Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Transforms / Scalar / SROA.cpp
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This transformation implements the well known scalar replacement of
11 /// aggregates transformation. It tries to identify promotable elements of an
12 /// aggregate alloca, and promote them to registers. It will also try to
13 /// convert uses of an element (or set of elements) of an alloca into a vector
14 /// or bitfield-style integer scalar if appropriate.
15 ///
16 /// It works to do this with minimal slicing of the alloca so that regions
17 /// which are merely transferred in and out of external memory remain unchanged
18 /// and are not decomposed to scalar code.
19 ///
20 /// Because this also performs alloca promotion, it can be thought of as also
21 /// serving the purpose of SSA formation. The algorithm iterates on the
22 /// function until all opportunities for promotion have been realized.
23 ///
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Transforms/Scalar/SROA.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/PtrUseVisitor.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DIBuilder.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstVisitor.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/TimeValue.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
57
58 #if __cplusplus >= 201103L && !defined(NDEBUG)
59 // We only use this for a debug check in C++11
60 #include <random>
61 #endif
62
63 using namespace llvm;
64 using namespace llvm::sroa;
65
66 #define DEBUG_TYPE "sroa"
67
68 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
69 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
70 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
71 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
72 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
73 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
74 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
75 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
76 STATISTIC(NumDeleted, "Number of instructions deleted");
77 STATISTIC(NumVectorized, "Number of vectorized aggregates");
78
79 /// Hidden option to enable randomly shuffling the slices to help uncover
80 /// instability in their order.
81 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
82                                              cl::init(false), cl::Hidden);
83
84 /// Hidden option to experiment with completely strict handling of inbounds
85 /// GEPs.
86 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
87                                         cl::Hidden);
88
89 namespace {
90 /// \brief A custom IRBuilder inserter which prefixes all names if they are
91 /// preserved.
92 template <bool preserveNames = true>
93 class IRBuilderPrefixedInserter
94     : public IRBuilderDefaultInserter<preserveNames> {
95   std::string Prefix;
96
97 public:
98   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
99
100 protected:
101   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
102                     BasicBlock::iterator InsertPt) const {
103     IRBuilderDefaultInserter<preserveNames>::InsertHelper(
104         I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
105   }
106 };
107
108 // Specialization for not preserving the name is trivial.
109 template <>
110 class IRBuilderPrefixedInserter<false>
111     : public IRBuilderDefaultInserter<false> {
112 public:
113   void SetNamePrefix(const Twine &P) {}
114 };
115
116 /// \brief Provide a typedef for IRBuilder that drops names in release builds.
117 #ifndef NDEBUG
118 typedef llvm::IRBuilder<true, ConstantFolder, IRBuilderPrefixedInserter<true>>
119     IRBuilderTy;
120 #else
121 typedef llvm::IRBuilder<false, ConstantFolder, IRBuilderPrefixedInserter<false>>
122     IRBuilderTy;
123 #endif
124 }
125
126 namespace {
127 /// \brief A used slice of an alloca.
128 ///
129 /// This structure represents a slice of an alloca used by some instruction. It
130 /// stores both the begin and end offsets of this use, a pointer to the use
131 /// itself, and a flag indicating whether we can classify the use as splittable
132 /// or not when forming partitions of the alloca.
133 class Slice {
134   /// \brief The beginning offset of the range.
135   uint64_t BeginOffset;
136
137   /// \brief The ending offset, not included in the range.
138   uint64_t EndOffset;
139
140   /// \brief Storage for both the use of this slice and whether it can be
141   /// split.
142   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
143
144 public:
145   Slice() : BeginOffset(), EndOffset() {}
146   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
147       : BeginOffset(BeginOffset), EndOffset(EndOffset),
148         UseAndIsSplittable(U, IsSplittable) {}
149
150   uint64_t beginOffset() const { return BeginOffset; }
151   uint64_t endOffset() const { return EndOffset; }
152
153   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
154   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
155
156   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
157
158   bool isDead() const { return getUse() == nullptr; }
159   void kill() { UseAndIsSplittable.setPointer(nullptr); }
160
161   /// \brief Support for ordering ranges.
162   ///
163   /// This provides an ordering over ranges such that start offsets are
164   /// always increasing, and within equal start offsets, the end offsets are
165   /// decreasing. Thus the spanning range comes first in a cluster with the
166   /// same start position.
167   bool operator<(const Slice &RHS) const {
168     if (beginOffset() < RHS.beginOffset())
169       return true;
170     if (beginOffset() > RHS.beginOffset())
171       return false;
172     if (isSplittable() != RHS.isSplittable())
173       return !isSplittable();
174     if (endOffset() > RHS.endOffset())
175       return true;
176     return false;
177   }
178
179   /// \brief Support comparison with a single offset to allow binary searches.
180   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
181                                               uint64_t RHSOffset) {
182     return LHS.beginOffset() < RHSOffset;
183   }
184   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
185                                               const Slice &RHS) {
186     return LHSOffset < RHS.beginOffset();
187   }
188
189   bool operator==(const Slice &RHS) const {
190     return isSplittable() == RHS.isSplittable() &&
191            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
192   }
193   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
194 };
195 } // end anonymous namespace
196
197 namespace llvm {
198 template <typename T> struct isPodLike;
199 template <> struct isPodLike<Slice> { static const bool value = true; };
200 }
201
202 /// \brief Representation of the alloca slices.
203 ///
204 /// This class represents the slices of an alloca which are formed by its
205 /// various uses. If a pointer escapes, we can't fully build a representation
206 /// for the slices used and we reflect that in this structure. The uses are
207 /// stored, sorted by increasing beginning offset and with unsplittable slices
208 /// starting at a particular offset before splittable slices.
209 class llvm::sroa::AllocaSlices {
210 public:
211   /// \brief Construct the slices of a particular alloca.
212   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
213
214   /// \brief Test whether a pointer to the allocation escapes our analysis.
215   ///
216   /// If this is true, the slices are never fully built and should be
217   /// ignored.
218   bool isEscaped() const { return PointerEscapingInstr; }
219
220   /// \brief Support for iterating over the slices.
221   /// @{
222   typedef SmallVectorImpl<Slice>::iterator iterator;
223   typedef iterator_range<iterator> range;
224   iterator begin() { return Slices.begin(); }
225   iterator end() { return Slices.end(); }
226
227   typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
228   typedef iterator_range<const_iterator> const_range;
229   const_iterator begin() const { return Slices.begin(); }
230   const_iterator end() const { return Slices.end(); }
231   /// @}
232
233   /// \brief Erase a range of slices.
234   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
235
236   /// \brief Insert new slices for this alloca.
237   ///
238   /// This moves the slices into the alloca's slices collection, and re-sorts
239   /// everything so that the usual ordering properties of the alloca's slices
240   /// hold.
241   void insert(ArrayRef<Slice> NewSlices) {
242     int OldSize = Slices.size();
243     Slices.append(NewSlices.begin(), NewSlices.end());
244     auto SliceI = Slices.begin() + OldSize;
245     std::sort(SliceI, Slices.end());
246     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
247   }
248
249   // Forward declare the iterator and range accessor for walking the
250   // partitions.
251   class partition_iterator;
252   iterator_range<partition_iterator> partitions();
253
254   /// \brief Access the dead users for this alloca.
255   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
256
257   /// \brief Access the dead operands referring to this alloca.
258   ///
259   /// These are operands which have cannot actually be used to refer to the
260   /// alloca as they are outside its range and the user doesn't correct for
261   /// that. These mostly consist of PHI node inputs and the like which we just
262   /// need to replace with undef.
263   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
264
265 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
266   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
267   void printSlice(raw_ostream &OS, const_iterator I,
268                   StringRef Indent = "  ") const;
269   void printUse(raw_ostream &OS, const_iterator I,
270                 StringRef Indent = "  ") const;
271   void print(raw_ostream &OS) const;
272   void dump(const_iterator I) const;
273   void dump() const;
274 #endif
275
276 private:
277   template <typename DerivedT, typename RetT = void> class BuilderBase;
278   class SliceBuilder;
279   friend class AllocaSlices::SliceBuilder;
280
281 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
282   /// \brief Handle to alloca instruction to simplify method interfaces.
283   AllocaInst &AI;
284 #endif
285
286   /// \brief The instruction responsible for this alloca not having a known set
287   /// of slices.
288   ///
289   /// When an instruction (potentially) escapes the pointer to the alloca, we
290   /// store a pointer to that here and abort trying to form slices of the
291   /// alloca. This will be null if the alloca slices are analyzed successfully.
292   Instruction *PointerEscapingInstr;
293
294   /// \brief The slices of the alloca.
295   ///
296   /// We store a vector of the slices formed by uses of the alloca here. This
297   /// vector is sorted by increasing begin offset, and then the unsplittable
298   /// slices before the splittable ones. See the Slice inner class for more
299   /// details.
300   SmallVector<Slice, 8> Slices;
301
302   /// \brief Instructions which will become dead if we rewrite the alloca.
303   ///
304   /// Note that these are not separated by slice. This is because we expect an
305   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
306   /// all these instructions can simply be removed and replaced with undef as
307   /// they come from outside of the allocated space.
308   SmallVector<Instruction *, 8> DeadUsers;
309
310   /// \brief Operands which will become dead if we rewrite the alloca.
311   ///
312   /// These are operands that in their particular use can be replaced with
313   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
314   /// to PHI nodes and the like. They aren't entirely dead (there might be
315   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
316   /// want to swap this particular input for undef to simplify the use lists of
317   /// the alloca.
318   SmallVector<Use *, 8> DeadOperands;
319 };
320
321 /// \brief A partition of the slices.
322 ///
323 /// An ephemeral representation for a range of slices which can be viewed as
324 /// a partition of the alloca. This range represents a span of the alloca's
325 /// memory which cannot be split, and provides access to all of the slices
326 /// overlapping some part of the partition.
327 ///
328 /// Objects of this type are produced by traversing the alloca's slices, but
329 /// are only ephemeral and not persistent.
330 class llvm::sroa::Partition {
331 private:
332   friend class AllocaSlices;
333   friend class AllocaSlices::partition_iterator;
334
335   typedef AllocaSlices::iterator iterator;
336
337   /// \brief The beginning and ending offsets of the alloca for this
338   /// partition.
339   uint64_t BeginOffset, EndOffset;
340
341   /// \brief The start end end iterators of this partition.
342   iterator SI, SJ;
343
344   /// \brief A collection of split slice tails overlapping the partition.
345   SmallVector<Slice *, 4> SplitTails;
346
347   /// \brief Raw constructor builds an empty partition starting and ending at
348   /// the given iterator.
349   Partition(iterator SI) : SI(SI), SJ(SI) {}
350
351 public:
352   /// \brief The start offset of this partition.
353   ///
354   /// All of the contained slices start at or after this offset.
355   uint64_t beginOffset() const { return BeginOffset; }
356
357   /// \brief The end offset of this partition.
358   ///
359   /// All of the contained slices end at or before this offset.
360   uint64_t endOffset() const { return EndOffset; }
361
362   /// \brief The size of the partition.
363   ///
364   /// Note that this can never be zero.
365   uint64_t size() const {
366     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
367     return EndOffset - BeginOffset;
368   }
369
370   /// \brief Test whether this partition contains no slices, and merely spans
371   /// a region occupied by split slices.
372   bool empty() const { return SI == SJ; }
373
374   /// \name Iterate slices that start within the partition.
375   /// These may be splittable or unsplittable. They have a begin offset >= the
376   /// partition begin offset.
377   /// @{
378   // FIXME: We should probably define a "concat_iterator" helper and use that
379   // to stitch together pointee_iterators over the split tails and the
380   // contiguous iterators of the partition. That would give a much nicer
381   // interface here. We could then additionally expose filtered iterators for
382   // split, unsplit, and unsplittable splices based on the usage patterns.
383   iterator begin() const { return SI; }
384   iterator end() const { return SJ; }
385   /// @}
386
387   /// \brief Get the sequence of split slice tails.
388   ///
389   /// These tails are of slices which start before this partition but are
390   /// split and overlap into the partition. We accumulate these while forming
391   /// partitions.
392   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
393 };
394
395 /// \brief An iterator over partitions of the alloca's slices.
396 ///
397 /// This iterator implements the core algorithm for partitioning the alloca's
398 /// slices. It is a forward iterator as we don't support backtracking for
399 /// efficiency reasons, and re-use a single storage area to maintain the
400 /// current set of split slices.
401 ///
402 /// It is templated on the slice iterator type to use so that it can operate
403 /// with either const or non-const slice iterators.
404 class AllocaSlices::partition_iterator
405     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
406                                   Partition> {
407   friend class AllocaSlices;
408
409   /// \brief Most of the state for walking the partitions is held in a class
410   /// with a nice interface for examining them.
411   Partition P;
412
413   /// \brief We need to keep the end of the slices to know when to stop.
414   AllocaSlices::iterator SE;
415
416   /// \brief We also need to keep track of the maximum split end offset seen.
417   /// FIXME: Do we really?
418   uint64_t MaxSplitSliceEndOffset;
419
420   /// \brief Sets the partition to be empty at given iterator, and sets the
421   /// end iterator.
422   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
423       : P(SI), SE(SE), MaxSplitSliceEndOffset(0) {
424     // If not already at the end, advance our state to form the initial
425     // partition.
426     if (SI != SE)
427       advance();
428   }
429
430   /// \brief Advance the iterator to the next partition.
431   ///
432   /// Requires that the iterator not be at the end of the slices.
433   void advance() {
434     assert((P.SI != SE || !P.SplitTails.empty()) &&
435            "Cannot advance past the end of the slices!");
436
437     // Clear out any split uses which have ended.
438     if (!P.SplitTails.empty()) {
439       if (P.EndOffset >= MaxSplitSliceEndOffset) {
440         // If we've finished all splits, this is easy.
441         P.SplitTails.clear();
442         MaxSplitSliceEndOffset = 0;
443       } else {
444         // Remove the uses which have ended in the prior partition. This
445         // cannot change the max split slice end because we just checked that
446         // the prior partition ended prior to that max.
447         P.SplitTails.erase(
448             std::remove_if(
449                 P.SplitTails.begin(), P.SplitTails.end(),
450                 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }),
451             P.SplitTails.end());
452         assert(std::any_of(P.SplitTails.begin(), P.SplitTails.end(),
453                            [&](Slice *S) {
454                              return S->endOffset() == MaxSplitSliceEndOffset;
455                            }) &&
456                "Could not find the current max split slice offset!");
457         assert(std::all_of(P.SplitTails.begin(), P.SplitTails.end(),
458                            [&](Slice *S) {
459                              return S->endOffset() <= MaxSplitSliceEndOffset;
460                            }) &&
461                "Max split slice end offset is not actually the max!");
462       }
463     }
464
465     // If P.SI is already at the end, then we've cleared the split tail and
466     // now have an end iterator.
467     if (P.SI == SE) {
468       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
469       return;
470     }
471
472     // If we had a non-empty partition previously, set up the state for
473     // subsequent partitions.
474     if (P.SI != P.SJ) {
475       // Accumulate all the splittable slices which started in the old
476       // partition into the split list.
477       for (Slice &S : P)
478         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
479           P.SplitTails.push_back(&S);
480           MaxSplitSliceEndOffset =
481               std::max(S.endOffset(), MaxSplitSliceEndOffset);
482         }
483
484       // Start from the end of the previous partition.
485       P.SI = P.SJ;
486
487       // If P.SI is now at the end, we at most have a tail of split slices.
488       if (P.SI == SE) {
489         P.BeginOffset = P.EndOffset;
490         P.EndOffset = MaxSplitSliceEndOffset;
491         return;
492       }
493
494       // If the we have split slices and the next slice is after a gap and is
495       // not splittable immediately form an empty partition for the split
496       // slices up until the next slice begins.
497       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
498           !P.SI->isSplittable()) {
499         P.BeginOffset = P.EndOffset;
500         P.EndOffset = P.SI->beginOffset();
501         return;
502       }
503     }
504
505     // OK, we need to consume new slices. Set the end offset based on the
506     // current slice, and step SJ past it. The beginning offset of the
507     // partition is the beginning offset of the next slice unless we have
508     // pre-existing split slices that are continuing, in which case we begin
509     // at the prior end offset.
510     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
511     P.EndOffset = P.SI->endOffset();
512     ++P.SJ;
513
514     // There are two strategies to form a partition based on whether the
515     // partition starts with an unsplittable slice or a splittable slice.
516     if (!P.SI->isSplittable()) {
517       // When we're forming an unsplittable region, it must always start at
518       // the first slice and will extend through its end.
519       assert(P.BeginOffset == P.SI->beginOffset());
520
521       // Form a partition including all of the overlapping slices with this
522       // unsplittable slice.
523       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
524         if (!P.SJ->isSplittable())
525           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
526         ++P.SJ;
527       }
528
529       // We have a partition across a set of overlapping unsplittable
530       // partitions.
531       return;
532     }
533
534     // If we're starting with a splittable slice, then we need to form
535     // a synthetic partition spanning it and any other overlapping splittable
536     // splices.
537     assert(P.SI->isSplittable() && "Forming a splittable partition!");
538
539     // Collect all of the overlapping splittable slices.
540     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
541            P.SJ->isSplittable()) {
542       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
543       ++P.SJ;
544     }
545
546     // Back upiP.EndOffset if we ended the span early when encountering an
547     // unsplittable slice. This synthesizes the early end offset of
548     // a partition spanning only splittable slices.
549     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
550       assert(!P.SJ->isSplittable());
551       P.EndOffset = P.SJ->beginOffset();
552     }
553   }
554
555 public:
556   bool operator==(const partition_iterator &RHS) const {
557     assert(SE == RHS.SE &&
558            "End iterators don't match between compared partition iterators!");
559
560     // The observed positions of partitions is marked by the P.SI iterator and
561     // the emptiness of the split slices. The latter is only relevant when
562     // P.SI == SE, as the end iterator will additionally have an empty split
563     // slices list, but the prior may have the same P.SI and a tail of split
564     // slices.
565     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
566       assert(P.SJ == RHS.P.SJ &&
567              "Same set of slices formed two different sized partitions!");
568       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
569              "Same slice position with differently sized non-empty split "
570              "slice tails!");
571       return true;
572     }
573     return false;
574   }
575
576   partition_iterator &operator++() {
577     advance();
578     return *this;
579   }
580
581   Partition &operator*() { return P; }
582 };
583
584 /// \brief A forward range over the partitions of the alloca's slices.
585 ///
586 /// This accesses an iterator range over the partitions of the alloca's
587 /// slices. It computes these partitions on the fly based on the overlapping
588 /// offsets of the slices and the ability to split them. It will visit "empty"
589 /// partitions to cover regions of the alloca only accessed via split
590 /// slices.
591 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
592   return make_range(partition_iterator(begin(), end()),
593                     partition_iterator(end(), end()));
594 }
595
596 static Value *foldSelectInst(SelectInst &SI) {
597   // If the condition being selected on is a constant or the same value is
598   // being selected between, fold the select. Yes this does (rarely) happen
599   // early on.
600   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
601     return SI.getOperand(1 + CI->isZero());
602   if (SI.getOperand(1) == SI.getOperand(2))
603     return SI.getOperand(1);
604
605   return nullptr;
606 }
607
608 /// \brief A helper that folds a PHI node or a select.
609 static Value *foldPHINodeOrSelectInst(Instruction &I) {
610   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
611     // If PN merges together the same value, return that value.
612     return PN->hasConstantValue();
613   }
614   return foldSelectInst(cast<SelectInst>(I));
615 }
616
617 /// \brief Builder for the alloca slices.
618 ///
619 /// This class builds a set of alloca slices by recursively visiting the uses
620 /// of an alloca and making a slice for each load and store at each offset.
621 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
622   friend class PtrUseVisitor<SliceBuilder>;
623   friend class InstVisitor<SliceBuilder>;
624   typedef PtrUseVisitor<SliceBuilder> Base;
625
626   const uint64_t AllocSize;
627   AllocaSlices &AS;
628
629   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
630   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
631
632   /// \brief Set to de-duplicate dead instructions found in the use walk.
633   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
634
635 public:
636   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
637       : PtrUseVisitor<SliceBuilder>(DL),
638         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
639
640 private:
641   void markAsDead(Instruction &I) {
642     if (VisitedDeadInsts.insert(&I).second)
643       AS.DeadUsers.push_back(&I);
644   }
645
646   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
647                  bool IsSplittable = false) {
648     // Completely skip uses which have a zero size or start either before or
649     // past the end of the allocation.
650     if (Size == 0 || Offset.uge(AllocSize)) {
651       DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
652                    << " which has zero size or starts outside of the "
653                    << AllocSize << " byte alloca:\n"
654                    << "    alloca: " << AS.AI << "\n"
655                    << "       use: " << I << "\n");
656       return markAsDead(I);
657     }
658
659     uint64_t BeginOffset = Offset.getZExtValue();
660     uint64_t EndOffset = BeginOffset + Size;
661
662     // Clamp the end offset to the end of the allocation. Note that this is
663     // formulated to handle even the case where "BeginOffset + Size" overflows.
664     // This may appear superficially to be something we could ignore entirely,
665     // but that is not so! There may be widened loads or PHI-node uses where
666     // some instructions are dead but not others. We can't completely ignore
667     // them, and so have to record at least the information here.
668     assert(AllocSize >= BeginOffset); // Established above.
669     if (Size > AllocSize - BeginOffset) {
670       DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
671                    << " to remain within the " << AllocSize << " byte alloca:\n"
672                    << "    alloca: " << AS.AI << "\n"
673                    << "       use: " << I << "\n");
674       EndOffset = AllocSize;
675     }
676
677     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
678   }
679
680   void visitBitCastInst(BitCastInst &BC) {
681     if (BC.use_empty())
682       return markAsDead(BC);
683
684     return Base::visitBitCastInst(BC);
685   }
686
687   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
688     if (GEPI.use_empty())
689       return markAsDead(GEPI);
690
691     if (SROAStrictInbounds && GEPI.isInBounds()) {
692       // FIXME: This is a manually un-factored variant of the basic code inside
693       // of GEPs with checking of the inbounds invariant specified in the
694       // langref in a very strict sense. If we ever want to enable
695       // SROAStrictInbounds, this code should be factored cleanly into
696       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
697       // by writing out the code here where we have tho underlying allocation
698       // size readily available.
699       APInt GEPOffset = Offset;
700       const DataLayout &DL = GEPI.getModule()->getDataLayout();
701       for (gep_type_iterator GTI = gep_type_begin(GEPI),
702                              GTE = gep_type_end(GEPI);
703            GTI != GTE; ++GTI) {
704         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
705         if (!OpC)
706           break;
707
708         // Handle a struct index, which adds its field offset to the pointer.
709         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
710           unsigned ElementIdx = OpC->getZExtValue();
711           const StructLayout *SL = DL.getStructLayout(STy);
712           GEPOffset +=
713               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
714         } else {
715           // For array or vector indices, scale the index by the size of the
716           // type.
717           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
718           GEPOffset += Index * APInt(Offset.getBitWidth(),
719                                      DL.getTypeAllocSize(GTI.getIndexedType()));
720         }
721
722         // If this index has computed an intermediate pointer which is not
723         // inbounds, then the result of the GEP is a poison value and we can
724         // delete it and all uses.
725         if (GEPOffset.ugt(AllocSize))
726           return markAsDead(GEPI);
727       }
728     }
729
730     return Base::visitGetElementPtrInst(GEPI);
731   }
732
733   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
734                          uint64_t Size, bool IsVolatile) {
735     // We allow splitting of non-volatile loads and stores where the type is an
736     // integer type. These may be used to implement 'memcpy' or other "transfer
737     // of bits" patterns.
738     bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
739
740     insertUse(I, Offset, Size, IsSplittable);
741   }
742
743   void visitLoadInst(LoadInst &LI) {
744     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
745            "All simple FCA loads should have been pre-split");
746
747     if (!IsOffsetKnown)
748       return PI.setAborted(&LI);
749
750     const DataLayout &DL = LI.getModule()->getDataLayout();
751     uint64_t Size = DL.getTypeStoreSize(LI.getType());
752     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
753   }
754
755   void visitStoreInst(StoreInst &SI) {
756     Value *ValOp = SI.getValueOperand();
757     if (ValOp == *U)
758       return PI.setEscapedAndAborted(&SI);
759     if (!IsOffsetKnown)
760       return PI.setAborted(&SI);
761
762     const DataLayout &DL = SI.getModule()->getDataLayout();
763     uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
764
765     // If this memory access can be shown to *statically* extend outside the
766     // bounds of of the allocation, it's behavior is undefined, so simply
767     // ignore it. Note that this is more strict than the generic clamping
768     // behavior of insertUse. We also try to handle cases which might run the
769     // risk of overflow.
770     // FIXME: We should instead consider the pointer to have escaped if this
771     // function is being instrumented for addressing bugs or race conditions.
772     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
773       DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
774                    << " which extends past the end of the " << AllocSize
775                    << " byte alloca:\n"
776                    << "    alloca: " << AS.AI << "\n"
777                    << "       use: " << SI << "\n");
778       return markAsDead(SI);
779     }
780
781     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
782            "All simple FCA stores should have been pre-split");
783     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
784   }
785
786   void visitMemSetInst(MemSetInst &II) {
787     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
788     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
789     if ((Length && Length->getValue() == 0) ||
790         (IsOffsetKnown && Offset.uge(AllocSize)))
791       // Zero-length mem transfer intrinsics can be ignored entirely.
792       return markAsDead(II);
793
794     if (!IsOffsetKnown)
795       return PI.setAborted(&II);
796
797     insertUse(II, Offset, Length ? Length->getLimitedValue()
798                                  : AllocSize - Offset.getLimitedValue(),
799               (bool)Length);
800   }
801
802   void visitMemTransferInst(MemTransferInst &II) {
803     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
804     if (Length && Length->getValue() == 0)
805       // Zero-length mem transfer intrinsics can be ignored entirely.
806       return markAsDead(II);
807
808     // Because we can visit these intrinsics twice, also check to see if the
809     // first time marked this instruction as dead. If so, skip it.
810     if (VisitedDeadInsts.count(&II))
811       return;
812
813     if (!IsOffsetKnown)
814       return PI.setAborted(&II);
815
816     // This side of the transfer is completely out-of-bounds, and so we can
817     // nuke the entire transfer. However, we also need to nuke the other side
818     // if already added to our partitions.
819     // FIXME: Yet another place we really should bypass this when
820     // instrumenting for ASan.
821     if (Offset.uge(AllocSize)) {
822       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
823           MemTransferSliceMap.find(&II);
824       if (MTPI != MemTransferSliceMap.end())
825         AS.Slices[MTPI->second].kill();
826       return markAsDead(II);
827     }
828
829     uint64_t RawOffset = Offset.getLimitedValue();
830     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
831
832     // Check for the special case where the same exact value is used for both
833     // source and dest.
834     if (*U == II.getRawDest() && *U == II.getRawSource()) {
835       // For non-volatile transfers this is a no-op.
836       if (!II.isVolatile())
837         return markAsDead(II);
838
839       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
840     }
841
842     // If we have seen both source and destination for a mem transfer, then
843     // they both point to the same alloca.
844     bool Inserted;
845     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
846     std::tie(MTPI, Inserted) =
847         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
848     unsigned PrevIdx = MTPI->second;
849     if (!Inserted) {
850       Slice &PrevP = AS.Slices[PrevIdx];
851
852       // Check if the begin offsets match and this is a non-volatile transfer.
853       // In that case, we can completely elide the transfer.
854       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
855         PrevP.kill();
856         return markAsDead(II);
857       }
858
859       // Otherwise we have an offset transfer within the same alloca. We can't
860       // split those.
861       PrevP.makeUnsplittable();
862     }
863
864     // Insert the use now that we've fixed up the splittable nature.
865     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
866
867     // Check that we ended up with a valid index in the map.
868     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
869            "Map index doesn't point back to a slice with this user.");
870   }
871
872   // Disable SRoA for any intrinsics except for lifetime invariants.
873   // FIXME: What about debug intrinsics? This matches old behavior, but
874   // doesn't make sense.
875   void visitIntrinsicInst(IntrinsicInst &II) {
876     if (!IsOffsetKnown)
877       return PI.setAborted(&II);
878
879     if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
880         II.getIntrinsicID() == Intrinsic::lifetime_end) {
881       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
882       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
883                                Length->getLimitedValue());
884       insertUse(II, Offset, Size, true);
885       return;
886     }
887
888     Base::visitIntrinsicInst(II);
889   }
890
891   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
892     // We consider any PHI or select that results in a direct load or store of
893     // the same offset to be a viable use for slicing purposes. These uses
894     // are considered unsplittable and the size is the maximum loaded or stored
895     // size.
896     SmallPtrSet<Instruction *, 4> Visited;
897     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
898     Visited.insert(Root);
899     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
900     const DataLayout &DL = Root->getModule()->getDataLayout();
901     // If there are no loads or stores, the access is dead. We mark that as
902     // a size zero access.
903     Size = 0;
904     do {
905       Instruction *I, *UsedI;
906       std::tie(UsedI, I) = Uses.pop_back_val();
907
908       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
909         Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
910         continue;
911       }
912       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
913         Value *Op = SI->getOperand(0);
914         if (Op == UsedI)
915           return SI;
916         Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
917         continue;
918       }
919
920       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
921         if (!GEP->hasAllZeroIndices())
922           return GEP;
923       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
924                  !isa<SelectInst>(I)) {
925         return I;
926       }
927
928       for (User *U : I->users())
929         if (Visited.insert(cast<Instruction>(U)).second)
930           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
931     } while (!Uses.empty());
932
933     return nullptr;
934   }
935
936   void visitPHINodeOrSelectInst(Instruction &I) {
937     assert(isa<PHINode>(I) || isa<SelectInst>(I));
938     if (I.use_empty())
939       return markAsDead(I);
940
941     // TODO: We could use SimplifyInstruction here to fold PHINodes and
942     // SelectInsts. However, doing so requires to change the current
943     // dead-operand-tracking mechanism. For instance, suppose neither loading
944     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
945     // trap either.  However, if we simply replace %U with undef using the
946     // current dead-operand-tracking mechanism, "load (select undef, undef,
947     // %other)" may trap because the select may return the first operand
948     // "undef".
949     if (Value *Result = foldPHINodeOrSelectInst(I)) {
950       if (Result == *U)
951         // If the result of the constant fold will be the pointer, recurse
952         // through the PHI/select as if we had RAUW'ed it.
953         enqueueUsers(I);
954       else
955         // Otherwise the operand to the PHI/select is dead, and we can replace
956         // it with undef.
957         AS.DeadOperands.push_back(U);
958
959       return;
960     }
961
962     if (!IsOffsetKnown)
963       return PI.setAborted(&I);
964
965     // See if we already have computed info on this node.
966     uint64_t &Size = PHIOrSelectSizes[&I];
967     if (!Size) {
968       // This is a new PHI/Select, check for an unsafe use of it.
969       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
970         return PI.setAborted(UnsafeI);
971     }
972
973     // For PHI and select operands outside the alloca, we can't nuke the entire
974     // phi or select -- the other side might still be relevant, so we special
975     // case them here and use a separate structure to track the operands
976     // themselves which should be replaced with undef.
977     // FIXME: This should instead be escaped in the event we're instrumenting
978     // for address sanitization.
979     if (Offset.uge(AllocSize)) {
980       AS.DeadOperands.push_back(U);
981       return;
982     }
983
984     insertUse(I, Offset, Size);
985   }
986
987   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
988
989   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
990
991   /// \brief Disable SROA entirely if there are unhandled users of the alloca.
992   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
993 };
994
995 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
996     :
997 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
998       AI(AI),
999 #endif
1000       PointerEscapingInstr(nullptr) {
1001   SliceBuilder PB(DL, AI, *this);
1002   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1003   if (PtrI.isEscaped() || PtrI.isAborted()) {
1004     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1005     // possibly by just storing the PtrInfo in the AllocaSlices.
1006     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1007                                                   : PtrI.getAbortingInst();
1008     assert(PointerEscapingInstr && "Did not track a bad instruction");
1009     return;
1010   }
1011
1012   Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
1013                               [](const Slice &S) {
1014                                 return S.isDead();
1015                               }),
1016                Slices.end());
1017
1018 #if __cplusplus >= 201103L && !defined(NDEBUG)
1019   if (SROARandomShuffleSlices) {
1020     std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec()));
1021     std::shuffle(Slices.begin(), Slices.end(), MT);
1022   }
1023 #endif
1024
1025   // Sort the uses. This arranges for the offsets to be in ascending order,
1026   // and the sizes to be in descending order.
1027   std::sort(Slices.begin(), Slices.end());
1028 }
1029
1030 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1031
1032 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1033                          StringRef Indent) const {
1034   printSlice(OS, I, Indent);
1035   OS << "\n";
1036   printUse(OS, I, Indent);
1037 }
1038
1039 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1040                               StringRef Indent) const {
1041   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1042      << " slice #" << (I - begin())
1043      << (I->isSplittable() ? " (splittable)" : "");
1044 }
1045
1046 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1047                             StringRef Indent) const {
1048   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1049 }
1050
1051 void AllocaSlices::print(raw_ostream &OS) const {
1052   if (PointerEscapingInstr) {
1053     OS << "Can't analyze slices for alloca: " << AI << "\n"
1054        << "  A pointer to this alloca escaped by:\n"
1055        << "  " << *PointerEscapingInstr << "\n";
1056     return;
1057   }
1058
1059   OS << "Slices of alloca: " << AI << "\n";
1060   for (const_iterator I = begin(), E = end(); I != E; ++I)
1061     print(OS, I);
1062 }
1063
1064 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1065   print(dbgs(), I);
1066 }
1067 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1068
1069 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1070
1071 /// Walk the range of a partitioning looking for a common type to cover this
1072 /// sequence of slices.
1073 static Type *findCommonType(AllocaSlices::const_iterator B,
1074                             AllocaSlices::const_iterator E,
1075                             uint64_t EndOffset) {
1076   Type *Ty = nullptr;
1077   bool TyIsCommon = true;
1078   IntegerType *ITy = nullptr;
1079
1080   // Note that we need to look at *every* alloca slice's Use to ensure we
1081   // always get consistent results regardless of the order of slices.
1082   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1083     Use *U = I->getUse();
1084     if (isa<IntrinsicInst>(*U->getUser()))
1085       continue;
1086     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1087       continue;
1088
1089     Type *UserTy = nullptr;
1090     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1091       UserTy = LI->getType();
1092     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1093       UserTy = SI->getValueOperand()->getType();
1094     }
1095
1096     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1097       // If the type is larger than the partition, skip it. We only encounter
1098       // this for split integer operations where we want to use the type of the
1099       // entity causing the split. Also skip if the type is not a byte width
1100       // multiple.
1101       if (UserITy->getBitWidth() % 8 != 0 ||
1102           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1103         continue;
1104
1105       // Track the largest bitwidth integer type used in this way in case there
1106       // is no common type.
1107       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1108         ITy = UserITy;
1109     }
1110
1111     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1112     // depend on types skipped above.
1113     if (!UserTy || (Ty && Ty != UserTy))
1114       TyIsCommon = false; // Give up on anything but an iN type.
1115     else
1116       Ty = UserTy;
1117   }
1118
1119   return TyIsCommon ? Ty : ITy;
1120 }
1121
1122 /// PHI instructions that use an alloca and are subsequently loaded can be
1123 /// rewritten to load both input pointers in the pred blocks and then PHI the
1124 /// results, allowing the load of the alloca to be promoted.
1125 /// From this:
1126 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1127 ///   %V = load i32* %P2
1128 /// to:
1129 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1130 ///   ...
1131 ///   %V2 = load i32* %Other
1132 ///   ...
1133 ///   %V = phi [i32 %V1, i32 %V2]
1134 ///
1135 /// We can do this to a select if its only uses are loads and if the operands
1136 /// to the select can be loaded unconditionally.
1137 ///
1138 /// FIXME: This should be hoisted into a generic utility, likely in
1139 /// Transforms/Util/Local.h
1140 static bool isSafePHIToSpeculate(PHINode &PN) {
1141   // For now, we can only do this promotion if the load is in the same block
1142   // as the PHI, and if there are no stores between the phi and load.
1143   // TODO: Allow recursive phi users.
1144   // TODO: Allow stores.
1145   BasicBlock *BB = PN.getParent();
1146   unsigned MaxAlign = 0;
1147   bool HaveLoad = false;
1148   for (User *U : PN.users()) {
1149     LoadInst *LI = dyn_cast<LoadInst>(U);
1150     if (!LI || !LI->isSimple())
1151       return false;
1152
1153     // For now we only allow loads in the same block as the PHI.  This is
1154     // a common case that happens when instcombine merges two loads through
1155     // a PHI.
1156     if (LI->getParent() != BB)
1157       return false;
1158
1159     // Ensure that there are no instructions between the PHI and the load that
1160     // could store.
1161     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1162       if (BBI->mayWriteToMemory())
1163         return false;
1164
1165     MaxAlign = std::max(MaxAlign, LI->getAlignment());
1166     HaveLoad = true;
1167   }
1168
1169   if (!HaveLoad)
1170     return false;
1171
1172   const DataLayout &DL = PN.getModule()->getDataLayout();
1173
1174   // We can only transform this if it is safe to push the loads into the
1175   // predecessor blocks. The only thing to watch out for is that we can't put
1176   // a possibly trapping load in the predecessor if it is a critical edge.
1177   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1178     TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1179     Value *InVal = PN.getIncomingValue(Idx);
1180
1181     // If the value is produced by the terminator of the predecessor (an
1182     // invoke) or it has side-effects, there is no valid place to put a load
1183     // in the predecessor.
1184     if (TI == InVal || TI->mayHaveSideEffects())
1185       return false;
1186
1187     // If the predecessor has a single successor, then the edge isn't
1188     // critical.
1189     if (TI->getNumSuccessors() == 1)
1190       continue;
1191
1192     // If this pointer is always safe to load, or if we can prove that there
1193     // is already a load in the block, then we can move the load to the pred
1194     // block.
1195     if (isDereferenceablePointer(InVal, DL) ||
1196         isSafeToLoadUnconditionally(InVal, TI, MaxAlign))
1197       continue;
1198
1199     return false;
1200   }
1201
1202   return true;
1203 }
1204
1205 static void speculatePHINodeLoads(PHINode &PN) {
1206   DEBUG(dbgs() << "    original: " << PN << "\n");
1207
1208   Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1209   IRBuilderTy PHIBuilder(&PN);
1210   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1211                                         PN.getName() + ".sroa.speculated");
1212
1213   // Get the AA tags and alignment to use from one of the loads.  It doesn't
1214   // matter which one we get and if any differ.
1215   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1216
1217   AAMDNodes AATags;
1218   SomeLoad->getAAMetadata(AATags);
1219   unsigned Align = SomeLoad->getAlignment();
1220
1221   // Rewrite all loads of the PN to use the new PHI.
1222   while (!PN.use_empty()) {
1223     LoadInst *LI = cast<LoadInst>(PN.user_back());
1224     LI->replaceAllUsesWith(NewPN);
1225     LI->eraseFromParent();
1226   }
1227
1228   // Inject loads into all of the pred blocks.
1229   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1230     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1231     TerminatorInst *TI = Pred->getTerminator();
1232     Value *InVal = PN.getIncomingValue(Idx);
1233     IRBuilderTy PredBuilder(TI);
1234
1235     LoadInst *Load = PredBuilder.CreateLoad(
1236         InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1237     ++NumLoadsSpeculated;
1238     Load->setAlignment(Align);
1239     if (AATags)
1240       Load->setAAMetadata(AATags);
1241     NewPN->addIncoming(Load, Pred);
1242   }
1243
1244   DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1245   PN.eraseFromParent();
1246 }
1247
1248 /// Select instructions that use an alloca and are subsequently loaded can be
1249 /// rewritten to load both input pointers and then select between the result,
1250 /// allowing the load of the alloca to be promoted.
1251 /// From this:
1252 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1253 ///   %V = load i32* %P2
1254 /// to:
1255 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1256 ///   %V2 = load i32* %Other
1257 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1258 ///
1259 /// We can do this to a select if its only uses are loads and if the operand
1260 /// to the select can be loaded unconditionally.
1261 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1262   Value *TValue = SI.getTrueValue();
1263   Value *FValue = SI.getFalseValue();
1264   const DataLayout &DL = SI.getModule()->getDataLayout();
1265   bool TDerefable = isDereferenceablePointer(TValue, DL);
1266   bool FDerefable = isDereferenceablePointer(FValue, DL);
1267
1268   for (User *U : SI.users()) {
1269     LoadInst *LI = dyn_cast<LoadInst>(U);
1270     if (!LI || !LI->isSimple())
1271       return false;
1272
1273     // Both operands to the select need to be dereferencable, either
1274     // absolutely (e.g. allocas) or at this point because we can see other
1275     // accesses to it.
1276     if (!TDerefable &&
1277         !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment()))
1278       return false;
1279     if (!FDerefable &&
1280         !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment()))
1281       return false;
1282   }
1283
1284   return true;
1285 }
1286
1287 static void speculateSelectInstLoads(SelectInst &SI) {
1288   DEBUG(dbgs() << "    original: " << SI << "\n");
1289
1290   IRBuilderTy IRB(&SI);
1291   Value *TV = SI.getTrueValue();
1292   Value *FV = SI.getFalseValue();
1293   // Replace the loads of the select with a select of two loads.
1294   while (!SI.use_empty()) {
1295     LoadInst *LI = cast<LoadInst>(SI.user_back());
1296     assert(LI->isSimple() && "We only speculate simple loads");
1297
1298     IRB.SetInsertPoint(LI);
1299     LoadInst *TL =
1300         IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1301     LoadInst *FL =
1302         IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1303     NumLoadsSpeculated += 2;
1304
1305     // Transfer alignment and AA info if present.
1306     TL->setAlignment(LI->getAlignment());
1307     FL->setAlignment(LI->getAlignment());
1308
1309     AAMDNodes Tags;
1310     LI->getAAMetadata(Tags);
1311     if (Tags) {
1312       TL->setAAMetadata(Tags);
1313       FL->setAAMetadata(Tags);
1314     }
1315
1316     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1317                                 LI->getName() + ".sroa.speculated");
1318
1319     DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1320     LI->replaceAllUsesWith(V);
1321     LI->eraseFromParent();
1322   }
1323   SI.eraseFromParent();
1324 }
1325
1326 /// \brief Build a GEP out of a base pointer and indices.
1327 ///
1328 /// This will return the BasePtr if that is valid, or build a new GEP
1329 /// instruction using the IRBuilder if GEP-ing is needed.
1330 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1331                        SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1332   if (Indices.empty())
1333     return BasePtr;
1334
1335   // A single zero index is a no-op, so check for this and avoid building a GEP
1336   // in that case.
1337   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1338     return BasePtr;
1339
1340   return IRB.CreateInBoundsGEP(nullptr, BasePtr, Indices,
1341                                NamePrefix + "sroa_idx");
1342 }
1343
1344 /// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1345 /// TargetTy without changing the offset of the pointer.
1346 ///
1347 /// This routine assumes we've already established a properly offset GEP with
1348 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1349 /// zero-indices down through type layers until we find one the same as
1350 /// TargetTy. If we can't find one with the same type, we at least try to use
1351 /// one with the same size. If none of that works, we just produce the GEP as
1352 /// indicated by Indices to have the correct offset.
1353 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1354                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1355                                     SmallVectorImpl<Value *> &Indices,
1356                                     Twine NamePrefix) {
1357   if (Ty == TargetTy)
1358     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1359
1360   // Pointer size to use for the indices.
1361   unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
1362
1363   // See if we can descend into a struct and locate a field with the correct
1364   // type.
1365   unsigned NumLayers = 0;
1366   Type *ElementTy = Ty;
1367   do {
1368     if (ElementTy->isPointerTy())
1369       break;
1370
1371     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1372       ElementTy = ArrayTy->getElementType();
1373       Indices.push_back(IRB.getIntN(PtrSize, 0));
1374     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1375       ElementTy = VectorTy->getElementType();
1376       Indices.push_back(IRB.getInt32(0));
1377     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1378       if (STy->element_begin() == STy->element_end())
1379         break; // Nothing left to descend into.
1380       ElementTy = *STy->element_begin();
1381       Indices.push_back(IRB.getInt32(0));
1382     } else {
1383       break;
1384     }
1385     ++NumLayers;
1386   } while (ElementTy != TargetTy);
1387   if (ElementTy != TargetTy)
1388     Indices.erase(Indices.end() - NumLayers, Indices.end());
1389
1390   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1391 }
1392
1393 /// \brief Recursively compute indices for a natural GEP.
1394 ///
1395 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1396 /// element types adding appropriate indices for the GEP.
1397 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1398                                        Value *Ptr, Type *Ty, APInt &Offset,
1399                                        Type *TargetTy,
1400                                        SmallVectorImpl<Value *> &Indices,
1401                                        Twine NamePrefix) {
1402   if (Offset == 0)
1403     return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1404                                  NamePrefix);
1405
1406   // We can't recurse through pointer types.
1407   if (Ty->isPointerTy())
1408     return nullptr;
1409
1410   // We try to analyze GEPs over vectors here, but note that these GEPs are
1411   // extremely poorly defined currently. The long-term goal is to remove GEPing
1412   // over a vector from the IR completely.
1413   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1414     unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1415     if (ElementSizeInBits % 8 != 0) {
1416       // GEPs over non-multiple of 8 size vector elements are invalid.
1417       return nullptr;
1418     }
1419     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1420     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1421     if (NumSkippedElements.ugt(VecTy->getNumElements()))
1422       return nullptr;
1423     Offset -= NumSkippedElements * ElementSize;
1424     Indices.push_back(IRB.getInt(NumSkippedElements));
1425     return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1426                                     Offset, TargetTy, Indices, NamePrefix);
1427   }
1428
1429   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1430     Type *ElementTy = ArrTy->getElementType();
1431     APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1432     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1433     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1434       return nullptr;
1435
1436     Offset -= NumSkippedElements * ElementSize;
1437     Indices.push_back(IRB.getInt(NumSkippedElements));
1438     return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1439                                     Indices, NamePrefix);
1440   }
1441
1442   StructType *STy = dyn_cast<StructType>(Ty);
1443   if (!STy)
1444     return nullptr;
1445
1446   const StructLayout *SL = DL.getStructLayout(STy);
1447   uint64_t StructOffset = Offset.getZExtValue();
1448   if (StructOffset >= SL->getSizeInBytes())
1449     return nullptr;
1450   unsigned Index = SL->getElementContainingOffset(StructOffset);
1451   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1452   Type *ElementTy = STy->getElementType(Index);
1453   if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1454     return nullptr; // The offset points into alignment padding.
1455
1456   Indices.push_back(IRB.getInt32(Index));
1457   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1458                                   Indices, NamePrefix);
1459 }
1460
1461 /// \brief Get a natural GEP from a base pointer to a particular offset and
1462 /// resulting in a particular type.
1463 ///
1464 /// The goal is to produce a "natural" looking GEP that works with the existing
1465 /// composite types to arrive at the appropriate offset and element type for
1466 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1467 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1468 /// Indices, and setting Ty to the result subtype.
1469 ///
1470 /// If no natural GEP can be constructed, this function returns null.
1471 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1472                                       Value *Ptr, APInt Offset, Type *TargetTy,
1473                                       SmallVectorImpl<Value *> &Indices,
1474                                       Twine NamePrefix) {
1475   PointerType *Ty = cast<PointerType>(Ptr->getType());
1476
1477   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1478   // an i8.
1479   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1480     return nullptr;
1481
1482   Type *ElementTy = Ty->getElementType();
1483   if (!ElementTy->isSized())
1484     return nullptr; // We can't GEP through an unsized element.
1485   APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1486   if (ElementSize == 0)
1487     return nullptr; // Zero-length arrays can't help us build a natural GEP.
1488   APInt NumSkippedElements = Offset.sdiv(ElementSize);
1489
1490   Offset -= NumSkippedElements * ElementSize;
1491   Indices.push_back(IRB.getInt(NumSkippedElements));
1492   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1493                                   Indices, NamePrefix);
1494 }
1495
1496 /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1497 /// resulting pointer has PointerTy.
1498 ///
1499 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1500 /// and produces the pointer type desired. Where it cannot, it will try to use
1501 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1502 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1503 /// bitcast to the type.
1504 ///
1505 /// The strategy for finding the more natural GEPs is to peel off layers of the
1506 /// pointer, walking back through bit casts and GEPs, searching for a base
1507 /// pointer from which we can compute a natural GEP with the desired
1508 /// properties. The algorithm tries to fold as many constant indices into
1509 /// a single GEP as possible, thus making each GEP more independent of the
1510 /// surrounding code.
1511 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1512                              APInt Offset, Type *PointerTy, Twine NamePrefix) {
1513   // Even though we don't look through PHI nodes, we could be called on an
1514   // instruction in an unreachable block, which may be on a cycle.
1515   SmallPtrSet<Value *, 4> Visited;
1516   Visited.insert(Ptr);
1517   SmallVector<Value *, 4> Indices;
1518
1519   // We may end up computing an offset pointer that has the wrong type. If we
1520   // never are able to compute one directly that has the correct type, we'll
1521   // fall back to it, so keep it and the base it was computed from around here.
1522   Value *OffsetPtr = nullptr;
1523   Value *OffsetBasePtr;
1524
1525   // Remember any i8 pointer we come across to re-use if we need to do a raw
1526   // byte offset.
1527   Value *Int8Ptr = nullptr;
1528   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1529
1530   Type *TargetTy = PointerTy->getPointerElementType();
1531
1532   do {
1533     // First fold any existing GEPs into the offset.
1534     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1535       APInt GEPOffset(Offset.getBitWidth(), 0);
1536       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1537         break;
1538       Offset += GEPOffset;
1539       Ptr = GEP->getPointerOperand();
1540       if (!Visited.insert(Ptr).second)
1541         break;
1542     }
1543
1544     // See if we can perform a natural GEP here.
1545     Indices.clear();
1546     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1547                                            Indices, NamePrefix)) {
1548       // If we have a new natural pointer at the offset, clear out any old
1549       // offset pointer we computed. Unless it is the base pointer or
1550       // a non-instruction, we built a GEP we don't need. Zap it.
1551       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1552         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1553           assert(I->use_empty() && "Built a GEP with uses some how!");
1554           I->eraseFromParent();
1555         }
1556       OffsetPtr = P;
1557       OffsetBasePtr = Ptr;
1558       // If we also found a pointer of the right type, we're done.
1559       if (P->getType() == PointerTy)
1560         return P;
1561     }
1562
1563     // Stash this pointer if we've found an i8*.
1564     if (Ptr->getType()->isIntegerTy(8)) {
1565       Int8Ptr = Ptr;
1566       Int8PtrOffset = Offset;
1567     }
1568
1569     // Peel off a layer of the pointer and update the offset appropriately.
1570     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1571       Ptr = cast<Operator>(Ptr)->getOperand(0);
1572     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1573       if (GA->mayBeOverridden())
1574         break;
1575       Ptr = GA->getAliasee();
1576     } else {
1577       break;
1578     }
1579     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1580   } while (Visited.insert(Ptr).second);
1581
1582   if (!OffsetPtr) {
1583     if (!Int8Ptr) {
1584       Int8Ptr = IRB.CreateBitCast(
1585           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1586           NamePrefix + "sroa_raw_cast");
1587       Int8PtrOffset = Offset;
1588     }
1589
1590     OffsetPtr = Int8PtrOffset == 0
1591                     ? Int8Ptr
1592                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1593                                             IRB.getInt(Int8PtrOffset),
1594                                             NamePrefix + "sroa_raw_idx");
1595   }
1596   Ptr = OffsetPtr;
1597
1598   // On the off chance we were targeting i8*, guard the bitcast here.
1599   if (Ptr->getType() != PointerTy)
1600     Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
1601
1602   return Ptr;
1603 }
1604
1605 /// \brief Compute the adjusted alignment for a load or store from an offset.
1606 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
1607                                      const DataLayout &DL) {
1608   unsigned Alignment;
1609   Type *Ty;
1610   if (auto *LI = dyn_cast<LoadInst>(I)) {
1611     Alignment = LI->getAlignment();
1612     Ty = LI->getType();
1613   } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1614     Alignment = SI->getAlignment();
1615     Ty = SI->getValueOperand()->getType();
1616   } else {
1617     llvm_unreachable("Only loads and stores are allowed!");
1618   }
1619
1620   if (!Alignment)
1621     Alignment = DL.getABITypeAlignment(Ty);
1622
1623   return MinAlign(Alignment, Offset);
1624 }
1625
1626 /// \brief Test whether we can convert a value from the old to the new type.
1627 ///
1628 /// This predicate should be used to guard calls to convertValue in order to
1629 /// ensure that we only try to convert viable values. The strategy is that we
1630 /// will peel off single element struct and array wrappings to get to an
1631 /// underlying value, and convert that value.
1632 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1633   if (OldTy == NewTy)
1634     return true;
1635
1636   // For integer types, we can't handle any bit-width differences. This would
1637   // break both vector conversions with extension and introduce endianness
1638   // issues when in conjunction with loads and stores.
1639   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1640     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1641                cast<IntegerType>(NewTy)->getBitWidth() &&
1642            "We can't have the same bitwidth for different int types");
1643     return false;
1644   }
1645
1646   if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1647     return false;
1648   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1649     return false;
1650
1651   // We can convert pointers to integers and vice-versa. Same for vectors
1652   // of pointers and integers.
1653   OldTy = OldTy->getScalarType();
1654   NewTy = NewTy->getScalarType();
1655   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1656     if (NewTy->isPointerTy() && OldTy->isPointerTy())
1657       return true;
1658     if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1659       return true;
1660     return false;
1661   }
1662
1663   return true;
1664 }
1665
1666 /// \brief Generic routine to convert an SSA value to a value of a different
1667 /// type.
1668 ///
1669 /// This will try various different casting techniques, such as bitcasts,
1670 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1671 /// two types for viability with this routine.
1672 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1673                            Type *NewTy) {
1674   Type *OldTy = V->getType();
1675   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1676
1677   if (OldTy == NewTy)
1678     return V;
1679
1680   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1681          "Integer types must be the exact same to convert.");
1682
1683   // See if we need inttoptr for this type pair. A cast involving both scalars
1684   // and vectors requires and additional bitcast.
1685   if (OldTy->getScalarType()->isIntegerTy() &&
1686       NewTy->getScalarType()->isPointerTy()) {
1687     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1688     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1689       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1690                                 NewTy);
1691
1692     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1693     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1694       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1695                                 NewTy);
1696
1697     return IRB.CreateIntToPtr(V, NewTy);
1698   }
1699
1700   // See if we need ptrtoint for this type pair. A cast involving both scalars
1701   // and vectors requires and additional bitcast.
1702   if (OldTy->getScalarType()->isPointerTy() &&
1703       NewTy->getScalarType()->isIntegerTy()) {
1704     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1705     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1706       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1707                                NewTy);
1708
1709     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1710     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1711       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1712                                NewTy);
1713
1714     return IRB.CreatePtrToInt(V, NewTy);
1715   }
1716
1717   return IRB.CreateBitCast(V, NewTy);
1718 }
1719
1720 /// \brief Test whether the given slice use can be promoted to a vector.
1721 ///
1722 /// This function is called to test each entry in a partition which is slated
1723 /// for a single slice.
1724 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1725                                             VectorType *Ty,
1726                                             uint64_t ElementSize,
1727                                             const DataLayout &DL) {
1728   // First validate the slice offsets.
1729   uint64_t BeginOffset =
1730       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1731   uint64_t BeginIndex = BeginOffset / ElementSize;
1732   if (BeginIndex * ElementSize != BeginOffset ||
1733       BeginIndex >= Ty->getNumElements())
1734     return false;
1735   uint64_t EndOffset =
1736       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1737   uint64_t EndIndex = EndOffset / ElementSize;
1738   if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1739     return false;
1740
1741   assert(EndIndex > BeginIndex && "Empty vector!");
1742   uint64_t NumElements = EndIndex - BeginIndex;
1743   Type *SliceTy = (NumElements == 1)
1744                       ? Ty->getElementType()
1745                       : VectorType::get(Ty->getElementType(), NumElements);
1746
1747   Type *SplitIntTy =
1748       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1749
1750   Use *U = S.getUse();
1751
1752   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1753     if (MI->isVolatile())
1754       return false;
1755     if (!S.isSplittable())
1756       return false; // Skip any unsplittable intrinsics.
1757   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1758     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1759         II->getIntrinsicID() != Intrinsic::lifetime_end)
1760       return false;
1761   } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1762     // Disable vector promotion when there are loads or stores of an FCA.
1763     return false;
1764   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1765     if (LI->isVolatile())
1766       return false;
1767     Type *LTy = LI->getType();
1768     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1769       assert(LTy->isIntegerTy());
1770       LTy = SplitIntTy;
1771     }
1772     if (!canConvertValue(DL, SliceTy, LTy))
1773       return false;
1774   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1775     if (SI->isVolatile())
1776       return false;
1777     Type *STy = SI->getValueOperand()->getType();
1778     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1779       assert(STy->isIntegerTy());
1780       STy = SplitIntTy;
1781     }
1782     if (!canConvertValue(DL, STy, SliceTy))
1783       return false;
1784   } else {
1785     return false;
1786   }
1787
1788   return true;
1789 }
1790
1791 /// \brief Test whether the given alloca partitioning and range of slices can be
1792 /// promoted to a vector.
1793 ///
1794 /// This is a quick test to check whether we can rewrite a particular alloca
1795 /// partition (and its newly formed alloca) into a vector alloca with only
1796 /// whole-vector loads and stores such that it could be promoted to a vector
1797 /// SSA value. We only can ensure this for a limited set of operations, and we
1798 /// don't want to do the rewrites unless we are confident that the result will
1799 /// be promotable, so we have an early test here.
1800 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1801   // Collect the candidate types for vector-based promotion. Also track whether
1802   // we have different element types.
1803   SmallVector<VectorType *, 4> CandidateTys;
1804   Type *CommonEltTy = nullptr;
1805   bool HaveCommonEltTy = true;
1806   auto CheckCandidateType = [&](Type *Ty) {
1807     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1808       CandidateTys.push_back(VTy);
1809       if (!CommonEltTy)
1810         CommonEltTy = VTy->getElementType();
1811       else if (CommonEltTy != VTy->getElementType())
1812         HaveCommonEltTy = false;
1813     }
1814   };
1815   // Consider any loads or stores that are the exact size of the slice.
1816   for (const Slice &S : P)
1817     if (S.beginOffset() == P.beginOffset() &&
1818         S.endOffset() == P.endOffset()) {
1819       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1820         CheckCandidateType(LI->getType());
1821       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1822         CheckCandidateType(SI->getValueOperand()->getType());
1823     }
1824
1825   // If we didn't find a vector type, nothing to do here.
1826   if (CandidateTys.empty())
1827     return nullptr;
1828
1829   // Remove non-integer vector types if we had multiple common element types.
1830   // FIXME: It'd be nice to replace them with integer vector types, but we can't
1831   // do that until all the backends are known to produce good code for all
1832   // integer vector types.
1833   if (!HaveCommonEltTy) {
1834     CandidateTys.erase(std::remove_if(CandidateTys.begin(), CandidateTys.end(),
1835                                       [](VectorType *VTy) {
1836                          return !VTy->getElementType()->isIntegerTy();
1837                        }),
1838                        CandidateTys.end());
1839
1840     // If there were no integer vector types, give up.
1841     if (CandidateTys.empty())
1842       return nullptr;
1843
1844     // Rank the remaining candidate vector types. This is easy because we know
1845     // they're all integer vectors. We sort by ascending number of elements.
1846     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1847       assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
1848              "Cannot have vector types of different sizes!");
1849       assert(RHSTy->getElementType()->isIntegerTy() &&
1850              "All non-integer types eliminated!");
1851       assert(LHSTy->getElementType()->isIntegerTy() &&
1852              "All non-integer types eliminated!");
1853       return RHSTy->getNumElements() < LHSTy->getNumElements();
1854     };
1855     std::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes);
1856     CandidateTys.erase(
1857         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1858         CandidateTys.end());
1859   } else {
1860 // The only way to have the same element type in every vector type is to
1861 // have the same vector type. Check that and remove all but one.
1862 #ifndef NDEBUG
1863     for (VectorType *VTy : CandidateTys) {
1864       assert(VTy->getElementType() == CommonEltTy &&
1865              "Unaccounted for element type!");
1866       assert(VTy == CandidateTys[0] &&
1867              "Different vector types with the same element type!");
1868     }
1869 #endif
1870     CandidateTys.resize(1);
1871   }
1872
1873   // Try each vector type, and return the one which works.
1874   auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1875     uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
1876
1877     // While the definition of LLVM vectors is bitpacked, we don't support sizes
1878     // that aren't byte sized.
1879     if (ElementSize % 8)
1880       return false;
1881     assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
1882            "vector size not a multiple of element size?");
1883     ElementSize /= 8;
1884
1885     for (const Slice &S : P)
1886       if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1887         return false;
1888
1889     for (const Slice *S : P.splitSliceTails())
1890       if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1891         return false;
1892
1893     return true;
1894   };
1895   for (VectorType *VTy : CandidateTys)
1896     if (CheckVectorTypeForPromotion(VTy))
1897       return VTy;
1898
1899   return nullptr;
1900 }
1901
1902 /// \brief Test whether a slice of an alloca is valid for integer widening.
1903 ///
1904 /// This implements the necessary checking for the \c isIntegerWideningViable
1905 /// test below on a single slice of the alloca.
1906 static bool isIntegerWideningViableForSlice(const Slice &S,
1907                                             uint64_t AllocBeginOffset,
1908                                             Type *AllocaTy,
1909                                             const DataLayout &DL,
1910                                             bool &WholeAllocaOp) {
1911   uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1912
1913   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
1914   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
1915
1916   // We can't reasonably handle cases where the load or store extends past
1917   // the end of the alloca's type and into its padding.
1918   if (RelEnd > Size)
1919     return false;
1920
1921   Use *U = S.getUse();
1922
1923   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1924     if (LI->isVolatile())
1925       return false;
1926     // We can't handle loads that extend past the allocated memory.
1927     if (DL.getTypeStoreSize(LI->getType()) > Size)
1928       return false;
1929     // Note that we don't count vector loads or stores as whole-alloca
1930     // operations which enable integer widening because we would prefer to use
1931     // vector widening instead.
1932     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
1933       WholeAllocaOp = true;
1934     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1935       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1936         return false;
1937     } else if (RelBegin != 0 || RelEnd != Size ||
1938                !canConvertValue(DL, AllocaTy, LI->getType())) {
1939       // Non-integer loads need to be convertible from the alloca type so that
1940       // they are promotable.
1941       return false;
1942     }
1943   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1944     Type *ValueTy = SI->getValueOperand()->getType();
1945     if (SI->isVolatile())
1946       return false;
1947     // We can't handle stores that extend past the allocated memory.
1948     if (DL.getTypeStoreSize(ValueTy) > Size)
1949       return false;
1950     // Note that we don't count vector loads or stores as whole-alloca
1951     // operations which enable integer widening because we would prefer to use
1952     // vector widening instead.
1953     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
1954       WholeAllocaOp = true;
1955     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
1956       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1957         return false;
1958     } else if (RelBegin != 0 || RelEnd != Size ||
1959                !canConvertValue(DL, ValueTy, AllocaTy)) {
1960       // Non-integer stores need to be convertible to the alloca type so that
1961       // they are promotable.
1962       return false;
1963     }
1964   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1965     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1966       return false;
1967     if (!S.isSplittable())
1968       return false; // Skip any unsplittable intrinsics.
1969   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1970     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1971         II->getIntrinsicID() != Intrinsic::lifetime_end)
1972       return false;
1973   } else {
1974     return false;
1975   }
1976
1977   return true;
1978 }
1979
1980 /// \brief Test whether the given alloca partition's integer operations can be
1981 /// widened to promotable ones.
1982 ///
1983 /// This is a quick test to check whether we can rewrite the integer loads and
1984 /// stores to a particular alloca into wider loads and stores and be able to
1985 /// promote the resulting alloca.
1986 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
1987                                     const DataLayout &DL) {
1988   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
1989   // Don't create integer types larger than the maximum bitwidth.
1990   if (SizeInBits > IntegerType::MAX_INT_BITS)
1991     return false;
1992
1993   // Don't try to handle allocas with bit-padding.
1994   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
1995     return false;
1996
1997   // We need to ensure that an integer type with the appropriate bitwidth can
1998   // be converted to the alloca type, whatever that is. We don't want to force
1999   // the alloca itself to have an integer type if there is a more suitable one.
2000   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2001   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2002       !canConvertValue(DL, IntTy, AllocaTy))
2003     return false;
2004
2005   // While examining uses, we ensure that the alloca has a covering load or
2006   // store. We don't want to widen the integer operations only to fail to
2007   // promote due to some other unsplittable entry (which we may make splittable
2008   // later). However, if there are only splittable uses, go ahead and assume
2009   // that we cover the alloca.
2010   // FIXME: We shouldn't consider split slices that happen to start in the
2011   // partition here...
2012   bool WholeAllocaOp =
2013       P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2014
2015   for (const Slice &S : P)
2016     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2017                                          WholeAllocaOp))
2018       return false;
2019
2020   for (const Slice *S : P.splitSliceTails())
2021     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2022                                          WholeAllocaOp))
2023       return false;
2024
2025   return WholeAllocaOp;
2026 }
2027
2028 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2029                              IntegerType *Ty, uint64_t Offset,
2030                              const Twine &Name) {
2031   DEBUG(dbgs() << "       start: " << *V << "\n");
2032   IntegerType *IntTy = cast<IntegerType>(V->getType());
2033   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2034          "Element extends past full value");
2035   uint64_t ShAmt = 8 * Offset;
2036   if (DL.isBigEndian())
2037     ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2038   if (ShAmt) {
2039     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2040     DEBUG(dbgs() << "     shifted: " << *V << "\n");
2041   }
2042   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2043          "Cannot extract to a larger integer!");
2044   if (Ty != IntTy) {
2045     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2046     DEBUG(dbgs() << "     trunced: " << *V << "\n");
2047   }
2048   return V;
2049 }
2050
2051 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2052                             Value *V, uint64_t Offset, const Twine &Name) {
2053   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2054   IntegerType *Ty = cast<IntegerType>(V->getType());
2055   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2056          "Cannot insert a larger integer!");
2057   DEBUG(dbgs() << "       start: " << *V << "\n");
2058   if (Ty != IntTy) {
2059     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2060     DEBUG(dbgs() << "    extended: " << *V << "\n");
2061   }
2062   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2063          "Element store outside of alloca store");
2064   uint64_t ShAmt = 8 * Offset;
2065   if (DL.isBigEndian())
2066     ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2067   if (ShAmt) {
2068     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2069     DEBUG(dbgs() << "     shifted: " << *V << "\n");
2070   }
2071
2072   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2073     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2074     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2075     DEBUG(dbgs() << "      masked: " << *Old << "\n");
2076     V = IRB.CreateOr(Old, V, Name + ".insert");
2077     DEBUG(dbgs() << "    inserted: " << *V << "\n");
2078   }
2079   return V;
2080 }
2081
2082 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2083                             unsigned EndIndex, const Twine &Name) {
2084   VectorType *VecTy = cast<VectorType>(V->getType());
2085   unsigned NumElements = EndIndex - BeginIndex;
2086   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2087
2088   if (NumElements == VecTy->getNumElements())
2089     return V;
2090
2091   if (NumElements == 1) {
2092     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2093                                  Name + ".extract");
2094     DEBUG(dbgs() << "     extract: " << *V << "\n");
2095     return V;
2096   }
2097
2098   SmallVector<Constant *, 8> Mask;
2099   Mask.reserve(NumElements);
2100   for (unsigned i = BeginIndex; i != EndIndex; ++i)
2101     Mask.push_back(IRB.getInt32(i));
2102   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2103                               ConstantVector::get(Mask), Name + ".extract");
2104   DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2105   return V;
2106 }
2107
2108 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2109                            unsigned BeginIndex, const Twine &Name) {
2110   VectorType *VecTy = cast<VectorType>(Old->getType());
2111   assert(VecTy && "Can only insert a vector into a vector");
2112
2113   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2114   if (!Ty) {
2115     // Single element to insert.
2116     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2117                                 Name + ".insert");
2118     DEBUG(dbgs() << "     insert: " << *V << "\n");
2119     return V;
2120   }
2121
2122   assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2123          "Too many elements!");
2124   if (Ty->getNumElements() == VecTy->getNumElements()) {
2125     assert(V->getType() == VecTy && "Vector type mismatch");
2126     return V;
2127   }
2128   unsigned EndIndex = BeginIndex + Ty->getNumElements();
2129
2130   // When inserting a smaller vector into the larger to store, we first
2131   // use a shuffle vector to widen it with undef elements, and then
2132   // a second shuffle vector to select between the loaded vector and the
2133   // incoming vector.
2134   SmallVector<Constant *, 8> Mask;
2135   Mask.reserve(VecTy->getNumElements());
2136   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2137     if (i >= BeginIndex && i < EndIndex)
2138       Mask.push_back(IRB.getInt32(i - BeginIndex));
2139     else
2140       Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2141   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2142                               ConstantVector::get(Mask), Name + ".expand");
2143   DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2144
2145   Mask.clear();
2146   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2147     Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2148
2149   V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2150
2151   DEBUG(dbgs() << "    blend: " << *V << "\n");
2152   return V;
2153 }
2154
2155 /// \brief Visitor to rewrite instructions using p particular slice of an alloca
2156 /// to use a new alloca.
2157 ///
2158 /// Also implements the rewriting to vector-based accesses when the partition
2159 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2160 /// lives here.
2161 class llvm::sroa::AllocaSliceRewriter
2162     : public InstVisitor<AllocaSliceRewriter, bool> {
2163   // Befriend the base class so it can delegate to private visit methods.
2164   friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
2165   typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
2166
2167   const DataLayout &DL;
2168   AllocaSlices &AS;
2169   SROA &Pass;
2170   AllocaInst &OldAI, &NewAI;
2171   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2172   Type *NewAllocaTy;
2173
2174   // This is a convenience and flag variable that will be null unless the new
2175   // alloca's integer operations should be widened to this integer type due to
2176   // passing isIntegerWideningViable above. If it is non-null, the desired
2177   // integer type will be stored here for easy access during rewriting.
2178   IntegerType *IntTy;
2179
2180   // If we are rewriting an alloca partition which can be written as pure
2181   // vector operations, we stash extra information here. When VecTy is
2182   // non-null, we have some strict guarantees about the rewritten alloca:
2183   //   - The new alloca is exactly the size of the vector type here.
2184   //   - The accesses all either map to the entire vector or to a single
2185   //     element.
2186   //   - The set of accessing instructions is only one of those handled above
2187   //     in isVectorPromotionViable. Generally these are the same access kinds
2188   //     which are promotable via mem2reg.
2189   VectorType *VecTy;
2190   Type *ElementTy;
2191   uint64_t ElementSize;
2192
2193   // The original offset of the slice currently being rewritten relative to
2194   // the original alloca.
2195   uint64_t BeginOffset, EndOffset;
2196   // The new offsets of the slice currently being rewritten relative to the
2197   // original alloca.
2198   uint64_t NewBeginOffset, NewEndOffset;
2199
2200   uint64_t SliceSize;
2201   bool IsSplittable;
2202   bool IsSplit;
2203   Use *OldUse;
2204   Instruction *OldPtr;
2205
2206   // Track post-rewrite users which are PHI nodes and Selects.
2207   SmallPtrSetImpl<PHINode *> &PHIUsers;
2208   SmallPtrSetImpl<SelectInst *> &SelectUsers;
2209
2210   // Utility IR builder, whose name prefix is setup for each visited use, and
2211   // the insertion point is set to point to the user.
2212   IRBuilderTy IRB;
2213
2214 public:
2215   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2216                       AllocaInst &OldAI, AllocaInst &NewAI,
2217                       uint64_t NewAllocaBeginOffset,
2218                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2219                       VectorType *PromotableVecTy,
2220                       SmallPtrSetImpl<PHINode *> &PHIUsers,
2221                       SmallPtrSetImpl<SelectInst *> &SelectUsers)
2222       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2223         NewAllocaBeginOffset(NewAllocaBeginOffset),
2224         NewAllocaEndOffset(NewAllocaEndOffset),
2225         NewAllocaTy(NewAI.getAllocatedType()),
2226         IntTy(IsIntegerPromotable
2227                   ? Type::getIntNTy(
2228                         NewAI.getContext(),
2229                         DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2230                   : nullptr),
2231         VecTy(PromotableVecTy),
2232         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2233         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2234         BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
2235         OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2236         IRB(NewAI.getContext(), ConstantFolder()) {
2237     if (VecTy) {
2238       assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2239              "Only multiple-of-8 sized vector elements are viable");
2240       ++NumVectorized;
2241     }
2242     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2243   }
2244
2245   bool visit(AllocaSlices::const_iterator I) {
2246     bool CanSROA = true;
2247     BeginOffset = I->beginOffset();
2248     EndOffset = I->endOffset();
2249     IsSplittable = I->isSplittable();
2250     IsSplit =
2251         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2252     DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2253     DEBUG(AS.printSlice(dbgs(), I, ""));
2254     DEBUG(dbgs() << "\n");
2255
2256     // Compute the intersecting offset range.
2257     assert(BeginOffset < NewAllocaEndOffset);
2258     assert(EndOffset > NewAllocaBeginOffset);
2259     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2260     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2261
2262     SliceSize = NewEndOffset - NewBeginOffset;
2263
2264     OldUse = I->getUse();
2265     OldPtr = cast<Instruction>(OldUse->get());
2266
2267     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2268     IRB.SetInsertPoint(OldUserI);
2269     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2270     IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2271
2272     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2273     if (VecTy || IntTy)
2274       assert(CanSROA);
2275     return CanSROA;
2276   }
2277
2278 private:
2279   // Make sure the other visit overloads are visible.
2280   using Base::visit;
2281
2282   // Every instruction which can end up as a user must have a rewrite rule.
2283   bool visitInstruction(Instruction &I) {
2284     DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2285     llvm_unreachable("No rewrite rule for this instruction!");
2286   }
2287
2288   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2289     // Note that the offset computation can use BeginOffset or NewBeginOffset
2290     // interchangeably for unsplit slices.
2291     assert(IsSplit || BeginOffset == NewBeginOffset);
2292     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2293
2294 #ifndef NDEBUG
2295     StringRef OldName = OldPtr->getName();
2296     // Skip through the last '.sroa.' component of the name.
2297     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2298     if (LastSROAPrefix != StringRef::npos) {
2299       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2300       // Look for an SROA slice index.
2301       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2302       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2303         // Strip the index and look for the offset.
2304         OldName = OldName.substr(IndexEnd + 1);
2305         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2306         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2307           // Strip the offset.
2308           OldName = OldName.substr(OffsetEnd + 1);
2309       }
2310     }
2311     // Strip any SROA suffixes as well.
2312     OldName = OldName.substr(0, OldName.find(".sroa_"));
2313 #endif
2314
2315     return getAdjustedPtr(IRB, DL, &NewAI,
2316                           APInt(DL.getPointerSizeInBits(), Offset), PointerTy,
2317 #ifndef NDEBUG
2318                           Twine(OldName) + "."
2319 #else
2320                           Twine()
2321 #endif
2322                           );
2323   }
2324
2325   /// \brief Compute suitable alignment to access this slice of the *new*
2326   /// alloca.
2327   ///
2328   /// You can optionally pass a type to this routine and if that type's ABI
2329   /// alignment is itself suitable, this will return zero.
2330   unsigned getSliceAlign(Type *Ty = nullptr) {
2331     unsigned NewAIAlign = NewAI.getAlignment();
2332     if (!NewAIAlign)
2333       NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2334     unsigned Align =
2335         MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2336     return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2337   }
2338
2339   unsigned getIndex(uint64_t Offset) {
2340     assert(VecTy && "Can only call getIndex when rewriting a vector");
2341     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2342     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2343     uint32_t Index = RelOffset / ElementSize;
2344     assert(Index * ElementSize == RelOffset);
2345     return Index;
2346   }
2347
2348   void deleteIfTriviallyDead(Value *V) {
2349     Instruction *I = cast<Instruction>(V);
2350     if (isInstructionTriviallyDead(I))
2351       Pass.DeadInsts.insert(I);
2352   }
2353
2354   Value *rewriteVectorizedLoadInst() {
2355     unsigned BeginIndex = getIndex(NewBeginOffset);
2356     unsigned EndIndex = getIndex(NewEndOffset);
2357     assert(EndIndex > BeginIndex && "Empty vector!");
2358
2359     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2360     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2361   }
2362
2363   Value *rewriteIntegerLoad(LoadInst &LI) {
2364     assert(IntTy && "We cannot insert an integer to the alloca");
2365     assert(!LI.isVolatile());
2366     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2367     V = convertValue(DL, IRB, V, IntTy);
2368     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2369     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2370     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2371       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2372       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2373     }
2374     // It is possible that the extracted type is not the load type. This
2375     // happens if there is a load past the end of the alloca, and as
2376     // a consequence the slice is narrower but still a candidate for integer
2377     // lowering. To handle this case, we just zero extend the extracted
2378     // integer.
2379     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2380            "Can only handle an extract for an overly wide load");
2381     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2382       V = IRB.CreateZExt(V, LI.getType());
2383     return V;
2384   }
2385
2386   bool visitLoadInst(LoadInst &LI) {
2387     DEBUG(dbgs() << "    original: " << LI << "\n");
2388     Value *OldOp = LI.getOperand(0);
2389     assert(OldOp == OldPtr);
2390
2391     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2392                              : LI.getType();
2393     const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
2394     bool IsPtrAdjusted = false;
2395     Value *V;
2396     if (VecTy) {
2397       V = rewriteVectorizedLoadInst();
2398     } else if (IntTy && LI.getType()->isIntegerTy()) {
2399       V = rewriteIntegerLoad(LI);
2400     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2401                NewEndOffset == NewAllocaEndOffset &&
2402                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2403                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2404                  TargetTy->isIntegerTy()))) {
2405       LoadInst *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2406                                               LI.isVolatile(), LI.getName());
2407       if (LI.isVolatile())
2408         NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope());
2409       V = NewLI;
2410
2411       // If this is an integer load past the end of the slice (which means the
2412       // bytes outside the slice are undef or this load is dead) just forcibly
2413       // fix the integer size with correct handling of endianness.
2414       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2415         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2416           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2417             V = IRB.CreateZExt(V, TITy, "load.ext");
2418             if (DL.isBigEndian())
2419               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2420                                 "endian_shift");
2421           }
2422     } else {
2423       Type *LTy = TargetTy->getPointerTo();
2424       LoadInst *NewLI = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
2425                                               getSliceAlign(TargetTy),
2426                                               LI.isVolatile(), LI.getName());
2427       if (LI.isVolatile())
2428         NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope());
2429
2430       V = NewLI;
2431       IsPtrAdjusted = true;
2432     }
2433     V = convertValue(DL, IRB, V, TargetTy);
2434
2435     if (IsSplit) {
2436       assert(!LI.isVolatile());
2437       assert(LI.getType()->isIntegerTy() &&
2438              "Only integer type loads and stores are split");
2439       assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2440              "Split load isn't smaller than original load");
2441       assert(LI.getType()->getIntegerBitWidth() ==
2442                  DL.getTypeStoreSizeInBits(LI.getType()) &&
2443              "Non-byte-multiple bit width");
2444       // Move the insertion point just past the load so that we can refer to it.
2445       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2446       // Create a placeholder value with the same type as LI to use as the
2447       // basis for the new value. This allows us to replace the uses of LI with
2448       // the computed value, and then replace the placeholder with LI, leaving
2449       // LI only used for this computation.
2450       Value *Placeholder =
2451           new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2452       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2453                         "insert");
2454       LI.replaceAllUsesWith(V);
2455       Placeholder->replaceAllUsesWith(&LI);
2456       delete Placeholder;
2457     } else {
2458       LI.replaceAllUsesWith(V);
2459     }
2460
2461     Pass.DeadInsts.insert(&LI);
2462     deleteIfTriviallyDead(OldOp);
2463     DEBUG(dbgs() << "          to: " << *V << "\n");
2464     return !LI.isVolatile() && !IsPtrAdjusted;
2465   }
2466
2467   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) {
2468     if (V->getType() != VecTy) {
2469       unsigned BeginIndex = getIndex(NewBeginOffset);
2470       unsigned EndIndex = getIndex(NewEndOffset);
2471       assert(EndIndex > BeginIndex && "Empty vector!");
2472       unsigned NumElements = EndIndex - BeginIndex;
2473       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2474       Type *SliceTy = (NumElements == 1)
2475                           ? ElementTy
2476                           : VectorType::get(ElementTy, NumElements);
2477       if (V->getType() != SliceTy)
2478         V = convertValue(DL, IRB, V, SliceTy);
2479
2480       // Mix in the existing elements.
2481       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2482       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2483     }
2484     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2485     Pass.DeadInsts.insert(&SI);
2486
2487     (void)Store;
2488     DEBUG(dbgs() << "          to: " << *Store << "\n");
2489     return true;
2490   }
2491
2492   bool rewriteIntegerStore(Value *V, StoreInst &SI) {
2493     assert(IntTy && "We cannot extract an integer from the alloca");
2494     assert(!SI.isVolatile());
2495     if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2496       Value *Old =
2497           IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2498       Old = convertValue(DL, IRB, Old, IntTy);
2499       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2500       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2501       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2502     }
2503     V = convertValue(DL, IRB, V, NewAllocaTy);
2504     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2505     Pass.DeadInsts.insert(&SI);
2506     (void)Store;
2507     DEBUG(dbgs() << "          to: " << *Store << "\n");
2508     return true;
2509   }
2510
2511   bool visitStoreInst(StoreInst &SI) {
2512     DEBUG(dbgs() << "    original: " << SI << "\n");
2513     Value *OldOp = SI.getOperand(1);
2514     assert(OldOp == OldPtr);
2515
2516     Value *V = SI.getValueOperand();
2517
2518     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2519     // alloca that should be re-examined after promoting this alloca.
2520     if (V->getType()->isPointerTy())
2521       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2522         Pass.PostPromotionWorklist.insert(AI);
2523
2524     if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2525       assert(!SI.isVolatile());
2526       assert(V->getType()->isIntegerTy() &&
2527              "Only integer type loads and stores are split");
2528       assert(V->getType()->getIntegerBitWidth() ==
2529                  DL.getTypeStoreSizeInBits(V->getType()) &&
2530              "Non-byte-multiple bit width");
2531       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2532       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2533                          "extract");
2534     }
2535
2536     if (VecTy)
2537       return rewriteVectorizedStoreInst(V, SI, OldOp);
2538     if (IntTy && V->getType()->isIntegerTy())
2539       return rewriteIntegerStore(V, SI);
2540
2541     const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
2542     StoreInst *NewSI;
2543     if (NewBeginOffset == NewAllocaBeginOffset &&
2544         NewEndOffset == NewAllocaEndOffset &&
2545         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2546          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2547           V->getType()->isIntegerTy()))) {
2548       // If this is an integer store past the end of slice (and thus the bytes
2549       // past that point are irrelevant or this is unreachable), truncate the
2550       // value prior to storing.
2551       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2552         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2553           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2554             if (DL.isBigEndian())
2555               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2556                                  "endian_shift");
2557             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2558           }
2559
2560       V = convertValue(DL, IRB, V, NewAllocaTy);
2561       NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2562                                      SI.isVolatile());
2563     } else {
2564       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo());
2565       NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2566                                      SI.isVolatile());
2567     }
2568     if (SI.isVolatile())
2569       NewSI->setAtomic(SI.getOrdering(), SI.getSynchScope());
2570     Pass.DeadInsts.insert(&SI);
2571     deleteIfTriviallyDead(OldOp);
2572
2573     DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2574     return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2575   }
2576
2577   /// \brief Compute an integer value from splatting an i8 across the given
2578   /// number of bytes.
2579   ///
2580   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2581   /// call this routine.
2582   /// FIXME: Heed the advice above.
2583   ///
2584   /// \param V The i8 value to splat.
2585   /// \param Size The number of bytes in the output (assuming i8 is one byte)
2586   Value *getIntegerSplat(Value *V, unsigned Size) {
2587     assert(Size > 0 && "Expected a positive number of bytes.");
2588     IntegerType *VTy = cast<IntegerType>(V->getType());
2589     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2590     if (Size == 1)
2591       return V;
2592
2593     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2594     V = IRB.CreateMul(
2595         IRB.CreateZExt(V, SplatIntTy, "zext"),
2596         ConstantExpr::getUDiv(
2597             Constant::getAllOnesValue(SplatIntTy),
2598             ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2599                                   SplatIntTy)),
2600         "isplat");
2601     return V;
2602   }
2603
2604   /// \brief Compute a vector splat for a given element value.
2605   Value *getVectorSplat(Value *V, unsigned NumElements) {
2606     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2607     DEBUG(dbgs() << "       splat: " << *V << "\n");
2608     return V;
2609   }
2610
2611   bool visitMemSetInst(MemSetInst &II) {
2612     DEBUG(dbgs() << "    original: " << II << "\n");
2613     assert(II.getRawDest() == OldPtr);
2614
2615     // If the memset has a variable size, it cannot be split, just adjust the
2616     // pointer to the new alloca.
2617     if (!isa<Constant>(II.getLength())) {
2618       assert(!IsSplit);
2619       assert(NewBeginOffset == BeginOffset);
2620       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2621       Type *CstTy = II.getAlignmentCst()->getType();
2622       II.setAlignment(ConstantInt::get(CstTy, getSliceAlign()));
2623
2624       deleteIfTriviallyDead(OldPtr);
2625       return false;
2626     }
2627
2628     // Record this instruction for deletion.
2629     Pass.DeadInsts.insert(&II);
2630
2631     Type *AllocaTy = NewAI.getAllocatedType();
2632     Type *ScalarTy = AllocaTy->getScalarType();
2633
2634     // If this doesn't map cleanly onto the alloca type, and that type isn't
2635     // a single value type, just emit a memset.
2636     if (!VecTy && !IntTy &&
2637         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2638          SliceSize != DL.getTypeStoreSize(AllocaTy) ||
2639          !AllocaTy->isSingleValueType() ||
2640          !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2641          DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) {
2642       Type *SizeTy = II.getLength()->getType();
2643       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2644       CallInst *New = IRB.CreateMemSet(
2645           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2646           getSliceAlign(), II.isVolatile());
2647       (void)New;
2648       DEBUG(dbgs() << "          to: " << *New << "\n");
2649       return false;
2650     }
2651
2652     // If we can represent this as a simple value, we have to build the actual
2653     // value to store, which requires expanding the byte present in memset to
2654     // a sensible representation for the alloca type. This is essentially
2655     // splatting the byte to a sufficiently wide integer, splatting it across
2656     // any desired vector width, and bitcasting to the final type.
2657     Value *V;
2658
2659     if (VecTy) {
2660       // If this is a memset of a vectorized alloca, insert it.
2661       assert(ElementTy == ScalarTy);
2662
2663       unsigned BeginIndex = getIndex(NewBeginOffset);
2664       unsigned EndIndex = getIndex(NewEndOffset);
2665       assert(EndIndex > BeginIndex && "Empty vector!");
2666       unsigned NumElements = EndIndex - BeginIndex;
2667       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2668
2669       Value *Splat =
2670           getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2671       Splat = convertValue(DL, IRB, Splat, ElementTy);
2672       if (NumElements > 1)
2673         Splat = getVectorSplat(Splat, NumElements);
2674
2675       Value *Old =
2676           IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2677       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2678     } else if (IntTy) {
2679       // If this is a memset on an alloca where we can widen stores, insert the
2680       // set integer.
2681       assert(!II.isVolatile());
2682
2683       uint64_t Size = NewEndOffset - NewBeginOffset;
2684       V = getIntegerSplat(II.getValue(), Size);
2685
2686       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2687                     EndOffset != NewAllocaBeginOffset)) {
2688         Value *Old =
2689             IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2690         Old = convertValue(DL, IRB, Old, IntTy);
2691         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2692         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2693       } else {
2694         assert(V->getType() == IntTy &&
2695                "Wrong type for an alloca wide integer!");
2696       }
2697       V = convertValue(DL, IRB, V, AllocaTy);
2698     } else {
2699       // Established these invariants above.
2700       assert(NewBeginOffset == NewAllocaBeginOffset);
2701       assert(NewEndOffset == NewAllocaEndOffset);
2702
2703       V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2704       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2705         V = getVectorSplat(V, AllocaVecTy->getNumElements());
2706
2707       V = convertValue(DL, IRB, V, AllocaTy);
2708     }
2709
2710     Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2711                                         II.isVolatile());
2712     (void)New;
2713     DEBUG(dbgs() << "          to: " << *New << "\n");
2714     return !II.isVolatile();
2715   }
2716
2717   bool visitMemTransferInst(MemTransferInst &II) {
2718     // Rewriting of memory transfer instructions can be a bit tricky. We break
2719     // them into two categories: split intrinsics and unsplit intrinsics.
2720
2721     DEBUG(dbgs() << "    original: " << II << "\n");
2722
2723     bool IsDest = &II.getRawDestUse() == OldUse;
2724     assert((IsDest && II.getRawDest() == OldPtr) ||
2725            (!IsDest && II.getRawSource() == OldPtr));
2726
2727     unsigned SliceAlign = getSliceAlign();
2728
2729     // For unsplit intrinsics, we simply modify the source and destination
2730     // pointers in place. This isn't just an optimization, it is a matter of
2731     // correctness. With unsplit intrinsics we may be dealing with transfers
2732     // within a single alloca before SROA ran, or with transfers that have
2733     // a variable length. We may also be dealing with memmove instead of
2734     // memcpy, and so simply updating the pointers is the necessary for us to
2735     // update both source and dest of a single call.
2736     if (!IsSplittable) {
2737       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2738       if (IsDest)
2739         II.setDest(AdjustedPtr);
2740       else
2741         II.setSource(AdjustedPtr);
2742
2743       if (II.getAlignment() > SliceAlign) {
2744         Type *CstTy = II.getAlignmentCst()->getType();
2745         II.setAlignment(
2746             ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign)));
2747       }
2748
2749       DEBUG(dbgs() << "          to: " << II << "\n");
2750       deleteIfTriviallyDead(OldPtr);
2751       return false;
2752     }
2753     // For split transfer intrinsics we have an incredibly useful assurance:
2754     // the source and destination do not reside within the same alloca, and at
2755     // least one of them does not escape. This means that we can replace
2756     // memmove with memcpy, and we don't need to worry about all manner of
2757     // downsides to splitting and transforming the operations.
2758
2759     // If this doesn't map cleanly onto the alloca type, and that type isn't
2760     // a single value type, just emit a memcpy.
2761     bool EmitMemCpy =
2762         !VecTy && !IntTy &&
2763         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2764          SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2765          !NewAI.getAllocatedType()->isSingleValueType());
2766
2767     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2768     // size hasn't been shrunk based on analysis of the viable range, this is
2769     // a no-op.
2770     if (EmitMemCpy && &OldAI == &NewAI) {
2771       // Ensure the start lines up.
2772       assert(NewBeginOffset == BeginOffset);
2773
2774       // Rewrite the size as needed.
2775       if (NewEndOffset != EndOffset)
2776         II.setLength(ConstantInt::get(II.getLength()->getType(),
2777                                       NewEndOffset - NewBeginOffset));
2778       return false;
2779     }
2780     // Record this instruction for deletion.
2781     Pass.DeadInsts.insert(&II);
2782
2783     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2784     // alloca that should be re-examined after rewriting this instruction.
2785     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2786     if (AllocaInst *AI =
2787             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2788       assert(AI != &OldAI && AI != &NewAI &&
2789              "Splittable transfers cannot reach the same alloca on both ends.");
2790       Pass.Worklist.insert(AI);
2791     }
2792
2793     Type *OtherPtrTy = OtherPtr->getType();
2794     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2795
2796     // Compute the relative offset for the other pointer within the transfer.
2797     unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
2798     APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2799     unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1,
2800                                    OtherOffset.zextOrTrunc(64).getZExtValue());
2801
2802     if (EmitMemCpy) {
2803       // Compute the other pointer, folding as much as possible to produce
2804       // a single, simple GEP in most cases.
2805       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2806                                 OtherPtr->getName() + ".");
2807
2808       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2809       Type *SizeTy = II.getLength()->getType();
2810       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2811
2812       CallInst *New = IRB.CreateMemCpy(
2813           IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size,
2814           MinAlign(SliceAlign, OtherAlign), II.isVolatile());
2815       (void)New;
2816       DEBUG(dbgs() << "          to: " << *New << "\n");
2817       return false;
2818     }
2819
2820     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2821                          NewEndOffset == NewAllocaEndOffset;
2822     uint64_t Size = NewEndOffset - NewBeginOffset;
2823     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2824     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2825     unsigned NumElements = EndIndex - BeginIndex;
2826     IntegerType *SubIntTy =
2827         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
2828
2829     // Reset the other pointer type to match the register type we're going to
2830     // use, but using the address space of the original other pointer.
2831     if (VecTy && !IsWholeAlloca) {
2832       if (NumElements == 1)
2833         OtherPtrTy = VecTy->getElementType();
2834       else
2835         OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2836
2837       OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
2838     } else if (IntTy && !IsWholeAlloca) {
2839       OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
2840     } else {
2841       OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
2842     }
2843
2844     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2845                                    OtherPtr->getName() + ".");
2846     unsigned SrcAlign = OtherAlign;
2847     Value *DstPtr = &NewAI;
2848     unsigned DstAlign = SliceAlign;
2849     if (!IsDest) {
2850       std::swap(SrcPtr, DstPtr);
2851       std::swap(SrcAlign, DstAlign);
2852     }
2853
2854     Value *Src;
2855     if (VecTy && !IsWholeAlloca && !IsDest) {
2856       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2857       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2858     } else if (IntTy && !IsWholeAlloca && !IsDest) {
2859       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2860       Src = convertValue(DL, IRB, Src, IntTy);
2861       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2862       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2863     } else {
2864       Src =
2865           IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload");
2866     }
2867
2868     if (VecTy && !IsWholeAlloca && IsDest) {
2869       Value *Old =
2870           IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2871       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2872     } else if (IntTy && !IsWholeAlloca && IsDest) {
2873       Value *Old =
2874           IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2875       Old = convertValue(DL, IRB, Old, IntTy);
2876       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2877       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2878       Src = convertValue(DL, IRB, Src, NewAllocaTy);
2879     }
2880
2881     StoreInst *Store = cast<StoreInst>(
2882         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
2883     (void)Store;
2884     DEBUG(dbgs() << "          to: " << *Store << "\n");
2885     return !II.isVolatile();
2886   }
2887
2888   bool visitIntrinsicInst(IntrinsicInst &II) {
2889     assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2890            II.getIntrinsicID() == Intrinsic::lifetime_end);
2891     DEBUG(dbgs() << "    original: " << II << "\n");
2892     assert(II.getArgOperand(1) == OldPtr);
2893
2894     // Record this instruction for deletion.
2895     Pass.DeadInsts.insert(&II);
2896
2897     ConstantInt *Size =
2898         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2899                          NewEndOffset - NewBeginOffset);
2900     Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2901     Value *New;
2902     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2903       New = IRB.CreateLifetimeStart(Ptr, Size);
2904     else
2905       New = IRB.CreateLifetimeEnd(Ptr, Size);
2906
2907     (void)New;
2908     DEBUG(dbgs() << "          to: " << *New << "\n");
2909     return true;
2910   }
2911
2912   bool visitPHINode(PHINode &PN) {
2913     DEBUG(dbgs() << "    original: " << PN << "\n");
2914     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2915     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
2916
2917     // We would like to compute a new pointer in only one place, but have it be
2918     // as local as possible to the PHI. To do that, we re-use the location of
2919     // the old pointer, which necessarily must be in the right position to
2920     // dominate the PHI.
2921     IRBuilderTy PtrBuilder(IRB);
2922     if (isa<PHINode>(OldPtr))
2923       PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
2924     else
2925       PtrBuilder.SetInsertPoint(OldPtr);
2926     PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
2927
2928     Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
2929     // Replace the operands which were using the old pointer.
2930     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2931
2932     DEBUG(dbgs() << "          to: " << PN << "\n");
2933     deleteIfTriviallyDead(OldPtr);
2934
2935     // PHIs can't be promoted on their own, but often can be speculated. We
2936     // check the speculation outside of the rewriter so that we see the
2937     // fully-rewritten alloca.
2938     PHIUsers.insert(&PN);
2939     return true;
2940   }
2941
2942   bool visitSelectInst(SelectInst &SI) {
2943     DEBUG(dbgs() << "    original: " << SI << "\n");
2944     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2945            "Pointer isn't an operand!");
2946     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2947     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
2948
2949     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2950     // Replace the operands which were using the old pointer.
2951     if (SI.getOperand(1) == OldPtr)
2952       SI.setOperand(1, NewPtr);
2953     if (SI.getOperand(2) == OldPtr)
2954       SI.setOperand(2, NewPtr);
2955
2956     DEBUG(dbgs() << "          to: " << SI << "\n");
2957     deleteIfTriviallyDead(OldPtr);
2958
2959     // Selects can't be promoted on their own, but often can be speculated. We
2960     // check the speculation outside of the rewriter so that we see the
2961     // fully-rewritten alloca.
2962     SelectUsers.insert(&SI);
2963     return true;
2964   }
2965 };
2966
2967 namespace {
2968 /// \brief Visitor to rewrite aggregate loads and stores as scalar.
2969 ///
2970 /// This pass aggressively rewrites all aggregate loads and stores on
2971 /// a particular pointer (or any pointer derived from it which we can identify)
2972 /// with scalar loads and stores.
2973 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2974   // Befriend the base class so it can delegate to private visit methods.
2975   friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2976
2977   /// Queue of pointer uses to analyze and potentially rewrite.
2978   SmallVector<Use *, 8> Queue;
2979
2980   /// Set to prevent us from cycling with phi nodes and loops.
2981   SmallPtrSet<User *, 8> Visited;
2982
2983   /// The current pointer use being rewritten. This is used to dig up the used
2984   /// value (as opposed to the user).
2985   Use *U;
2986
2987 public:
2988   /// Rewrite loads and stores through a pointer and all pointers derived from
2989   /// it.
2990   bool rewrite(Instruction &I) {
2991     DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2992     enqueueUsers(I);
2993     bool Changed = false;
2994     while (!Queue.empty()) {
2995       U = Queue.pop_back_val();
2996       Changed |= visit(cast<Instruction>(U->getUser()));
2997     }
2998     return Changed;
2999   }
3000
3001 private:
3002   /// Enqueue all the users of the given instruction for further processing.
3003   /// This uses a set to de-duplicate users.
3004   void enqueueUsers(Instruction &I) {
3005     for (Use &U : I.uses())
3006       if (Visited.insert(U.getUser()).second)
3007         Queue.push_back(&U);
3008   }
3009
3010   // Conservative default is to not rewrite anything.
3011   bool visitInstruction(Instruction &I) { return false; }
3012
3013   /// \brief Generic recursive split emission class.
3014   template <typename Derived> class OpSplitter {
3015   protected:
3016     /// The builder used to form new instructions.
3017     IRBuilderTy IRB;
3018     /// The indices which to be used with insert- or extractvalue to select the
3019     /// appropriate value within the aggregate.
3020     SmallVector<unsigned, 4> Indices;
3021     /// The indices to a GEP instruction which will move Ptr to the correct slot
3022     /// within the aggregate.
3023     SmallVector<Value *, 4> GEPIndices;
3024     /// The base pointer of the original op, used as a base for GEPing the
3025     /// split operations.
3026     Value *Ptr;
3027
3028     /// Initialize the splitter with an insertion point, Ptr and start with a
3029     /// single zero GEP index.
3030     OpSplitter(Instruction *InsertionPoint, Value *Ptr)
3031         : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
3032
3033   public:
3034     /// \brief Generic recursive split emission routine.
3035     ///
3036     /// This method recursively splits an aggregate op (load or store) into
3037     /// scalar or vector ops. It splits recursively until it hits a single value
3038     /// and emits that single value operation via the template argument.
3039     ///
3040     /// The logic of this routine relies on GEPs and insertvalue and
3041     /// extractvalue all operating with the same fundamental index list, merely
3042     /// formatted differently (GEPs need actual values).
3043     ///
3044     /// \param Ty  The type being split recursively into smaller ops.
3045     /// \param Agg The aggregate value being built up or stored, depending on
3046     /// whether this is splitting a load or a store respectively.
3047     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3048       if (Ty->isSingleValueType())
3049         return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
3050
3051       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3052         unsigned OldSize = Indices.size();
3053         (void)OldSize;
3054         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3055              ++Idx) {
3056           assert(Indices.size() == OldSize && "Did not return to the old size");
3057           Indices.push_back(Idx);
3058           GEPIndices.push_back(IRB.getInt32(Idx));
3059           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3060           GEPIndices.pop_back();
3061           Indices.pop_back();
3062         }
3063         return;
3064       }
3065
3066       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3067         unsigned OldSize = Indices.size();
3068         (void)OldSize;
3069         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3070              ++Idx) {
3071           assert(Indices.size() == OldSize && "Did not return to the old size");
3072           Indices.push_back(Idx);
3073           GEPIndices.push_back(IRB.getInt32(Idx));
3074           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3075           GEPIndices.pop_back();
3076           Indices.pop_back();
3077         }
3078         return;
3079       }
3080
3081       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3082     }
3083   };
3084
3085   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3086     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3087         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
3088
3089     /// Emit a leaf load of a single value. This is called at the leaves of the
3090     /// recursive emission to actually load values.
3091     void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3092       assert(Ty->isSingleValueType());
3093       // Load the single value and insert it using the indices.
3094       Value *GEP =
3095           IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
3096       Value *Load = IRB.CreateLoad(GEP, Name + ".load");
3097       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3098       DEBUG(dbgs() << "          to: " << *Load << "\n");
3099     }
3100   };
3101
3102   bool visitLoadInst(LoadInst &LI) {
3103     assert(LI.getPointerOperand() == *U);
3104     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3105       return false;
3106
3107     // We have an aggregate being loaded, split it apart.
3108     DEBUG(dbgs() << "    original: " << LI << "\n");
3109     LoadOpSplitter Splitter(&LI, *U);
3110     Value *V = UndefValue::get(LI.getType());
3111     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3112     LI.replaceAllUsesWith(V);
3113     LI.eraseFromParent();
3114     return true;
3115   }
3116
3117   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3118     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3119         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
3120
3121     /// Emit a leaf store of a single value. This is called at the leaves of the
3122     /// recursive emission to actually produce stores.
3123     void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3124       assert(Ty->isSingleValueType());
3125       // Extract the single value and store it using the indices.
3126       Value *Store = IRB.CreateStore(
3127           IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3128           IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep"));
3129       (void)Store;
3130       DEBUG(dbgs() << "          to: " << *Store << "\n");
3131     }
3132   };
3133
3134   bool visitStoreInst(StoreInst &SI) {
3135     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3136       return false;
3137     Value *V = SI.getValueOperand();
3138     if (V->getType()->isSingleValueType())
3139       return false;
3140
3141     // We have an aggregate being stored, split it apart.
3142     DEBUG(dbgs() << "    original: " << SI << "\n");
3143     StoreOpSplitter Splitter(&SI, *U);
3144     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3145     SI.eraseFromParent();
3146     return true;
3147   }
3148
3149   bool visitBitCastInst(BitCastInst &BC) {
3150     enqueueUsers(BC);
3151     return false;
3152   }
3153
3154   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3155     enqueueUsers(GEPI);
3156     return false;
3157   }
3158
3159   bool visitPHINode(PHINode &PN) {
3160     enqueueUsers(PN);
3161     return false;
3162   }
3163
3164   bool visitSelectInst(SelectInst &SI) {
3165     enqueueUsers(SI);
3166     return false;
3167   }
3168 };
3169 }
3170
3171 /// \brief Strip aggregate type wrapping.
3172 ///
3173 /// This removes no-op aggregate types wrapping an underlying type. It will
3174 /// strip as many layers of types as it can without changing either the type
3175 /// size or the allocated size.
3176 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3177   if (Ty->isSingleValueType())
3178     return Ty;
3179
3180   uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3181   uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3182
3183   Type *InnerTy;
3184   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3185     InnerTy = ArrTy->getElementType();
3186   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3187     const StructLayout *SL = DL.getStructLayout(STy);
3188     unsigned Index = SL->getElementContainingOffset(0);
3189     InnerTy = STy->getElementType(Index);
3190   } else {
3191     return Ty;
3192   }
3193
3194   if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3195       TypeSize > DL.getTypeSizeInBits(InnerTy))
3196     return Ty;
3197
3198   return stripAggregateTypeWrapping(DL, InnerTy);
3199 }
3200
3201 /// \brief Try to find a partition of the aggregate type passed in for a given
3202 /// offset and size.
3203 ///
3204 /// This recurses through the aggregate type and tries to compute a subtype
3205 /// based on the offset and size. When the offset and size span a sub-section
3206 /// of an array, it will even compute a new array type for that sub-section,
3207 /// and the same for structs.
3208 ///
3209 /// Note that this routine is very strict and tries to find a partition of the
3210 /// type which produces the *exact* right offset and size. It is not forgiving
3211 /// when the size or offset cause either end of type-based partition to be off.
3212 /// Also, this is a best-effort routine. It is reasonable to give up and not
3213 /// return a type if necessary.
3214 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3215                               uint64_t Size) {
3216   if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3217     return stripAggregateTypeWrapping(DL, Ty);
3218   if (Offset > DL.getTypeAllocSize(Ty) ||
3219       (DL.getTypeAllocSize(Ty) - Offset) < Size)
3220     return nullptr;
3221
3222   if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3223     // We can't partition pointers...
3224     if (SeqTy->isPointerTy())
3225       return nullptr;
3226
3227     Type *ElementTy = SeqTy->getElementType();
3228     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3229     uint64_t NumSkippedElements = Offset / ElementSize;
3230     if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
3231       if (NumSkippedElements >= ArrTy->getNumElements())
3232         return nullptr;
3233     } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
3234       if (NumSkippedElements >= VecTy->getNumElements())
3235         return nullptr;
3236     }
3237     Offset -= NumSkippedElements * ElementSize;
3238
3239     // First check if we need to recurse.
3240     if (Offset > 0 || Size < ElementSize) {
3241       // Bail if the partition ends in a different array element.
3242       if ((Offset + Size) > ElementSize)
3243         return nullptr;
3244       // Recurse through the element type trying to peel off offset bytes.
3245       return getTypePartition(DL, ElementTy, Offset, Size);
3246     }
3247     assert(Offset == 0);
3248
3249     if (Size == ElementSize)
3250       return stripAggregateTypeWrapping(DL, ElementTy);
3251     assert(Size > ElementSize);
3252     uint64_t NumElements = Size / ElementSize;
3253     if (NumElements * ElementSize != Size)
3254       return nullptr;
3255     return ArrayType::get(ElementTy, NumElements);
3256   }
3257
3258   StructType *STy = dyn_cast<StructType>(Ty);
3259   if (!STy)
3260     return nullptr;
3261
3262   const StructLayout *SL = DL.getStructLayout(STy);
3263   if (Offset >= SL->getSizeInBytes())
3264     return nullptr;
3265   uint64_t EndOffset = Offset + Size;
3266   if (EndOffset > SL->getSizeInBytes())
3267     return nullptr;
3268
3269   unsigned Index = SL->getElementContainingOffset(Offset);
3270   Offset -= SL->getElementOffset(Index);
3271
3272   Type *ElementTy = STy->getElementType(Index);
3273   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3274   if (Offset >= ElementSize)
3275     return nullptr; // The offset points into alignment padding.
3276
3277   // See if any partition must be contained by the element.
3278   if (Offset > 0 || Size < ElementSize) {
3279     if ((Offset + Size) > ElementSize)
3280       return nullptr;
3281     return getTypePartition(DL, ElementTy, Offset, Size);
3282   }
3283   assert(Offset == 0);
3284
3285   if (Size == ElementSize)
3286     return stripAggregateTypeWrapping(DL, ElementTy);
3287
3288   StructType::element_iterator EI = STy->element_begin() + Index,
3289                                EE = STy->element_end();
3290   if (EndOffset < SL->getSizeInBytes()) {
3291     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3292     if (Index == EndIndex)
3293       return nullptr; // Within a single element and its padding.
3294
3295     // Don't try to form "natural" types if the elements don't line up with the
3296     // expected size.
3297     // FIXME: We could potentially recurse down through the last element in the
3298     // sub-struct to find a natural end point.
3299     if (SL->getElementOffset(EndIndex) != EndOffset)
3300       return nullptr;
3301
3302     assert(Index < EndIndex);
3303     EE = STy->element_begin() + EndIndex;
3304   }
3305
3306   // Try to build up a sub-structure.
3307   StructType *SubTy =
3308       StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3309   const StructLayout *SubSL = DL.getStructLayout(SubTy);
3310   if (Size != SubSL->getSizeInBytes())
3311     return nullptr; // The sub-struct doesn't have quite the size needed.
3312
3313   return SubTy;
3314 }
3315
3316 /// \brief Pre-split loads and stores to simplify rewriting.
3317 ///
3318 /// We want to break up the splittable load+store pairs as much as
3319 /// possible. This is important to do as a preprocessing step, as once we
3320 /// start rewriting the accesses to partitions of the alloca we lose the
3321 /// necessary information to correctly split apart paired loads and stores
3322 /// which both point into this alloca. The case to consider is something like
3323 /// the following:
3324 ///
3325 ///   %a = alloca [12 x i8]
3326 ///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3327 ///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3328 ///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3329 ///   %iptr1 = bitcast i8* %gep1 to i64*
3330 ///   %iptr2 = bitcast i8* %gep2 to i64*
3331 ///   %fptr1 = bitcast i8* %gep1 to float*
3332 ///   %fptr2 = bitcast i8* %gep2 to float*
3333 ///   %fptr3 = bitcast i8* %gep3 to float*
3334 ///   store float 0.0, float* %fptr1
3335 ///   store float 1.0, float* %fptr2
3336 ///   %v = load i64* %iptr1
3337 ///   store i64 %v, i64* %iptr2
3338 ///   %f1 = load float* %fptr2
3339 ///   %f2 = load float* %fptr3
3340 ///
3341 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3342 /// promote everything so we recover the 2 SSA values that should have been
3343 /// there all along.
3344 ///
3345 /// \returns true if any changes are made.
3346 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3347   DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3348
3349   // Track the loads and stores which are candidates for pre-splitting here, in
3350   // the order they first appear during the partition scan. These give stable
3351   // iteration order and a basis for tracking which loads and stores we
3352   // actually split.
3353   SmallVector<LoadInst *, 4> Loads;
3354   SmallVector<StoreInst *, 4> Stores;
3355
3356   // We need to accumulate the splits required of each load or store where we
3357   // can find them via a direct lookup. This is important to cross-check loads
3358   // and stores against each other. We also track the slice so that we can kill
3359   // all the slices that end up split.
3360   struct SplitOffsets {
3361     Slice *S;
3362     std::vector<uint64_t> Splits;
3363   };
3364   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3365
3366   // Track loads out of this alloca which cannot, for any reason, be pre-split.
3367   // This is important as we also cannot pre-split stores of those loads!
3368   // FIXME: This is all pretty gross. It means that we can be more aggressive
3369   // in pre-splitting when the load feeding the store happens to come from
3370   // a separate alloca. Put another way, the effectiveness of SROA would be
3371   // decreased by a frontend which just concatenated all of its local allocas
3372   // into one big flat alloca. But defeating such patterns is exactly the job
3373   // SROA is tasked with! Sadly, to not have this discrepancy we would have
3374   // change store pre-splitting to actually force pre-splitting of the load
3375   // that feeds it *and all stores*. That makes pre-splitting much harder, but
3376   // maybe it would make it more principled?
3377   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3378
3379   DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3380   for (auto &P : AS.partitions()) {
3381     for (Slice &S : P) {
3382       Instruction *I = cast<Instruction>(S.getUse()->getUser());
3383       if (!S.isSplittable() ||S.endOffset() <= P.endOffset()) {
3384         // If this was a load we have to track that it can't participate in any
3385         // pre-splitting!
3386         if (auto *LI = dyn_cast<LoadInst>(I))
3387           UnsplittableLoads.insert(LI);
3388         continue;
3389       }
3390       assert(P.endOffset() > S.beginOffset() &&
3391              "Empty or backwards partition!");
3392
3393       // Determine if this is a pre-splittable slice.
3394       if (auto *LI = dyn_cast<LoadInst>(I)) {
3395         assert(!LI->isVolatile() && "Cannot split volatile loads!");
3396
3397         // The load must be used exclusively to store into other pointers for
3398         // us to be able to arbitrarily pre-split it. The stores must also be
3399         // simple to avoid changing semantics.
3400         auto IsLoadSimplyStored = [](LoadInst *LI) {
3401           for (User *LU : LI->users()) {
3402             auto *SI = dyn_cast<StoreInst>(LU);
3403             if (!SI || !SI->isSimple())
3404               return false;
3405           }
3406           return true;
3407         };
3408         if (!IsLoadSimplyStored(LI)) {
3409           UnsplittableLoads.insert(LI);
3410           continue;
3411         }
3412
3413         Loads.push_back(LI);
3414       } else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) {
3415         if (!SI ||
3416             S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3417           continue;
3418         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3419         if (!StoredLoad || !StoredLoad->isSimple())
3420           continue;
3421         assert(!SI->isVolatile() && "Cannot split volatile stores!");
3422
3423         Stores.push_back(SI);
3424       } else {
3425         // Other uses cannot be pre-split.
3426         continue;
3427       }
3428
3429       // Record the initial split.
3430       DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3431       auto &Offsets = SplitOffsetsMap[I];
3432       assert(Offsets.Splits.empty() &&
3433              "Should not have splits the first time we see an instruction!");
3434       Offsets.S = &S;
3435       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3436     }
3437
3438     // Now scan the already split slices, and add a split for any of them which
3439     // we're going to pre-split.
3440     for (Slice *S : P.splitSliceTails()) {
3441       auto SplitOffsetsMapI =
3442           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3443       if (SplitOffsetsMapI == SplitOffsetsMap.end())
3444         continue;
3445       auto &Offsets = SplitOffsetsMapI->second;
3446
3447       assert(Offsets.S == S && "Found a mismatched slice!");
3448       assert(!Offsets.Splits.empty() &&
3449              "Cannot have an empty set of splits on the second partition!");
3450       assert(Offsets.Splits.back() ==
3451                  P.beginOffset() - Offsets.S->beginOffset() &&
3452              "Previous split does not end where this one begins!");
3453
3454       // Record each split. The last partition's end isn't needed as the size
3455       // of the slice dictates that.
3456       if (S->endOffset() > P.endOffset())
3457         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3458     }
3459   }
3460
3461   // We may have split loads where some of their stores are split stores. For
3462   // such loads and stores, we can only pre-split them if their splits exactly
3463   // match relative to their starting offset. We have to verify this prior to
3464   // any rewriting.
3465   Stores.erase(
3466       std::remove_if(Stores.begin(), Stores.end(),
3467                      [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3468                        // Lookup the load we are storing in our map of split
3469                        // offsets.
3470                        auto *LI = cast<LoadInst>(SI->getValueOperand());
3471                        // If it was completely unsplittable, then we're done,
3472                        // and this store can't be pre-split.
3473                        if (UnsplittableLoads.count(LI))
3474                          return true;
3475
3476                        auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3477                        if (LoadOffsetsI == SplitOffsetsMap.end())
3478                          return false; // Unrelated loads are definitely safe.
3479                        auto &LoadOffsets = LoadOffsetsI->second;
3480
3481                        // Now lookup the store's offsets.
3482                        auto &StoreOffsets = SplitOffsetsMap[SI];
3483
3484                        // If the relative offsets of each split in the load and
3485                        // store match exactly, then we can split them and we
3486                        // don't need to remove them here.
3487                        if (LoadOffsets.Splits == StoreOffsets.Splits)
3488                          return false;
3489
3490                        DEBUG(dbgs()
3491                              << "    Mismatched splits for load and store:\n"
3492                              << "      " << *LI << "\n"
3493                              << "      " << *SI << "\n");
3494
3495                        // We've found a store and load that we need to split
3496                        // with mismatched relative splits. Just give up on them
3497                        // and remove both instructions from our list of
3498                        // candidates.
3499                        UnsplittableLoads.insert(LI);
3500                        return true;
3501                      }),
3502       Stores.end());
3503   // Now we have to go *back* through all the stores, because a later store may
3504   // have caused an earlier store's load to become unsplittable and if it is
3505   // unsplittable for the later store, then we can't rely on it being split in
3506   // the earlier store either.
3507   Stores.erase(std::remove_if(Stores.begin(), Stores.end(),
3508                               [&UnsplittableLoads](StoreInst *SI) {
3509                                 auto *LI =
3510                                     cast<LoadInst>(SI->getValueOperand());
3511                                 return UnsplittableLoads.count(LI);
3512                               }),
3513                Stores.end());
3514   // Once we've established all the loads that can't be split for some reason,
3515   // filter any that made it into our list out.
3516   Loads.erase(std::remove_if(Loads.begin(), Loads.end(),
3517                              [&UnsplittableLoads](LoadInst *LI) {
3518                                return UnsplittableLoads.count(LI);
3519                              }),
3520               Loads.end());
3521
3522
3523   // If no loads or stores are left, there is no pre-splitting to be done for
3524   // this alloca.
3525   if (Loads.empty() && Stores.empty())
3526     return false;
3527
3528   // From here on, we can't fail and will be building new accesses, so rig up
3529   // an IR builder.
3530   IRBuilderTy IRB(&AI);
3531
3532   // Collect the new slices which we will merge into the alloca slices.
3533   SmallVector<Slice, 4> NewSlices;
3534
3535   // Track any allocas we end up splitting loads and stores for so we iterate
3536   // on them.
3537   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3538
3539   // At this point, we have collected all of the loads and stores we can
3540   // pre-split, and the specific splits needed for them. We actually do the
3541   // splitting in a specific order in order to handle when one of the loads in
3542   // the value operand to one of the stores.
3543   //
3544   // First, we rewrite all of the split loads, and just accumulate each split
3545   // load in a parallel structure. We also build the slices for them and append
3546   // them to the alloca slices.
3547   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3548   std::vector<LoadInst *> SplitLoads;
3549   const DataLayout &DL = AI.getModule()->getDataLayout();
3550   for (LoadInst *LI : Loads) {
3551     SplitLoads.clear();
3552
3553     IntegerType *Ty = cast<IntegerType>(LI->getType());
3554     uint64_t LoadSize = Ty->getBitWidth() / 8;
3555     assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3556
3557     auto &Offsets = SplitOffsetsMap[LI];
3558     assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3559            "Slice size should always match load size exactly!");
3560     uint64_t BaseOffset = Offsets.S->beginOffset();
3561     assert(BaseOffset + LoadSize > BaseOffset &&
3562            "Cannot represent alloca access size using 64-bit integers!");
3563
3564     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3565     IRB.SetInsertPoint(LI);
3566
3567     DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3568
3569     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3570     int Idx = 0, Size = Offsets.Splits.size();
3571     for (;;) {
3572       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3573       auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3574       LoadInst *PLoad = IRB.CreateAlignedLoad(
3575           getAdjustedPtr(IRB, DL, BasePtr,
3576                          APInt(DL.getPointerSizeInBits(), PartOffset),
3577                          PartPtrTy, BasePtr->getName() + "."),
3578           getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3579           LI->getName());
3580
3581       // Append this load onto the list of split loads so we can find it later
3582       // to rewrite the stores.
3583       SplitLoads.push_back(PLoad);
3584
3585       // Now build a new slice for the alloca.
3586       NewSlices.push_back(
3587           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3588                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3589                 /*IsSplittable*/ false));
3590       DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3591                    << ", " << NewSlices.back().endOffset() << "): " << *PLoad
3592                    << "\n");
3593
3594       // See if we've handled all the splits.
3595       if (Idx >= Size)
3596         break;
3597
3598       // Setup the next partition.
3599       PartOffset = Offsets.Splits[Idx];
3600       ++Idx;
3601       PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3602     }
3603
3604     // Now that we have the split loads, do the slow walk over all uses of the
3605     // load and rewrite them as split stores, or save the split loads to use
3606     // below if the store is going to be split there anyways.
3607     bool DeferredStores = false;
3608     for (User *LU : LI->users()) {
3609       StoreInst *SI = cast<StoreInst>(LU);
3610       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3611         DeferredStores = true;
3612         DEBUG(dbgs() << "    Deferred splitting of store: " << *SI << "\n");
3613         continue;
3614       }
3615
3616       Value *StoreBasePtr = SI->getPointerOperand();
3617       IRB.SetInsertPoint(SI);
3618
3619       DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
3620
3621       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3622         LoadInst *PLoad = SplitLoads[Idx];
3623         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3624         auto *PartPtrTy =
3625             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3626
3627         StoreInst *PStore = IRB.CreateAlignedStore(
3628             PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
3629                                   APInt(DL.getPointerSizeInBits(), PartOffset),
3630                                   PartPtrTy, StoreBasePtr->getName() + "."),
3631             getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3632         (void)PStore;
3633         DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
3634       }
3635
3636       // We want to immediately iterate on any allocas impacted by splitting
3637       // this store, and we have to track any promotable alloca (indicated by
3638       // a direct store) as needing to be resplit because it is no longer
3639       // promotable.
3640       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3641         ResplitPromotableAllocas.insert(OtherAI);
3642         Worklist.insert(OtherAI);
3643       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3644                      StoreBasePtr->stripInBoundsOffsets())) {
3645         Worklist.insert(OtherAI);
3646       }
3647
3648       // Mark the original store as dead.
3649       DeadInsts.insert(SI);
3650     }
3651
3652     // Save the split loads if there are deferred stores among the users.
3653     if (DeferredStores)
3654       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3655
3656     // Mark the original load as dead and kill the original slice.
3657     DeadInsts.insert(LI);
3658     Offsets.S->kill();
3659   }
3660
3661   // Second, we rewrite all of the split stores. At this point, we know that
3662   // all loads from this alloca have been split already. For stores of such
3663   // loads, we can simply look up the pre-existing split loads. For stores of
3664   // other loads, we split those loads first and then write split stores of
3665   // them.
3666   for (StoreInst *SI : Stores) {
3667     auto *LI = cast<LoadInst>(SI->getValueOperand());
3668     IntegerType *Ty = cast<IntegerType>(LI->getType());
3669     uint64_t StoreSize = Ty->getBitWidth() / 8;
3670     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3671
3672     auto &Offsets = SplitOffsetsMap[SI];
3673     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3674            "Slice size should always match load size exactly!");
3675     uint64_t BaseOffset = Offsets.S->beginOffset();
3676     assert(BaseOffset + StoreSize > BaseOffset &&
3677            "Cannot represent alloca access size using 64-bit integers!");
3678
3679     Value *LoadBasePtr = LI->getPointerOperand();
3680     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3681
3682     DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
3683
3684     // Check whether we have an already split load.
3685     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3686     std::vector<LoadInst *> *SplitLoads = nullptr;
3687     if (SplitLoadsMapI != SplitLoadsMap.end()) {
3688       SplitLoads = &SplitLoadsMapI->second;
3689       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3690              "Too few split loads for the number of splits in the store!");
3691     } else {
3692       DEBUG(dbgs() << "          of load: " << *LI << "\n");
3693     }
3694
3695     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3696     int Idx = 0, Size = Offsets.Splits.size();
3697     for (;;) {
3698       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3699       auto *PartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3700
3701       // Either lookup a split load or create one.
3702       LoadInst *PLoad;
3703       if (SplitLoads) {
3704         PLoad = (*SplitLoads)[Idx];
3705       } else {
3706         IRB.SetInsertPoint(LI);
3707         PLoad = IRB.CreateAlignedLoad(
3708             getAdjustedPtr(IRB, DL, LoadBasePtr,
3709                            APInt(DL.getPointerSizeInBits(), PartOffset),
3710                            PartPtrTy, LoadBasePtr->getName() + "."),
3711             getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3712             LI->getName());
3713       }
3714
3715       // And store this partition.
3716       IRB.SetInsertPoint(SI);
3717       StoreInst *PStore = IRB.CreateAlignedStore(
3718           PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
3719                                 APInt(DL.getPointerSizeInBits(), PartOffset),
3720                                 PartPtrTy, StoreBasePtr->getName() + "."),
3721           getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3722
3723       // Now build a new slice for the alloca.
3724       NewSlices.push_back(
3725           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3726                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
3727                 /*IsSplittable*/ false));
3728       DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3729                    << ", " << NewSlices.back().endOffset() << "): " << *PStore
3730                    << "\n");
3731       if (!SplitLoads) {
3732         DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
3733       }
3734
3735       // See if we've finished all the splits.
3736       if (Idx >= Size)
3737         break;
3738
3739       // Setup the next partition.
3740       PartOffset = Offsets.Splits[Idx];
3741       ++Idx;
3742       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
3743     }
3744
3745     // We want to immediately iterate on any allocas impacted by splitting
3746     // this load, which is only relevant if it isn't a load of this alloca and
3747     // thus we didn't already split the loads above. We also have to keep track
3748     // of any promotable allocas we split loads on as they can no longer be
3749     // promoted.
3750     if (!SplitLoads) {
3751       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
3752         assert(OtherAI != &AI && "We can't re-split our own alloca!");
3753         ResplitPromotableAllocas.insert(OtherAI);
3754         Worklist.insert(OtherAI);
3755       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3756                      LoadBasePtr->stripInBoundsOffsets())) {
3757         assert(OtherAI != &AI && "We can't re-split our own alloca!");
3758         Worklist.insert(OtherAI);
3759       }
3760     }
3761
3762     // Mark the original store as dead now that we've split it up and kill its
3763     // slice. Note that we leave the original load in place unless this store
3764     // was its only use. It may in turn be split up if it is an alloca load
3765     // for some other alloca, but it may be a normal load. This may introduce
3766     // redundant loads, but where those can be merged the rest of the optimizer
3767     // should handle the merging, and this uncovers SSA splits which is more
3768     // important. In practice, the original loads will almost always be fully
3769     // split and removed eventually, and the splits will be merged by any
3770     // trivial CSE, including instcombine.
3771     if (LI->hasOneUse()) {
3772       assert(*LI->user_begin() == SI && "Single use isn't this store!");
3773       DeadInsts.insert(LI);
3774     }
3775     DeadInsts.insert(SI);
3776     Offsets.S->kill();
3777   }
3778
3779   // Remove the killed slices that have ben pre-split.
3780   AS.erase(std::remove_if(AS.begin(), AS.end(), [](const Slice &S) {
3781     return S.isDead();
3782   }), AS.end());
3783
3784   // Insert our new slices. This will sort and merge them into the sorted
3785   // sequence.
3786   AS.insert(NewSlices);
3787
3788   DEBUG(dbgs() << "  Pre-split slices:\n");
3789 #ifndef NDEBUG
3790   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
3791     DEBUG(AS.print(dbgs(), I, "    "));
3792 #endif
3793
3794   // Finally, don't try to promote any allocas that new require re-splitting.
3795   // They have already been added to the worklist above.
3796   PromotableAllocas.erase(
3797       std::remove_if(
3798           PromotableAllocas.begin(), PromotableAllocas.end(),
3799           [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
3800       PromotableAllocas.end());
3801
3802   return true;
3803 }
3804
3805 /// \brief Rewrite an alloca partition's users.
3806 ///
3807 /// This routine drives both of the rewriting goals of the SROA pass. It tries
3808 /// to rewrite uses of an alloca partition to be conducive for SSA value
3809 /// promotion. If the partition needs a new, more refined alloca, this will
3810 /// build that new alloca, preserving as much type information as possible, and
3811 /// rewrite the uses of the old alloca to point at the new one and have the
3812 /// appropriate new offsets. It also evaluates how successful the rewrite was
3813 /// at enabling promotion and if it was successful queues the alloca to be
3814 /// promoted.
3815 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
3816                                    Partition &P) {
3817   // Try to compute a friendly type for this partition of the alloca. This
3818   // won't always succeed, in which case we fall back to a legal integer type
3819   // or an i8 array of an appropriate size.
3820   Type *SliceTy = nullptr;
3821   const DataLayout &DL = AI.getModule()->getDataLayout();
3822   if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
3823     if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
3824       SliceTy = CommonUseTy;
3825   if (!SliceTy)
3826     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
3827                                                  P.beginOffset(), P.size()))
3828       SliceTy = TypePartitionTy;
3829   if ((!SliceTy || (SliceTy->isArrayTy() &&
3830                     SliceTy->getArrayElementType()->isIntegerTy())) &&
3831       DL.isLegalInteger(P.size() * 8))
3832     SliceTy = Type::getIntNTy(*C, P.size() * 8);
3833   if (!SliceTy)
3834     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
3835   assert(DL.getTypeAllocSize(SliceTy) >= P.size());
3836
3837   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
3838
3839   VectorType *VecTy =
3840       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
3841   if (VecTy)
3842     SliceTy = VecTy;
3843
3844   // Check for the case where we're going to rewrite to a new alloca of the
3845   // exact same type as the original, and with the same access offsets. In that
3846   // case, re-use the existing alloca, but still run through the rewriter to
3847   // perform phi and select speculation.
3848   AllocaInst *NewAI;
3849   if (SliceTy == AI.getAllocatedType()) {
3850     assert(P.beginOffset() == 0 &&
3851            "Non-zero begin offset but same alloca type");
3852     NewAI = &AI;
3853     // FIXME: We should be able to bail at this point with "nothing changed".
3854     // FIXME: We might want to defer PHI speculation until after here.
3855     // FIXME: return nullptr;
3856   } else {
3857     unsigned Alignment = AI.getAlignment();
3858     if (!Alignment) {
3859       // The minimum alignment which users can rely on when the explicit
3860       // alignment is omitted or zero is that required by the ABI for this
3861       // type.
3862       Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
3863     }
3864     Alignment = MinAlign(Alignment, P.beginOffset());
3865     // If we will get at least this much alignment from the type alone, leave
3866     // the alloca's alignment unconstrained.
3867     if (Alignment <= DL.getABITypeAlignment(SliceTy))
3868       Alignment = 0;
3869     NewAI = new AllocaInst(
3870         SliceTy, nullptr, Alignment,
3871         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
3872     ++NumNewAllocas;
3873   }
3874
3875   DEBUG(dbgs() << "Rewriting alloca partition "
3876                << "[" << P.beginOffset() << "," << P.endOffset()
3877                << ") to: " << *NewAI << "\n");
3878
3879   // Track the high watermark on the worklist as it is only relevant for
3880   // promoted allocas. We will reset it to this point if the alloca is not in
3881   // fact scheduled for promotion.
3882   unsigned PPWOldSize = PostPromotionWorklist.size();
3883   unsigned NumUses = 0;
3884   SmallPtrSet<PHINode *, 8> PHIUsers;
3885   SmallPtrSet<SelectInst *, 8> SelectUsers;
3886
3887   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
3888                                P.endOffset(), IsIntegerPromotable, VecTy,
3889                                PHIUsers, SelectUsers);
3890   bool Promotable = true;
3891   for (Slice *S : P.splitSliceTails()) {
3892     Promotable &= Rewriter.visit(S);
3893     ++NumUses;
3894   }
3895   for (Slice &S : P) {
3896     Promotable &= Rewriter.visit(&S);
3897     ++NumUses;
3898   }
3899
3900   NumAllocaPartitionUses += NumUses;
3901   MaxUsesPerAllocaPartition =
3902       std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
3903
3904   // Now that we've processed all the slices in the new partition, check if any
3905   // PHIs or Selects would block promotion.
3906   for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
3907                                             E = PHIUsers.end();
3908        I != E; ++I)
3909     if (!isSafePHIToSpeculate(**I)) {
3910       Promotable = false;
3911       PHIUsers.clear();
3912       SelectUsers.clear();
3913       break;
3914     }
3915   for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
3916                                                E = SelectUsers.end();
3917        I != E; ++I)
3918     if (!isSafeSelectToSpeculate(**I)) {
3919       Promotable = false;
3920       PHIUsers.clear();
3921       SelectUsers.clear();
3922       break;
3923     }
3924
3925   if (Promotable) {
3926     if (PHIUsers.empty() && SelectUsers.empty()) {
3927       // Promote the alloca.
3928       PromotableAllocas.push_back(NewAI);
3929     } else {
3930       // If we have either PHIs or Selects to speculate, add them to those
3931       // worklists and re-queue the new alloca so that we promote in on the
3932       // next iteration.
3933       for (PHINode *PHIUser : PHIUsers)
3934         SpeculatablePHIs.insert(PHIUser);
3935       for (SelectInst *SelectUser : SelectUsers)
3936         SpeculatableSelects.insert(SelectUser);
3937       Worklist.insert(NewAI);
3938     }
3939   } else {
3940     // If we can't promote the alloca, iterate on it to check for new
3941     // refinements exposed by splitting the current alloca. Don't iterate on an
3942     // alloca which didn't actually change and didn't get promoted.
3943     if (NewAI != &AI)
3944       Worklist.insert(NewAI);
3945
3946     // Drop any post-promotion work items if promotion didn't happen.
3947     while (PostPromotionWorklist.size() > PPWOldSize)
3948       PostPromotionWorklist.pop_back();
3949   }
3950
3951   return NewAI;
3952 }
3953
3954 /// \brief Walks the slices of an alloca and form partitions based on them,
3955 /// rewriting each of their uses.
3956 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
3957   if (AS.begin() == AS.end())
3958     return false;
3959
3960   unsigned NumPartitions = 0;
3961   bool Changed = false;
3962   const DataLayout &DL = AI.getModule()->getDataLayout();
3963
3964   // First try to pre-split loads and stores.
3965   Changed |= presplitLoadsAndStores(AI, AS);
3966
3967   // Now that we have identified any pre-splitting opportunities, mark any
3968   // splittable (non-whole-alloca) loads and stores as unsplittable. If we fail
3969   // to split these during pre-splitting, we want to force them to be
3970   // rewritten into a partition.
3971   bool IsSorted = true;
3972   for (Slice &S : AS) {
3973     if (!S.isSplittable())
3974       continue;
3975     // FIXME: We currently leave whole-alloca splittable loads and stores. This
3976     // used to be the only splittable loads and stores and we need to be
3977     // confident that the above handling of splittable loads and stores is
3978     // completely sufficient before we forcibly disable the remaining handling.
3979     if (S.beginOffset() == 0 &&
3980         S.endOffset() >= DL.getTypeAllocSize(AI.getAllocatedType()))
3981       continue;
3982     if (isa<LoadInst>(S.getUse()->getUser()) ||
3983         isa<StoreInst>(S.getUse()->getUser())) {
3984       S.makeUnsplittable();
3985       IsSorted = false;
3986     }
3987   }
3988   if (!IsSorted)
3989     std::sort(AS.begin(), AS.end());
3990
3991   /// \brief Describes the allocas introduced by rewritePartition
3992   /// in order to migrate the debug info.
3993   struct Piece {
3994     AllocaInst *Alloca;
3995     uint64_t Offset;
3996     uint64_t Size;
3997     Piece(AllocaInst *AI, uint64_t O, uint64_t S)
3998       : Alloca(AI), Offset(O), Size(S) {}
3999   };
4000   SmallVector<Piece, 4> Pieces;
4001
4002   // Rewrite each partition.
4003   for (auto &P : AS.partitions()) {
4004     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4005       Changed = true;
4006       if (NewAI != &AI) {
4007         uint64_t SizeOfByte = 8;
4008         uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
4009         // Don't include any padding.
4010         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4011         Pieces.push_back(Piece(NewAI, P.beginOffset() * SizeOfByte, Size));
4012       }
4013     }
4014     ++NumPartitions;
4015   }
4016
4017   NumAllocaPartitions += NumPartitions;
4018   MaxPartitionsPerAlloca =
4019       std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
4020
4021   // Migrate debug information from the old alloca to the new alloca(s)
4022   // and the individual partitions.
4023   if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(&AI)) {
4024     auto *Var = DbgDecl->getVariable();
4025     auto *Expr = DbgDecl->getExpression();
4026     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4027     bool IsSplit = Pieces.size() > 1;
4028     for (auto Piece : Pieces) {
4029       // Create a piece expression describing the new partition or reuse AI's
4030       // expression if there is only one partition.
4031       auto *PieceExpr = Expr;
4032       if (IsSplit || Expr->isBitPiece()) {
4033         // If this alloca is already a scalar replacement of a larger aggregate,
4034         // Piece.Offset describes the offset inside the scalar.
4035         uint64_t Offset = Expr->isBitPiece() ? Expr->getBitPieceOffset() : 0;
4036         uint64_t Start = Offset + Piece.Offset;
4037         uint64_t Size = Piece.Size;
4038         if (Expr->isBitPiece()) {
4039           uint64_t AbsEnd = Expr->getBitPieceOffset() + Expr->getBitPieceSize();
4040           if (Start >= AbsEnd)
4041             // No need to describe a SROAed padding.
4042             continue;
4043           Size = std::min(Size, AbsEnd - Start);
4044         }
4045         PieceExpr = DIB.createBitPieceExpression(Start, Size);
4046       }
4047
4048       // Remove any existing dbg.declare intrinsic describing the same alloca.
4049       if (DbgDeclareInst *OldDDI = FindAllocaDbgDeclare(Piece.Alloca))
4050         OldDDI->eraseFromParent();
4051
4052       DIB.insertDeclare(Piece.Alloca, Var, PieceExpr, DbgDecl->getDebugLoc(),
4053                         &AI);
4054     }
4055   }
4056   return Changed;
4057 }
4058
4059 /// \brief Clobber a use with undef, deleting the used value if it becomes dead.
4060 void SROA::clobberUse(Use &U) {
4061   Value *OldV = U;
4062   // Replace the use with an undef value.
4063   U = UndefValue::get(OldV->getType());
4064
4065   // Check for this making an instruction dead. We have to garbage collect
4066   // all the dead instructions to ensure the uses of any alloca end up being
4067   // minimal.
4068   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4069     if (isInstructionTriviallyDead(OldI)) {
4070       DeadInsts.insert(OldI);
4071     }
4072 }
4073
4074 /// \brief Analyze an alloca for SROA.
4075 ///
4076 /// This analyzes the alloca to ensure we can reason about it, builds
4077 /// the slices of the alloca, and then hands it off to be split and
4078 /// rewritten as needed.
4079 bool SROA::runOnAlloca(AllocaInst &AI) {
4080   DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4081   ++NumAllocasAnalyzed;
4082
4083   // Special case dead allocas, as they're trivial.
4084   if (AI.use_empty()) {
4085     AI.eraseFromParent();
4086     return true;
4087   }
4088   const DataLayout &DL = AI.getModule()->getDataLayout();
4089
4090   // Skip alloca forms that this analysis can't handle.
4091   if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4092       DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
4093     return false;
4094
4095   bool Changed = false;
4096
4097   // First, split any FCA loads and stores touching this alloca to promote
4098   // better splitting and promotion opportunities.
4099   AggLoadStoreRewriter AggRewriter;
4100   Changed |= AggRewriter.rewrite(AI);
4101
4102   // Build the slices using a recursive instruction-visiting builder.
4103   AllocaSlices AS(DL, AI);
4104   DEBUG(AS.print(dbgs()));
4105   if (AS.isEscaped())
4106     return Changed;
4107
4108   // Delete all the dead users of this alloca before splitting and rewriting it.
4109   for (Instruction *DeadUser : AS.getDeadUsers()) {
4110     // Free up everything used by this instruction.
4111     for (Use &DeadOp : DeadUser->operands())
4112       clobberUse(DeadOp);
4113
4114     // Now replace the uses of this instruction.
4115     DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4116
4117     // And mark it for deletion.
4118     DeadInsts.insert(DeadUser);
4119     Changed = true;
4120   }
4121   for (Use *DeadOp : AS.getDeadOperands()) {
4122     clobberUse(*DeadOp);
4123     Changed = true;
4124   }
4125
4126   // No slices to split. Leave the dead alloca for a later pass to clean up.
4127   if (AS.begin() == AS.end())
4128     return Changed;
4129
4130   Changed |= splitAlloca(AI, AS);
4131
4132   DEBUG(dbgs() << "  Speculating PHIs\n");
4133   while (!SpeculatablePHIs.empty())
4134     speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4135
4136   DEBUG(dbgs() << "  Speculating Selects\n");
4137   while (!SpeculatableSelects.empty())
4138     speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4139
4140   return Changed;
4141 }
4142
4143 /// \brief Delete the dead instructions accumulated in this run.
4144 ///
4145 /// Recursively deletes the dead instructions we've accumulated. This is done
4146 /// at the very end to maximize locality of the recursive delete and to
4147 /// minimize the problems of invalidated instruction pointers as such pointers
4148 /// are used heavily in the intermediate stages of the algorithm.
4149 ///
4150 /// We also record the alloca instructions deleted here so that they aren't
4151 /// subsequently handed to mem2reg to promote.
4152 void SROA::deleteDeadInstructions(
4153     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4154   while (!DeadInsts.empty()) {
4155     Instruction *I = DeadInsts.pop_back_val();
4156     DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4157
4158     I->replaceAllUsesWith(UndefValue::get(I->getType()));
4159
4160     for (Use &Operand : I->operands())
4161       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4162         // Zero out the operand and see if it becomes trivially dead.
4163         Operand = nullptr;
4164         if (isInstructionTriviallyDead(U))
4165           DeadInsts.insert(U);
4166       }
4167
4168     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4169       DeletedAllocas.insert(AI);
4170       if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(AI))
4171         DbgDecl->eraseFromParent();
4172     }
4173
4174     ++NumDeleted;
4175     I->eraseFromParent();
4176   }
4177 }
4178
4179 /// \brief Promote the allocas, using the best available technique.
4180 ///
4181 /// This attempts to promote whatever allocas have been identified as viable in
4182 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4183 /// This function returns whether any promotion occurred.
4184 bool SROA::promoteAllocas(Function &F) {
4185   if (PromotableAllocas.empty())
4186     return false;
4187
4188   NumPromoted += PromotableAllocas.size();
4189
4190   DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4191   PromoteMemToReg(PromotableAllocas, *DT, nullptr, AC);
4192   PromotableAllocas.clear();
4193   return true;
4194 }
4195
4196 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4197                                 AssumptionCache &RunAC) {
4198   DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4199   C = &F.getContext();
4200   DT = &RunDT;
4201   AC = &RunAC;
4202
4203   BasicBlock &EntryBB = F.getEntryBlock();
4204   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4205        I != E; ++I) {
4206     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4207       Worklist.insert(AI);
4208   }
4209
4210   bool Changed = false;
4211   // A set of deleted alloca instruction pointers which should be removed from
4212   // the list of promotable allocas.
4213   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4214
4215   do {
4216     while (!Worklist.empty()) {
4217       Changed |= runOnAlloca(*Worklist.pop_back_val());
4218       deleteDeadInstructions(DeletedAllocas);
4219
4220       // Remove the deleted allocas from various lists so that we don't try to
4221       // continue processing them.
4222       if (!DeletedAllocas.empty()) {
4223         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4224         Worklist.remove_if(IsInSet);
4225         PostPromotionWorklist.remove_if(IsInSet);
4226         PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
4227                                                PromotableAllocas.end(),
4228                                                IsInSet),
4229                                 PromotableAllocas.end());
4230         DeletedAllocas.clear();
4231       }
4232     }
4233
4234     Changed |= promoteAllocas(F);
4235
4236     Worklist = PostPromotionWorklist;
4237     PostPromotionWorklist.clear();
4238   } while (!Worklist.empty());
4239
4240   // FIXME: Even when promoting allocas we should preserve some abstract set of
4241   // CFG-specific analyses.
4242   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
4243 }
4244
4245 PreservedAnalyses SROA::run(Function &F, AnalysisManager<Function> *AM) {
4246   return runImpl(F, AM->getResult<DominatorTreeAnalysis>(F),
4247                  AM->getResult<AssumptionAnalysis>(F));
4248 }
4249
4250 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4251 ///
4252 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4253 /// SROA pass.
4254 class llvm::sroa::SROALegacyPass : public FunctionPass {
4255   /// The SROA implementation.
4256   SROA Impl;
4257
4258 public:
4259   SROALegacyPass() : FunctionPass(ID) {
4260     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4261   }
4262   bool runOnFunction(Function &F) override {
4263     if (skipOptnoneFunction(F))
4264       return false;
4265
4266     auto PA = Impl.runImpl(
4267         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4268         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4269     return !PA.areAllPreserved();
4270   }
4271   void getAnalysisUsage(AnalysisUsage &AU) const override {
4272     AU.addRequired<AssumptionCacheTracker>();
4273     AU.addRequired<DominatorTreeWrapperPass>();
4274     AU.addPreserved<GlobalsAAWrapperPass>();
4275     AU.setPreservesCFG();
4276   }
4277
4278   const char *getPassName() const override { return "SROA"; }
4279   static char ID;
4280 };
4281
4282 char SROALegacyPass::ID = 0;
4283
4284 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4285
4286 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4287                       "Scalar Replacement Of Aggregates", false, false)
4288 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4289 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4290 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4291                     false, false)