DataLayout is mandatory, update the API to reflect it with references.
[oota-llvm.git] / lib / Transforms / Scalar / Scalarizer.cpp
1 //===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass converts vector operations into scalar operations, in order
11 // to expose optimization opportunities on the individual scalar operations.
12 // It is mainly intended for targets that do not have vector units, but it
13 // may also be useful for revectorizing code to different vector widths.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/InstVisitor.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "scalarizer"
28
29 namespace {
30 // Used to store the scattered form of a vector.
31 typedef SmallVector<Value *, 8> ValueVector;
32
33 // Used to map a vector Value to its scattered form.  We use std::map
34 // because we want iterators to persist across insertion and because the
35 // values are relatively large.
36 typedef std::map<Value *, ValueVector> ScatterMap;
37
38 // Lists Instructions that have been replaced with scalar implementations,
39 // along with a pointer to their scattered forms.
40 typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
41
42 // Provides a very limited vector-like interface for lazily accessing one
43 // component of a scattered vector or vector pointer.
44 class Scatterer {
45 public:
46   Scatterer() {}
47
48   // Scatter V into Size components.  If new instructions are needed,
49   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
50   // the results.
51   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
52             ValueVector *cachePtr = nullptr);
53
54   // Return component I, creating a new Value for it if necessary.
55   Value *operator[](unsigned I);
56
57   // Return the number of components.
58   unsigned size() const { return Size; }
59
60 private:
61   BasicBlock *BB;
62   BasicBlock::iterator BBI;
63   Value *V;
64   ValueVector *CachePtr;
65   PointerType *PtrTy;
66   ValueVector Tmp;
67   unsigned Size;
68 };
69
70 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
71 // called Name that compares X and Y in the same way as FCI.
72 struct FCmpSplitter {
73   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
74   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
75                     const Twine &Name) const {
76     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
77   }
78   FCmpInst &FCI;
79 };
80
81 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
82 // called Name that compares X and Y in the same way as ICI.
83 struct ICmpSplitter {
84   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
85   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
86                     const Twine &Name) const {
87     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
88   }
89   ICmpInst &ICI;
90 };
91
92 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
93 // a binary operator like BO called Name with operands X and Y.
94 struct BinarySplitter {
95   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
96   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
97                     const Twine &Name) const {
98     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
99   }
100   BinaryOperator &BO;
101 };
102
103 // Information about a load or store that we're scalarizing.
104 struct VectorLayout {
105   VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
106
107   // Return the alignment of element I.
108   uint64_t getElemAlign(unsigned I) {
109     return MinAlign(VecAlign, I * ElemSize);
110   }
111
112   // The type of the vector.
113   VectorType *VecTy;
114
115   // The type of each element.
116   Type *ElemTy;
117
118   // The alignment of the vector.
119   uint64_t VecAlign;
120
121   // The size of each element.
122   uint64_t ElemSize;
123 };
124
125 class Scalarizer : public FunctionPass,
126                    public InstVisitor<Scalarizer, bool> {
127 public:
128   static char ID;
129
130   Scalarizer() :
131     FunctionPass(ID) {
132     initializeScalarizerPass(*PassRegistry::getPassRegistry());
133   }
134
135   bool doInitialization(Module &M) override;
136   bool runOnFunction(Function &F) override;
137
138   // InstVisitor methods.  They return true if the instruction was scalarized,
139   // false if nothing changed.
140   bool visitInstruction(Instruction &) { return false; }
141   bool visitSelectInst(SelectInst &SI);
142   bool visitICmpInst(ICmpInst &);
143   bool visitFCmpInst(FCmpInst &);
144   bool visitBinaryOperator(BinaryOperator &);
145   bool visitGetElementPtrInst(GetElementPtrInst &);
146   bool visitCastInst(CastInst &);
147   bool visitBitCastInst(BitCastInst &);
148   bool visitShuffleVectorInst(ShuffleVectorInst &);
149   bool visitPHINode(PHINode &);
150   bool visitLoadInst(LoadInst &);
151   bool visitStoreInst(StoreInst &);
152
153   static void registerOptions() {
154     // This is disabled by default because having separate loads and stores
155     // makes it more likely that the -combiner-alias-analysis limits will be
156     // reached.
157     OptionRegistry::registerOption<bool, Scalarizer,
158                                  &Scalarizer::ScalarizeLoadStore>(
159         "scalarize-load-store",
160         "Allow the scalarizer pass to scalarize loads and store", false);
161   }
162
163 private:
164   Scatterer scatter(Instruction *, Value *);
165   void gather(Instruction *, const ValueVector &);
166   bool canTransferMetadata(unsigned Kind);
167   void transferMetadata(Instruction *, const ValueVector &);
168   bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
169   bool finish();
170
171   template<typename T> bool splitBinary(Instruction &, const T &);
172
173   ScatterMap Scattered;
174   GatherList Gathered;
175   unsigned ParallelLoopAccessMDKind;
176   bool ScalarizeLoadStore;
177 };
178
179 char Scalarizer::ID = 0;
180 } // end anonymous namespace
181
182 INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
183                              "Scalarize vector operations", false, false)
184
185 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
186                      ValueVector *cachePtr)
187   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
188   Type *Ty = V->getType();
189   PtrTy = dyn_cast<PointerType>(Ty);
190   if (PtrTy)
191     Ty = PtrTy->getElementType();
192   Size = Ty->getVectorNumElements();
193   if (!CachePtr)
194     Tmp.resize(Size, nullptr);
195   else if (CachePtr->empty())
196     CachePtr->resize(Size, nullptr);
197   else
198     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
199 }
200
201 // Return component I, creating a new Value for it if necessary.
202 Value *Scatterer::operator[](unsigned I) {
203   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
204   // Try to reuse a previous value.
205   if (CV[I])
206     return CV[I];
207   IRBuilder<> Builder(BB, BBI);
208   if (PtrTy) {
209     if (!CV[0]) {
210       Type *Ty =
211         PointerType::get(PtrTy->getElementType()->getVectorElementType(),
212                          PtrTy->getAddressSpace());
213       CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
214     }
215     if (I != 0)
216       CV[I] = Builder.CreateConstGEP1_32(CV[0], I,
217                                          V->getName() + ".i" + Twine(I));
218   } else {
219     // Search through a chain of InsertElementInsts looking for element I.
220     // Record other elements in the cache.  The new V is still suitable
221     // for all uncached indices.
222     for (;;) {
223       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
224       if (!Insert)
225         break;
226       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
227       if (!Idx)
228         break;
229       unsigned J = Idx->getZExtValue();
230       CV[J] = Insert->getOperand(1);
231       V = Insert->getOperand(0);
232       if (I == J)
233         return CV[J];
234     }
235     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
236                                          V->getName() + ".i" + Twine(I));
237   }
238   return CV[I];
239 }
240
241 bool Scalarizer::doInitialization(Module &M) {
242   ParallelLoopAccessMDKind =
243       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
244   ScalarizeLoadStore =
245       M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
246   return false;
247 }
248
249 bool Scalarizer::runOnFunction(Function &F) {
250   for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
251     BasicBlock *BB = BBI;
252     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
253       Instruction *I = II;
254       bool Done = visit(I);
255       ++II;
256       if (Done && I->getType()->isVoidTy())
257         I->eraseFromParent();
258     }
259   }
260   return finish();
261 }
262
263 // Return a scattered form of V that can be accessed by Point.  V must be a
264 // vector or a pointer to a vector.
265 Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
266   if (Argument *VArg = dyn_cast<Argument>(V)) {
267     // Put the scattered form of arguments in the entry block,
268     // so that it can be used everywhere.
269     Function *F = VArg->getParent();
270     BasicBlock *BB = &F->getEntryBlock();
271     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
272   }
273   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
274     // Put the scattered form of an instruction directly after the
275     // instruction.
276     BasicBlock *BB = VOp->getParent();
277     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
278                      V, &Scattered[V]);
279   }
280   // In the fallback case, just put the scattered before Point and
281   // keep the result local to Point.
282   return Scatterer(Point->getParent(), Point, V);
283 }
284
285 // Replace Op with the gathered form of the components in CV.  Defer the
286 // deletion of Op and creation of the gathered form to the end of the pass,
287 // so that we can avoid creating the gathered form if all uses of Op are
288 // replaced with uses of CV.
289 void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
290   // Since we're not deleting Op yet, stub out its operands, so that it
291   // doesn't make anything live unnecessarily.
292   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
293     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
294
295   transferMetadata(Op, CV);
296
297   // If we already have a scattered form of Op (created from ExtractElements
298   // of Op itself), replace them with the new form.
299   ValueVector &SV = Scattered[Op];
300   if (!SV.empty()) {
301     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
302       Instruction *Old = cast<Instruction>(SV[I]);
303       CV[I]->takeName(Old);
304       Old->replaceAllUsesWith(CV[I]);
305       Old->eraseFromParent();
306     }
307   }
308   SV = CV;
309   Gathered.push_back(GatherList::value_type(Op, &SV));
310 }
311
312 // Return true if it is safe to transfer the given metadata tag from
313 // vector to scalar instructions.
314 bool Scalarizer::canTransferMetadata(unsigned Tag) {
315   return (Tag == LLVMContext::MD_tbaa
316           || Tag == LLVMContext::MD_fpmath
317           || Tag == LLVMContext::MD_tbaa_struct
318           || Tag == LLVMContext::MD_invariant_load
319           || Tag == LLVMContext::MD_alias_scope
320           || Tag == LLVMContext::MD_noalias
321           || Tag == ParallelLoopAccessMDKind);
322 }
323
324 // Transfer metadata from Op to the instructions in CV if it is known
325 // to be safe to do so.
326 void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
327   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
328   Op->getAllMetadataOtherThanDebugLoc(MDs);
329   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
330     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
331       for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
332                MI = MDs.begin(),
333                ME = MDs.end();
334            MI != ME; ++MI)
335         if (canTransferMetadata(MI->first))
336           New->setMetadata(MI->first, MI->second);
337       New->setDebugLoc(Op->getDebugLoc());
338     }
339   }
340 }
341
342 // Try to fill in Layout from Ty, returning true on success.  Alignment is
343 // the alignment of the vector, or 0 if the ABI default should be used.
344 bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
345                                  VectorLayout &Layout, const DataLayout &DL) {
346   // Make sure we're dealing with a vector.
347   Layout.VecTy = dyn_cast<VectorType>(Ty);
348   if (!Layout.VecTy)
349     return false;
350
351   // Check that we're dealing with full-byte elements.
352   Layout.ElemTy = Layout.VecTy->getElementType();
353   if (DL.getTypeSizeInBits(Layout.ElemTy) !=
354       DL.getTypeStoreSizeInBits(Layout.ElemTy))
355     return false;
356
357   if (Alignment)
358     Layout.VecAlign = Alignment;
359   else
360     Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
361   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
362   return true;
363 }
364
365 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
366 // to create an instruction like I with operands X and Y and name Name.
367 template<typename Splitter>
368 bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
369   VectorType *VT = dyn_cast<VectorType>(I.getType());
370   if (!VT)
371     return false;
372
373   unsigned NumElems = VT->getNumElements();
374   IRBuilder<> Builder(I.getParent(), &I);
375   Scatterer Op0 = scatter(&I, I.getOperand(0));
376   Scatterer Op1 = scatter(&I, I.getOperand(1));
377   assert(Op0.size() == NumElems && "Mismatched binary operation");
378   assert(Op1.size() == NumElems && "Mismatched binary operation");
379   ValueVector Res;
380   Res.resize(NumElems);
381   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
382     Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
383                       I.getName() + ".i" + Twine(Elem));
384   gather(&I, Res);
385   return true;
386 }
387
388 bool Scalarizer::visitSelectInst(SelectInst &SI) {
389   VectorType *VT = dyn_cast<VectorType>(SI.getType());
390   if (!VT)
391     return false;
392
393   unsigned NumElems = VT->getNumElements();
394   IRBuilder<> Builder(SI.getParent(), &SI);
395   Scatterer Op1 = scatter(&SI, SI.getOperand(1));
396   Scatterer Op2 = scatter(&SI, SI.getOperand(2));
397   assert(Op1.size() == NumElems && "Mismatched select");
398   assert(Op2.size() == NumElems && "Mismatched select");
399   ValueVector Res;
400   Res.resize(NumElems);
401
402   if (SI.getOperand(0)->getType()->isVectorTy()) {
403     Scatterer Op0 = scatter(&SI, SI.getOperand(0));
404     assert(Op0.size() == NumElems && "Mismatched select");
405     for (unsigned I = 0; I < NumElems; ++I)
406       Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
407                                     SI.getName() + ".i" + Twine(I));
408   } else {
409     Value *Op0 = SI.getOperand(0);
410     for (unsigned I = 0; I < NumElems; ++I)
411       Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
412                                     SI.getName() + ".i" + Twine(I));
413   }
414   gather(&SI, Res);
415   return true;
416 }
417
418 bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
419   return splitBinary(ICI, ICmpSplitter(ICI));
420 }
421
422 bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
423   return splitBinary(FCI, FCmpSplitter(FCI));
424 }
425
426 bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
427   return splitBinary(BO, BinarySplitter(BO));
428 }
429
430 bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
431   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
432   if (!VT)
433     return false;
434
435   IRBuilder<> Builder(GEPI.getParent(), &GEPI);
436   unsigned NumElems = VT->getNumElements();
437   unsigned NumIndices = GEPI.getNumIndices();
438
439   Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
440
441   SmallVector<Scatterer, 8> Ops;
442   Ops.resize(NumIndices);
443   for (unsigned I = 0; I < NumIndices; ++I)
444     Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
445
446   ValueVector Res;
447   Res.resize(NumElems);
448   for (unsigned I = 0; I < NumElems; ++I) {
449     SmallVector<Value *, 8> Indices;
450     Indices.resize(NumIndices);
451     for (unsigned J = 0; J < NumIndices; ++J)
452       Indices[J] = Ops[J][I];
453     Res[I] = Builder.CreateGEP(Base[I], Indices,
454                                GEPI.getName() + ".i" + Twine(I));
455     if (GEPI.isInBounds())
456       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
457         NewGEPI->setIsInBounds();
458   }
459   gather(&GEPI, Res);
460   return true;
461 }
462
463 bool Scalarizer::visitCastInst(CastInst &CI) {
464   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
465   if (!VT)
466     return false;
467
468   unsigned NumElems = VT->getNumElements();
469   IRBuilder<> Builder(CI.getParent(), &CI);
470   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
471   assert(Op0.size() == NumElems && "Mismatched cast");
472   ValueVector Res;
473   Res.resize(NumElems);
474   for (unsigned I = 0; I < NumElems; ++I)
475     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
476                                 CI.getName() + ".i" + Twine(I));
477   gather(&CI, Res);
478   return true;
479 }
480
481 bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
482   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
483   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
484   if (!DstVT || !SrcVT)
485     return false;
486
487   unsigned DstNumElems = DstVT->getNumElements();
488   unsigned SrcNumElems = SrcVT->getNumElements();
489   IRBuilder<> Builder(BCI.getParent(), &BCI);
490   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
491   ValueVector Res;
492   Res.resize(DstNumElems);
493
494   if (DstNumElems == SrcNumElems) {
495     for (unsigned I = 0; I < DstNumElems; ++I)
496       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
497                                      BCI.getName() + ".i" + Twine(I));
498   } else if (DstNumElems > SrcNumElems) {
499     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
500     // individual elements to the destination.
501     unsigned FanOut = DstNumElems / SrcNumElems;
502     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
503     unsigned ResI = 0;
504     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
505       Value *V = Op0[Op0I];
506       Instruction *VI;
507       // Look through any existing bitcasts before converting to <N x t2>.
508       // In the best case, the resulting conversion might be a no-op.
509       while ((VI = dyn_cast<Instruction>(V)) &&
510              VI->getOpcode() == Instruction::BitCast)
511         V = VI->getOperand(0);
512       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
513       Scatterer Mid = scatter(&BCI, V);
514       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
515         Res[ResI++] = Mid[MidI];
516     }
517   } else {
518     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
519     unsigned FanIn = SrcNumElems / DstNumElems;
520     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
521     unsigned Op0I = 0;
522     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
523       Value *V = UndefValue::get(MidTy);
524       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
525         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
526                                         BCI.getName() + ".i" + Twine(ResI)
527                                         + ".upto" + Twine(MidI));
528       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
529                                         BCI.getName() + ".i" + Twine(ResI));
530     }
531   }
532   gather(&BCI, Res);
533   return true;
534 }
535
536 bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
537   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
538   if (!VT)
539     return false;
540
541   unsigned NumElems = VT->getNumElements();
542   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
543   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
544   ValueVector Res;
545   Res.resize(NumElems);
546
547   for (unsigned I = 0; I < NumElems; ++I) {
548     int Selector = SVI.getMaskValue(I);
549     if (Selector < 0)
550       Res[I] = UndefValue::get(VT->getElementType());
551     else if (unsigned(Selector) < Op0.size())
552       Res[I] = Op0[Selector];
553     else
554       Res[I] = Op1[Selector - Op0.size()];
555   }
556   gather(&SVI, Res);
557   return true;
558 }
559
560 bool Scalarizer::visitPHINode(PHINode &PHI) {
561   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
562   if (!VT)
563     return false;
564
565   unsigned NumElems = VT->getNumElements();
566   IRBuilder<> Builder(PHI.getParent(), &PHI);
567   ValueVector Res;
568   Res.resize(NumElems);
569
570   unsigned NumOps = PHI.getNumOperands();
571   for (unsigned I = 0; I < NumElems; ++I)
572     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
573                                PHI.getName() + ".i" + Twine(I));
574
575   for (unsigned I = 0; I < NumOps; ++I) {
576     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
577     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
578     for (unsigned J = 0; J < NumElems; ++J)
579       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
580   }
581   gather(&PHI, Res);
582   return true;
583 }
584
585 bool Scalarizer::visitLoadInst(LoadInst &LI) {
586   if (!ScalarizeLoadStore)
587     return false;
588   if (!LI.isSimple())
589     return false;
590
591   VectorLayout Layout;
592   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
593                        LI.getModule()->getDataLayout()))
594     return false;
595
596   unsigned NumElems = Layout.VecTy->getNumElements();
597   IRBuilder<> Builder(LI.getParent(), &LI);
598   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
599   ValueVector Res;
600   Res.resize(NumElems);
601
602   for (unsigned I = 0; I < NumElems; ++I)
603     Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
604                                        LI.getName() + ".i" + Twine(I));
605   gather(&LI, Res);
606   return true;
607 }
608
609 bool Scalarizer::visitStoreInst(StoreInst &SI) {
610   if (!ScalarizeLoadStore)
611     return false;
612   if (!SI.isSimple())
613     return false;
614
615   VectorLayout Layout;
616   Value *FullValue = SI.getValueOperand();
617   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
618                        SI.getModule()->getDataLayout()))
619     return false;
620
621   unsigned NumElems = Layout.VecTy->getNumElements();
622   IRBuilder<> Builder(SI.getParent(), &SI);
623   Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
624   Scatterer Val = scatter(&SI, FullValue);
625
626   ValueVector Stores;
627   Stores.resize(NumElems);
628   for (unsigned I = 0; I < NumElems; ++I) {
629     unsigned Align = Layout.getElemAlign(I);
630     Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
631   }
632   transferMetadata(&SI, Stores);
633   return true;
634 }
635
636 // Delete the instructions that we scalarized.  If a full vector result
637 // is still needed, recreate it using InsertElements.
638 bool Scalarizer::finish() {
639   if (Gathered.empty())
640     return false;
641   for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
642        GMI != GME; ++GMI) {
643     Instruction *Op = GMI->first;
644     ValueVector &CV = *GMI->second;
645     if (!Op->use_empty()) {
646       // The value is still needed, so recreate it using a series of
647       // InsertElements.
648       Type *Ty = Op->getType();
649       Value *Res = UndefValue::get(Ty);
650       BasicBlock *BB = Op->getParent();
651       unsigned Count = Ty->getVectorNumElements();
652       IRBuilder<> Builder(BB, Op);
653       if (isa<PHINode>(Op))
654         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
655       for (unsigned I = 0; I < Count; ++I)
656         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
657                                           Op->getName() + ".upto" + Twine(I));
658       Res->takeName(Op);
659       Op->replaceAllUsesWith(Res);
660     }
661     Op->eraseFromParent();
662   }
663   Gathered.clear();
664   Scattered.clear();
665   return true;
666 }
667
668 FunctionPass *llvm::createScalarizerPass() {
669   return new Scalarizer();
670 }