFG.
307 //
308 bool CFGSimplifyPass::runOnFunction(Function &F) {
309   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
310   bool EverChanged = RemoveUnreachableBlocksFromFn(F);
311   EverChanged |= MergeEmptyReturnBlocks(F);
312   EverChanged |= IterativeSimplifyCFG(F, TD);
313
314   // If neither pass changed anything, we're done.
315   if (!EverChanged) return false;
316
317   // IterativeSimplifyCFG can (rarely) make some loops dead.  If this happens,
318   // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should
319   // iterate between the two optimizations.  We structure the code like this to
320   // avoid reruning IterativeSimplifyCFG if the second pass of 
321   // RemoveUnreachableBlocksFromFn doesn't do anything.
322   if (!RemoveUnreachableBlocksFromFn(F))
323     return true;
324
325   do {
326     EverChanged = IterativeSimplifyCFG(F, TD);
327     EverChanged |= RemoveUnreachableBlocksFromFn(F);
328   } while (EverChanged);
329
330   return true;
331 }