[RS4GC] Fix rematerialization of bitcast of bitcast.
[oota-llvm.git] / lib / Transforms / Scalar / Scalarizer.cpp
1 //===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass converts vector operations into scalar operations, in order
11 // to expose optimization opportunities on the individual scalar operations.
12 // It is mainly intended for targets that do not have vector units, but it
13 // may also be useful for revectorizing code to different vector widths.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/InstVisitor.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "scalarizer"
28
29 namespace {
30 // Used to store the scattered form of a vector.
31 typedef SmallVector<Value *, 8> ValueVector;
32
33 // Used to map a vector Value to its scattered form.  We use std::map
34 // because we want iterators to persist across insertion and because the
35 // values are relatively large.
36 typedef std::map<Value *, ValueVector> ScatterMap;
37
38 // Lists Instructions that have been replaced with scalar implementations,
39 // along with a pointer to their scattered forms.
40 typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
41
42 // Provides a very limited vector-like interface for lazily accessing one
43 // component of a scattered vector or vector pointer.
44 class Scatterer {
45 public:
46   Scatterer() {}
47
48   // Scatter V into Size components.  If new instructions are needed,
49   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
50   // the results.
51   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
52             ValueVector *cachePtr = nullptr);
53
54   // Return component I, creating a new Value for it if necessary.
55   Value *operator[](unsigned I);
56
57   // Return the number of components.
58   unsigned size() const { return Size; }
59
60 private:
61   BasicBlock *BB;
62   BasicBlock::iterator BBI;
63   Value *V;
64   ValueVector *CachePtr;
65   PointerType *PtrTy;
66   ValueVector Tmp;
67   unsigned Size;
68 };
69
70 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
71 // called Name that compares X and Y in the same way as FCI.
72 struct FCmpSplitter {
73   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
74   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
75                     const Twine &Name) const {
76     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
77   }
78   FCmpInst &FCI;
79 };
80
81 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
82 // called Name that compares X and Y in the same way as ICI.
83 struct ICmpSplitter {
84   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
85   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
86                     const Twine &Name) const {
87     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
88   }
89   ICmpInst &ICI;
90 };
91
92 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
93 // a binary operator like BO called Name with operands X and Y.
94 struct BinarySplitter {
95   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
96   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
97                     const Twine &Name) const {
98     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
99   }
100   BinaryOperator &BO;
101 };
102
103 // Information about a load or store that we're scalarizing.
104 struct VectorLayout {
105   VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
106
107   // Return the alignment of element I.
108   uint64_t getElemAlign(unsigned I) {
109     return MinAlign(VecAlign, I * ElemSize);
110   }
111
112   // The type of the vector.
113   VectorType *VecTy;
114
115   // The type of each element.
116   Type *ElemTy;
117
118   // The alignment of the vector.
119   uint64_t VecAlign;
120
121   // The size of each element.
122   uint64_t ElemSize;
123 };
124
125 class Scalarizer : public FunctionPass,
126                    public InstVisitor<Scalarizer, bool> {
127 public:
128   static char ID;
129
130   Scalarizer() :
131     FunctionPass(ID) {
132     initializeScalarizerPass(*PassRegistry::getPassRegistry());
133   }
134
135   bool doInitialization(Module &M) override;
136   bool runOnFunction(Function &F) override;
137
138   // InstVisitor methods.  They return true if the instruction was scalarized,
139   // false if nothing changed.
140   bool visitInstruction(Instruction &) { return false; }
141   bool visitSelectInst(SelectInst &SI);
142   bool visitICmpInst(ICmpInst &);
143   bool visitFCmpInst(FCmpInst &);
144   bool visitBinaryOperator(BinaryOperator &);
145   bool visitGetElementPtrInst(GetElementPtrInst &);
146   bool visitCastInst(CastInst &);
147   bool visitBitCastInst(BitCastInst &);
148   bool visitShuffleVectorInst(ShuffleVectorInst &);
149   bool visitPHINode(PHINode &);
150   bool visitLoadInst(LoadInst &);
151   bool visitStoreInst(StoreInst &);
152
153   static void registerOptions() {
154     // This is disabled by default because having separate loads and stores
155     // makes it more likely that the -combiner-alias-analysis limits will be
156     // reached.
157     OptionRegistry::registerOption<bool, Scalarizer,
158                                  &Scalarizer::ScalarizeLoadStore>(
159         "scalarize-load-store",
160         "Allow the scalarizer pass to scalarize loads and store", false);
161   }
162
163 private:
164   Scatterer scatter(Instruction *, Value *);
165   void gather(Instruction *, const ValueVector &);
166   bool canTransferMetadata(unsigned Kind);
167   void transferMetadata(Instruction *, const ValueVector &);
168   bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
169   bool finish();
170
171   template<typename T> bool splitBinary(Instruction &, const T &);
172
173   ScatterMap Scattered;
174   GatherList Gathered;
175   unsigned ParallelLoopAccessMDKind;
176   bool ScalarizeLoadStore;
177 };
178
179 char Scalarizer::ID = 0;
180 } // end anonymous namespace
181
182 INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
183                              "Scalarize vector operations", false, false)
184
185 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
186                      ValueVector *cachePtr)
187   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
188   Type *Ty = V->getType();
189   PtrTy = dyn_cast<PointerType>(Ty);
190   if (PtrTy)
191     Ty = PtrTy->getElementType();
192   Size = Ty->getVectorNumElements();
193   if (!CachePtr)
194     Tmp.resize(Size, nullptr);
195   else if (CachePtr->empty())
196     CachePtr->resize(Size, nullptr);
197   else
198     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
199 }
200
201 // Return component I, creating a new Value for it if necessary.
202 Value *Scatterer::operator[](unsigned I) {
203   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
204   // Try to reuse a previous value.
205   if (CV[I])
206     return CV[I];
207   IRBuilder<> Builder(BB, BBI);
208   if (PtrTy) {
209     if (!CV[0]) {
210       Type *Ty =
211         PointerType::get(PtrTy->getElementType()->getVectorElementType(),
212                          PtrTy->getAddressSpace());
213       CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
214     }
215     if (I != 0)
216       CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
217                                          V->getName() + ".i" + Twine(I));
218   } else {
219     // Search through a chain of InsertElementInsts looking for element I.
220     // Record other elements in the cache.  The new V is still suitable
221     // for all uncached indices.
222     for (;;) {
223       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
224       if (!Insert)
225         break;
226       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
227       if (!Idx)
228         break;
229       unsigned J = Idx->getZExtValue();
230       V = Insert->getOperand(0);
231       if (I == J) {
232         CV[J] = Insert->getOperand(1);
233         return CV[J];
234       } else if (!CV[J]) {
235         // Only cache the first entry we find for each index we're not actively
236         // searching for. This prevents us from going too far up the chain and
237         // caching incorrect entries.
238         CV[J] = Insert->getOperand(1);
239       }
240     }
241     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
242                                          V->getName() + ".i" + Twine(I));
243   }
244   return CV[I];
245 }
246
247 bool Scalarizer::doInitialization(Module &M) {
248   ParallelLoopAccessMDKind =
249       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
250   ScalarizeLoadStore =
251       M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
252   return false;
253 }
254
255 bool Scalarizer::runOnFunction(Function &F) {
256   assert(Gathered.empty() && Scattered.empty());
257   for (BasicBlock &BB : F) {
258     for (BasicBlock::iterator II = BB.begin(), IE = BB.end(); II != IE;) {
259       Instruction *I = &*II;
260       bool Done = visit(I);
261       ++II;
262       if (Done && I->getType()->isVoidTy())
263         I->eraseFromParent();
264     }
265   }
266   return finish();
267 }
268
269 // Return a scattered form of V that can be accessed by Point.  V must be a
270 // vector or a pointer to a vector.
271 Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
272   if (Argument *VArg = dyn_cast<Argument>(V)) {
273     // Put the scattered form of arguments in the entry block,
274     // so that it can be used everywhere.
275     Function *F = VArg->getParent();
276     BasicBlock *BB = &F->getEntryBlock();
277     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
278   }
279   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
280     // Put the scattered form of an instruction directly after the
281     // instruction.
282     BasicBlock *BB = VOp->getParent();
283     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
284                      V, &Scattered[V]);
285   }
286   // In the fallback case, just put the scattered before Point and
287   // keep the result local to Point.
288   return Scatterer(Point->getParent(), Point->getIterator(), V);
289 }
290
291 // Replace Op with the gathered form of the components in CV.  Defer the
292 // deletion of Op and creation of the gathered form to the end of the pass,
293 // so that we can avoid creating the gathered form if all uses of Op are
294 // replaced with uses of CV.
295 void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
296   // Since we're not deleting Op yet, stub out its operands, so that it
297   // doesn't make anything live unnecessarily.
298   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
299     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
300
301   transferMetadata(Op, CV);
302
303   // If we already have a scattered form of Op (created from ExtractElements
304   // of Op itself), replace them with the new form.
305   ValueVector &SV = Scattered[Op];
306   if (!SV.empty()) {
307     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
308       Instruction *Old = cast<Instruction>(SV[I]);
309       CV[I]->takeName(Old);
310       Old->replaceAllUsesWith(CV[I]);
311       Old->eraseFromParent();
312     }
313   }
314   SV = CV;
315   Gathered.push_back(GatherList::value_type(Op, &SV));
316 }
317
318 // Return true if it is safe to transfer the given metadata tag from
319 // vector to scalar instructions.
320 bool Scalarizer::canTransferMetadata(unsigned Tag) {
321   return (Tag == LLVMContext::MD_tbaa
322           || Tag == LLVMContext::MD_fpmath
323           || Tag == LLVMContext::MD_tbaa_struct
324           || Tag == LLVMContext::MD_invariant_load
325           || Tag == LLVMContext::MD_alias_scope
326           || Tag == LLVMContext::MD_noalias
327           || Tag == ParallelLoopAccessMDKind);
328 }
329
330 // Transfer metadata from Op to the instructions in CV if it is known
331 // to be safe to do so.
332 void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
333   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
334   Op->getAllMetadataOtherThanDebugLoc(MDs);
335   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
336     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
337       for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
338                MI = MDs.begin(),
339                ME = MDs.end();
340            MI != ME; ++MI)
341         if (canTransferMetadata(MI->first))
342           New->setMetadata(MI->first, MI->second);
343       New->setDebugLoc(Op->getDebugLoc());
344     }
345   }
346 }
347
348 // Try to fill in Layout from Ty, returning true on success.  Alignment is
349 // the alignment of the vector, or 0 if the ABI default should be used.
350 bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
351                                  VectorLayout &Layout, const DataLayout &DL) {
352   // Make sure we're dealing with a vector.
353   Layout.VecTy = dyn_cast<VectorType>(Ty);
354   if (!Layout.VecTy)
355     return false;
356
357   // Check that we're dealing with full-byte elements.
358   Layout.ElemTy = Layout.VecTy->getElementType();
359   if (DL.getTypeSizeInBits(Layout.ElemTy) !=
360       DL.getTypeStoreSizeInBits(Layout.ElemTy))
361     return false;
362
363   if (Alignment)
364     Layout.VecAlign = Alignment;
365   else
366     Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
367   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
368   return true;
369 }
370
371 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
372 // to create an instruction like I with operands X and Y and name Name.
373 template<typename Splitter>
374 bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
375   VectorType *VT = dyn_cast<VectorType>(I.getType());
376   if (!VT)
377     return false;
378
379   unsigned NumElems = VT->getNumElements();
380   IRBuilder<> Builder(&I);
381   Scatterer Op0 = scatter(&I, I.getOperand(0));
382   Scatterer Op1 = scatter(&I, I.getOperand(1));
383   assert(Op0.size() == NumElems && "Mismatched binary operation");
384   assert(Op1.size() == NumElems && "Mismatched binary operation");
385   ValueVector Res;
386   Res.resize(NumElems);
387   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
388     Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
389                       I.getName() + ".i" + Twine(Elem));
390   gather(&I, Res);
391   return true;
392 }
393
394 bool Scalarizer::visitSelectInst(SelectInst &SI) {
395   VectorType *VT = dyn_cast<VectorType>(SI.getType());
396   if (!VT)
397     return false;
398
399   unsigned NumElems = VT->getNumElements();
400   IRBuilder<> Builder(&SI);
401   Scatterer Op1 = scatter(&SI, SI.getOperand(1));
402   Scatterer Op2 = scatter(&SI, SI.getOperand(2));
403   assert(Op1.size() == NumElems && "Mismatched select");
404   assert(Op2.size() == NumElems && "Mismatched select");
405   ValueVector Res;
406   Res.resize(NumElems);
407
408   if (SI.getOperand(0)->getType()->isVectorTy()) {
409     Scatterer Op0 = scatter(&SI, SI.getOperand(0));
410     assert(Op0.size() == NumElems && "Mismatched select");
411     for (unsigned I = 0; I < NumElems; ++I)
412       Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
413                                     SI.getName() + ".i" + Twine(I));
414   } else {
415     Value *Op0 = SI.getOperand(0);
416     for (unsigned I = 0; I < NumElems; ++I)
417       Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
418                                     SI.getName() + ".i" + Twine(I));
419   }
420   gather(&SI, Res);
421   return true;
422 }
423
424 bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
425   return splitBinary(ICI, ICmpSplitter(ICI));
426 }
427
428 bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
429   return splitBinary(FCI, FCmpSplitter(FCI));
430 }
431
432 bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
433   return splitBinary(BO, BinarySplitter(BO));
434 }
435
436 bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
437   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
438   if (!VT)
439     return false;
440
441   IRBuilder<> Builder(&GEPI);
442   unsigned NumElems = VT->getNumElements();
443   unsigned NumIndices = GEPI.getNumIndices();
444
445   Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
446
447   SmallVector<Scatterer, 8> Ops;
448   Ops.resize(NumIndices);
449   for (unsigned I = 0; I < NumIndices; ++I)
450     Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
451
452   ValueVector Res;
453   Res.resize(NumElems);
454   for (unsigned I = 0; I < NumElems; ++I) {
455     SmallVector<Value *, 8> Indices;
456     Indices.resize(NumIndices);
457     for (unsigned J = 0; J < NumIndices; ++J)
458       Indices[J] = Ops[J][I];
459     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
460                                GEPI.getName() + ".i" + Twine(I));
461     if (GEPI.isInBounds())
462       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
463         NewGEPI->setIsInBounds();
464   }
465   gather(&GEPI, Res);
466   return true;
467 }
468
469 bool Scalarizer::visitCastInst(CastInst &CI) {
470   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
471   if (!VT)
472     return false;
473
474   unsigned NumElems = VT->getNumElements();
475   IRBuilder<> Builder(&CI);
476   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
477   assert(Op0.size() == NumElems && "Mismatched cast");
478   ValueVector Res;
479   Res.resize(NumElems);
480   for (unsigned I = 0; I < NumElems; ++I)
481     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
482                                 CI.getName() + ".i" + Twine(I));
483   gather(&CI, Res);
484   return true;
485 }
486
487 bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
488   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
489   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
490   if (!DstVT || !SrcVT)
491     return false;
492
493   unsigned DstNumElems = DstVT->getNumElements();
494   unsigned SrcNumElems = SrcVT->getNumElements();
495   IRBuilder<> Builder(&BCI);
496   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
497   ValueVector Res;
498   Res.resize(DstNumElems);
499
500   if (DstNumElems == SrcNumElems) {
501     for (unsigned I = 0; I < DstNumElems; ++I)
502       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
503                                      BCI.getName() + ".i" + Twine(I));
504   } else if (DstNumElems > SrcNumElems) {
505     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
506     // individual elements to the destination.
507     unsigned FanOut = DstNumElems / SrcNumElems;
508     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
509     unsigned ResI = 0;
510     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
511       Value *V = Op0[Op0I];
512       Instruction *VI;
513       // Look through any existing bitcasts before converting to <N x t2>.
514       // In the best case, the resulting conversion might be a no-op.
515       while ((VI = dyn_cast<Instruction>(V)) &&
516              VI->getOpcode() == Instruction::BitCast)
517         V = VI->getOperand(0);
518       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
519       Scatterer Mid = scatter(&BCI, V);
520       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
521         Res[ResI++] = Mid[MidI];
522     }
523   } else {
524     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
525     unsigned FanIn = SrcNumElems / DstNumElems;
526     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
527     unsigned Op0I = 0;
528     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
529       Value *V = UndefValue::get(MidTy);
530       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
531         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
532                                         BCI.getName() + ".i" + Twine(ResI)
533                                         + ".upto" + Twine(MidI));
534       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
535                                         BCI.getName() + ".i" + Twine(ResI));
536     }
537   }
538   gather(&BCI, Res);
539   return true;
540 }
541
542 bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
543   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
544   if (!VT)
545     return false;
546
547   unsigned NumElems = VT->getNumElements();
548   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
549   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
550   ValueVector Res;
551   Res.resize(NumElems);
552
553   for (unsigned I = 0; I < NumElems; ++I) {
554     int Selector = SVI.getMaskValue(I);
555     if (Selector < 0)
556       Res[I] = UndefValue::get(VT->getElementType());
557     else if (unsigned(Selector) < Op0.size())
558       Res[I] = Op0[Selector];
559     else
560       Res[I] = Op1[Selector - Op0.size()];
561   }
562   gather(&SVI, Res);
563   return true;
564 }
565
566 bool Scalarizer::visitPHINode(PHINode &PHI) {
567   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
568   if (!VT)
569     return false;
570
571   unsigned NumElems = VT->getNumElements();
572   IRBuilder<> Builder(&PHI);
573   ValueVector Res;
574   Res.resize(NumElems);
575
576   unsigned NumOps = PHI.getNumOperands();
577   for (unsigned I = 0; I < NumElems; ++I)
578     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
579                                PHI.getName() + ".i" + Twine(I));
580
581   for (unsigned I = 0; I < NumOps; ++I) {
582     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
583     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
584     for (unsigned J = 0; J < NumElems; ++J)
585       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
586   }
587   gather(&PHI, Res);
588   return true;
589 }
590
591 bool Scalarizer::visitLoadInst(LoadInst &LI) {
592   if (!ScalarizeLoadStore)
593     return false;
594   if (!LI.isSimple())
595     return false;
596
597   VectorLayout Layout;
598   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
599                        LI.getModule()->getDataLayout()))
600     return false;
601
602   unsigned NumElems = Layout.VecTy->getNumElements();
603   IRBuilder<> Builder(&LI);
604   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
605   ValueVector Res;
606   Res.resize(NumElems);
607
608   for (unsigned I = 0; I < NumElems; ++I)
609     Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
610                                        LI.getName() + ".i" + Twine(I));
611   gather(&LI, Res);
612   return true;
613 }
614
615 bool Scalarizer::visitStoreInst(StoreInst &SI) {
616   if (!ScalarizeLoadStore)
617     return false;
618   if (!SI.isSimple())
619     return false;
620
621   VectorLayout Layout;
622   Value *FullValue = SI.getValueOperand();
623   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
624                        SI.getModule()->getDataLayout()))
625     return false;
626
627   unsigned NumElems = Layout.VecTy->getNumElements();
628   IRBuilder<> Builder(&SI);
629   Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
630   Scatterer Val = scatter(&SI, FullValue);
631
632   ValueVector Stores;
633   Stores.resize(NumElems);
634   for (unsigned I = 0; I < NumElems; ++I) {
635     unsigned Align = Layout.getElemAlign(I);
636     Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
637   }
638   transferMetadata(&SI, Stores);
639   return true;
640 }
641
642 // Delete the instructions that we scalarized.  If a full vector result
643 // is still needed, recreate it using InsertElements.
644 bool Scalarizer::finish() {
645   // The presence of data in Gathered or Scattered indicates changes
646   // made to the Function.
647   if (Gathered.empty() && Scattered.empty())
648     return false;
649   for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
650        GMI != GME; ++GMI) {
651     Instruction *Op = GMI->first;
652     ValueVector &CV = *GMI->second;
653     if (!Op->use_empty()) {
654       // The value is still needed, so recreate it using a series of
655       // InsertElements.
656       Type *Ty = Op->getType();
657       Value *Res = UndefValue::get(Ty);
658       BasicBlock *BB = Op->getParent();
659       unsigned Count = Ty->getVectorNumElements();
660       IRBuilder<> Builder(Op);
661       if (isa<PHINode>(Op))
662         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
663       for (unsigned I = 0; I < Count; ++I)
664         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
665                                           Op->getName() + ".upto" + Twine(I));
666       Res->takeName(Op);
667       Op->replaceAllUsesWith(Res);
668     }
669     Op->eraseFromParent();
670   }
671   Gathered.clear();
672   Scattered.clear();
673   return true;
674 }
675
676 FunctionPass *llvm::createScalarizerPass() {
677   return new Scalarizer();
678 }