Use range-based for loops. NFC
[oota-llvm.git] / lib / Transforms / Scalar / MemCpyOptimizer.cpp
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/GetElementPtrTypeIterator.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include <algorithm>
35 using namespace llvm;
36
37 #define DEBUG_TYPE "memcpyopt"
38
39 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
40 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
41 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
42 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
43
44 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
45                                   bool &VariableIdxFound,
46                                   const DataLayout &DL) {
47   // Skip over the first indices.
48   gep_type_iterator GTI = gep_type_begin(GEP);
49   for (unsigned i = 1; i != Idx; ++i, ++GTI)
50     /*skip along*/;
51
52   // Compute the offset implied by the rest of the indices.
53   int64_t Offset = 0;
54   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
55     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
56     if (!OpC)
57       return VariableIdxFound = true;
58     if (OpC->isZero()) continue;  // No offset.
59
60     // Handle struct indices, which add their field offset to the pointer.
61     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
62       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
63       continue;
64     }
65
66     // Otherwise, we have a sequential type like an array or vector.  Multiply
67     // the index by the ElementSize.
68     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
69     Offset += Size*OpC->getSExtValue();
70   }
71
72   return Offset;
73 }
74
75 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
76 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
77 /// might be &A[40]. In this case offset would be -8.
78 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
79                             const DataLayout &DL) {
80   Ptr1 = Ptr1->stripPointerCasts();
81   Ptr2 = Ptr2->stripPointerCasts();
82
83   // Handle the trivial case first.
84   if (Ptr1 == Ptr2) {
85     Offset = 0;
86     return true;
87   }
88
89   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
90   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
91
92   bool VariableIdxFound = false;
93
94   // If one pointer is a GEP and the other isn't, then see if the GEP is a
95   // constant offset from the base, as in "P" and "gep P, 1".
96   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
97     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
98     return !VariableIdxFound;
99   }
100
101   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
102     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
103     return !VariableIdxFound;
104   }
105
106   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
107   // base.  After that base, they may have some number of common (and
108   // potentially variable) indices.  After that they handle some constant
109   // offset, which determines their offset from each other.  At this point, we
110   // handle no other case.
111   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
112     return false;
113
114   // Skip any common indices and track the GEP types.
115   unsigned Idx = 1;
116   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
117     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
118       break;
119
120   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
121   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
122   if (VariableIdxFound) return false;
123
124   Offset = Offset2-Offset1;
125   return true;
126 }
127
128
129 /// Represents a range of memset'd bytes with the ByteVal value.
130 /// This allows us to analyze stores like:
131 ///   store 0 -> P+1
132 ///   store 0 -> P+0
133 ///   store 0 -> P+3
134 ///   store 0 -> P+2
135 /// which sometimes happens with stores to arrays of structs etc.  When we see
136 /// the first store, we make a range [1, 2).  The second store extends the range
137 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
138 /// two ranges into [0, 3) which is memset'able.
139 namespace {
140 struct MemsetRange {
141   // Start/End - A semi range that describes the span that this range covers.
142   // The range is closed at the start and open at the end: [Start, End).
143   int64_t Start, End;
144
145   /// StartPtr - The getelementptr instruction that points to the start of the
146   /// range.
147   Value *StartPtr;
148
149   /// Alignment - The known alignment of the first store.
150   unsigned Alignment;
151
152   /// TheStores - The actual stores that make up this range.
153   SmallVector<Instruction*, 16> TheStores;
154
155   bool isProfitableToUseMemset(const DataLayout &DL) const;
156 };
157 } // end anon namespace
158
159 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
160   // If we found more than 4 stores to merge or 16 bytes, use memset.
161   if (TheStores.size() >= 4 || End-Start >= 16) return true;
162
163   // If there is nothing to merge, don't do anything.
164   if (TheStores.size() < 2) return false;
165
166   // If any of the stores are a memset, then it is always good to extend the
167   // memset.
168   for (Instruction *SI : TheStores)
169     if (!isa<StoreInst>(SI))
170       return true;
171
172   // Assume that the code generator is capable of merging pairs of stores
173   // together if it wants to.
174   if (TheStores.size() == 2) return false;
175
176   // If we have fewer than 8 stores, it can still be worthwhile to do this.
177   // For example, merging 4 i8 stores into an i32 store is useful almost always.
178   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
179   // memset will be split into 2 32-bit stores anyway) and doing so can
180   // pessimize the llvm optimizer.
181   //
182   // Since we don't have perfect knowledge here, make some assumptions: assume
183   // the maximum GPR width is the same size as the largest legal integer
184   // size. If so, check to see whether we will end up actually reducing the
185   // number of stores used.
186   unsigned Bytes = unsigned(End-Start);
187   unsigned MaxIntSize = DL.getLargestLegalIntTypeSize();
188   if (MaxIntSize == 0)
189     MaxIntSize = 1;
190   unsigned NumPointerStores = Bytes / MaxIntSize;
191
192   // Assume the remaining bytes if any are done a byte at a time.
193   unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize;
194
195   // If we will reduce the # stores (according to this heuristic), do the
196   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
197   // etc.
198   return TheStores.size() > NumPointerStores+NumByteStores;
199 }
200
201
202 namespace {
203 class MemsetRanges {
204   /// A sorted list of the memset ranges.
205   SmallVector<MemsetRange, 8> Ranges;
206   typedef SmallVectorImpl<MemsetRange>::iterator range_iterator;
207   const DataLayout &DL;
208 public:
209   MemsetRanges(const DataLayout &DL) : DL(DL) {}
210
211   typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator;
212   const_iterator begin() const { return Ranges.begin(); }
213   const_iterator end() const { return Ranges.end(); }
214   bool empty() const { return Ranges.empty(); }
215
216   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
217     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
218       addStore(OffsetFromFirst, SI);
219     else
220       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
221   }
222
223   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
224     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
225
226     addRange(OffsetFromFirst, StoreSize,
227              SI->getPointerOperand(), SI->getAlignment(), SI);
228   }
229
230   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
231     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
232     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
233   }
234
235   void addRange(int64_t Start, int64_t Size, Value *Ptr,
236                 unsigned Alignment, Instruction *Inst);
237
238 };
239
240 } // end anon namespace
241
242
243 /// Add a new store to the MemsetRanges data structure.  This adds a
244 /// new range for the specified store at the specified offset, merging into
245 /// existing ranges as appropriate.
246 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
247                             unsigned Alignment, Instruction *Inst) {
248   int64_t End = Start+Size;
249
250   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
251     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
252
253   // We now know that I == E, in which case we didn't find anything to merge
254   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
255   // to insert a new range.  Handle this now.
256   if (I == Ranges.end() || End < I->Start) {
257     MemsetRange &R = *Ranges.insert(I, MemsetRange());
258     R.Start        = Start;
259     R.End          = End;
260     R.StartPtr     = Ptr;
261     R.Alignment    = Alignment;
262     R.TheStores.push_back(Inst);
263     return;
264   }
265
266   // This store overlaps with I, add it.
267   I->TheStores.push_back(Inst);
268
269   // At this point, we may have an interval that completely contains our store.
270   // If so, just add it to the interval and return.
271   if (I->Start <= Start && I->End >= End)
272     return;
273
274   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
275   // but is not entirely contained within the range.
276
277   // See if the range extends the start of the range.  In this case, it couldn't
278   // possibly cause it to join the prior range, because otherwise we would have
279   // stopped on *it*.
280   if (Start < I->Start) {
281     I->Start = Start;
282     I->StartPtr = Ptr;
283     I->Alignment = Alignment;
284   }
285
286   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
287   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
288   // End.
289   if (End > I->End) {
290     I->End = End;
291     range_iterator NextI = I;
292     while (++NextI != Ranges.end() && End >= NextI->Start) {
293       // Merge the range in.
294       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
295       if (NextI->End > I->End)
296         I->End = NextI->End;
297       Ranges.erase(NextI);
298       NextI = I;
299     }
300   }
301 }
302
303 //===----------------------------------------------------------------------===//
304 //                         MemCpyOpt Pass
305 //===----------------------------------------------------------------------===//
306
307 namespace {
308   class MemCpyOpt : public FunctionPass {
309     MemoryDependenceAnalysis *MD;
310     TargetLibraryInfo *TLI;
311   public:
312     static char ID; // Pass identification, replacement for typeid
313     MemCpyOpt() : FunctionPass(ID) {
314       initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
315       MD = nullptr;
316       TLI = nullptr;
317     }
318
319     bool runOnFunction(Function &F) override;
320
321   private:
322     // This transformation requires dominator postdominator info
323     void getAnalysisUsage(AnalysisUsage &AU) const override {
324       AU.setPreservesCFG();
325       AU.addRequired<AssumptionCacheTracker>();
326       AU.addRequired<DominatorTreeWrapperPass>();
327       AU.addRequired<MemoryDependenceAnalysis>();
328       AU.addRequired<AAResultsWrapperPass>();
329       AU.addRequired<TargetLibraryInfoWrapperPass>();
330       AU.addPreserved<GlobalsAAWrapperPass>();
331       AU.addPreserved<MemoryDependenceAnalysis>();
332     }
333
334     // Helper functions
335     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
336     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
337     bool processMemCpy(MemCpyInst *M);
338     bool processMemMove(MemMoveInst *M);
339     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
340                               uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
341     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
342     bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
343     bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep);
344     bool processByValArgument(CallSite CS, unsigned ArgNo);
345     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
346                                       Value *ByteVal);
347
348     bool iterateOnFunction(Function &F);
349   };
350
351   char MemCpyOpt::ID = 0;
352 }
353
354 /// The public interface to this file...
355 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
356
357 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
358                       false, false)
359 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
360 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
361 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
362 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
363 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
364 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
365 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
366                     false, false)
367
368 /// When scanning forward over instructions, we look for some other patterns to
369 /// fold away. In particular, this looks for stores to neighboring locations of
370 /// memory. If it sees enough consecutive ones, it attempts to merge them
371 /// together into a memcpy/memset.
372 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
373                                              Value *StartPtr, Value *ByteVal) {
374   const DataLayout &DL = StartInst->getModule()->getDataLayout();
375
376   // Okay, so we now have a single store that can be splatable.  Scan to find
377   // all subsequent stores of the same value to offset from the same pointer.
378   // Join these together into ranges, so we can decide whether contiguous blocks
379   // are stored.
380   MemsetRanges Ranges(DL);
381
382   BasicBlock::iterator BI(StartInst);
383   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
384     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
385       // If the instruction is readnone, ignore it, otherwise bail out.  We
386       // don't even allow readonly here because we don't want something like:
387       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
388       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
389         break;
390       continue;
391     }
392
393     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
394       // If this is a store, see if we can merge it in.
395       if (!NextStore->isSimple()) break;
396
397       // Check to see if this stored value is of the same byte-splattable value.
398       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
399         break;
400
401       // Check to see if this store is to a constant offset from the start ptr.
402       int64_t Offset;
403       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
404                            DL))
405         break;
406
407       Ranges.addStore(Offset, NextStore);
408     } else {
409       MemSetInst *MSI = cast<MemSetInst>(BI);
410
411       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
412           !isa<ConstantInt>(MSI->getLength()))
413         break;
414
415       // Check to see if this store is to a constant offset from the start ptr.
416       int64_t Offset;
417       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
418         break;
419
420       Ranges.addMemSet(Offset, MSI);
421     }
422   }
423
424   // If we have no ranges, then we just had a single store with nothing that
425   // could be merged in.  This is a very common case of course.
426   if (Ranges.empty())
427     return nullptr;
428
429   // If we had at least one store that could be merged in, add the starting
430   // store as well.  We try to avoid this unless there is at least something
431   // interesting as a small compile-time optimization.
432   Ranges.addInst(0, StartInst);
433
434   // If we create any memsets, we put it right before the first instruction that
435   // isn't part of the memset block.  This ensure that the memset is dominated
436   // by any addressing instruction needed by the start of the block.
437   IRBuilder<> Builder(&*BI);
438
439   // Now that we have full information about ranges, loop over the ranges and
440   // emit memset's for anything big enough to be worthwhile.
441   Instruction *AMemSet = nullptr;
442   for (const MemsetRange &Range : Ranges) {
443
444     if (Range.TheStores.size() == 1) continue;
445
446     // If it is profitable to lower this range to memset, do so now.
447     if (!Range.isProfitableToUseMemset(DL))
448       continue;
449
450     // Otherwise, we do want to transform this!  Create a new memset.
451     // Get the starting pointer of the block.
452     StartPtr = Range.StartPtr;
453
454     // Determine alignment
455     unsigned Alignment = Range.Alignment;
456     if (Alignment == 0) {
457       Type *EltType =
458         cast<PointerType>(StartPtr->getType())->getElementType();
459       Alignment = DL.getABITypeAlignment(EltType);
460     }
461
462     AMemSet =
463       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
464
465     DEBUG(dbgs() << "Replace stores:\n";
466           for (Instruction *SI : Range.TheStores)
467             dbgs() << *SI << '\n';
468           dbgs() << "With: " << *AMemSet << '\n');
469
470     if (!Range.TheStores.empty())
471       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
472
473     // Zap all the stores.
474     for (Instruction *SI : Range.TheStores) {
475       MD->removeInstruction(SI);
476       SI->eraseFromParent();
477     }
478     ++NumMemSetInfer;
479   }
480
481   return AMemSet;
482 }
483
484
485 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
486   if (!SI->isSimple()) return false;
487
488   // Avoid merging nontemporal stores since the resulting
489   // memcpy/memset would not be able to preserve the nontemporal hint.
490   // In theory we could teach how to propagate the !nontemporal metadata to
491   // memset calls. However, that change would force the backend to
492   // conservatively expand !nontemporal memset calls back to sequences of
493   // store instructions (effectively undoing the merging).
494   if (SI->getMetadata(LLVMContext::MD_nontemporal))
495     return false;
496
497   const DataLayout &DL = SI->getModule()->getDataLayout();
498
499   // Detect cases where we're performing call slot forwarding, but
500   // happen to be using a load-store pair to implement it, rather than
501   // a memcpy.
502   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
503     if (LI->isSimple() && LI->hasOneUse() &&
504         LI->getParent() == SI->getParent()) {
505       MemDepResult ldep = MD->getDependency(LI);
506       CallInst *C = nullptr;
507       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
508         C = dyn_cast<CallInst>(ldep.getInst());
509
510       if (C) {
511         // Check that nothing touches the dest of the "copy" between
512         // the call and the store.
513         AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
514         MemoryLocation StoreLoc = MemoryLocation::get(SI);
515         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
516              I != E; --I) {
517           if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) {
518             C = nullptr;
519             break;
520           }
521         }
522       }
523
524       if (C) {
525         unsigned storeAlign = SI->getAlignment();
526         if (!storeAlign)
527           storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
528         unsigned loadAlign = LI->getAlignment();
529         if (!loadAlign)
530           loadAlign = DL.getABITypeAlignment(LI->getType());
531
532         bool changed = performCallSlotOptzn(
533             LI, SI->getPointerOperand()->stripPointerCasts(),
534             LI->getPointerOperand()->stripPointerCasts(),
535             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
536             std::min(storeAlign, loadAlign), C);
537         if (changed) {
538           MD->removeInstruction(SI);
539           SI->eraseFromParent();
540           MD->removeInstruction(LI);
541           LI->eraseFromParent();
542           ++NumMemCpyInstr;
543           return true;
544         }
545       }
546     }
547   }
548
549   // There are two cases that are interesting for this code to handle: memcpy
550   // and memset.  Right now we only handle memset.
551
552   // Ensure that the value being stored is something that can be memset'able a
553   // byte at a time like "0" or "-1" or any width, as well as things like
554   // 0xA0A0A0A0 and 0.0.
555   if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
556     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
557                                               ByteVal)) {
558       BBI = I->getIterator(); // Don't invalidate iterator.
559       return true;
560     }
561
562   return false;
563 }
564
565 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
566   // See if there is another memset or store neighboring this memset which
567   // allows us to widen out the memset to do a single larger store.
568   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
569     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
570                                               MSI->getValue())) {
571       BBI = I->getIterator(); // Don't invalidate iterator.
572       return true;
573     }
574   return false;
575 }
576
577
578 /// Takes a memcpy and a call that it depends on,
579 /// and checks for the possibility of a call slot optimization by having
580 /// the call write its result directly into the destination of the memcpy.
581 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
582                                      Value *cpyDest, Value *cpySrc,
583                                      uint64_t cpyLen, unsigned cpyAlign,
584                                      CallInst *C) {
585   // The general transformation to keep in mind is
586   //
587   //   call @func(..., src, ...)
588   //   memcpy(dest, src, ...)
589   //
590   // ->
591   //
592   //   memcpy(dest, src, ...)
593   //   call @func(..., dest, ...)
594   //
595   // Since moving the memcpy is technically awkward, we additionally check that
596   // src only holds uninitialized values at the moment of the call, meaning that
597   // the memcpy can be discarded rather than moved.
598
599   // Deliberately get the source and destination with bitcasts stripped away,
600   // because we'll need to do type comparisons based on the underlying type.
601   CallSite CS(C);
602
603   // Require that src be an alloca.  This simplifies the reasoning considerably.
604   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
605   if (!srcAlloca)
606     return false;
607
608   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
609   if (!srcArraySize)
610     return false;
611
612   const DataLayout &DL = cpy->getModule()->getDataLayout();
613   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
614                      srcArraySize->getZExtValue();
615
616   if (cpyLen < srcSize)
617     return false;
618
619   // Check that accessing the first srcSize bytes of dest will not cause a
620   // trap.  Otherwise the transform is invalid since it might cause a trap
621   // to occur earlier than it otherwise would.
622   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
623     // The destination is an alloca.  Check it is larger than srcSize.
624     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
625     if (!destArraySize)
626       return false;
627
628     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
629                         destArraySize->getZExtValue();
630
631     if (destSize < srcSize)
632       return false;
633   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
634     if (A->getDereferenceableBytes() < srcSize) {
635       // If the destination is an sret parameter then only accesses that are
636       // outside of the returned struct type can trap.
637       if (!A->hasStructRetAttr())
638         return false;
639
640       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
641       if (!StructTy->isSized()) {
642         // The call may never return and hence the copy-instruction may never
643         // be executed, and therefore it's not safe to say "the destination
644         // has at least <cpyLen> bytes, as implied by the copy-instruction",
645         return false;
646       }
647
648       uint64_t destSize = DL.getTypeAllocSize(StructTy);
649       if (destSize < srcSize)
650         return false;
651     }
652   } else {
653     return false;
654   }
655
656   // Check that dest points to memory that is at least as aligned as src.
657   unsigned srcAlign = srcAlloca->getAlignment();
658   if (!srcAlign)
659     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
660   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
661   // If dest is not aligned enough and we can't increase its alignment then
662   // bail out.
663   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
664     return false;
665
666   // Check that src is not accessed except via the call and the memcpy.  This
667   // guarantees that it holds only undefined values when passed in (so the final
668   // memcpy can be dropped), that it is not read or written between the call and
669   // the memcpy, and that writing beyond the end of it is undefined.
670   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
671                                    srcAlloca->user_end());
672   while (!srcUseList.empty()) {
673     User *U = srcUseList.pop_back_val();
674
675     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
676       for (User *UU : U->users())
677         srcUseList.push_back(UU);
678       continue;
679     }
680     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
681       if (!G->hasAllZeroIndices())
682         return false;
683
684       for (User *UU : U->users())
685         srcUseList.push_back(UU);
686       continue;
687     }
688     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
689       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
690           IT->getIntrinsicID() == Intrinsic::lifetime_end)
691         continue;
692
693     if (U != C && U != cpy)
694       return false;
695   }
696
697   // Check that src isn't captured by the called function since the
698   // transformation can cause aliasing issues in that case.
699   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
700     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
701       return false;
702
703   // Since we're changing the parameter to the callsite, we need to make sure
704   // that what would be the new parameter dominates the callsite.
705   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
706   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
707     if (!DT.dominates(cpyDestInst, C))
708       return false;
709
710   // In addition to knowing that the call does not access src in some
711   // unexpected manner, for example via a global, which we deduce from
712   // the use analysis, we also need to know that it does not sneakily
713   // access dest.  We rely on AA to figure this out for us.
714   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
715   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
716   // If necessary, perform additional analysis.
717   if (MR != MRI_NoModRef)
718     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
719   if (MR != MRI_NoModRef)
720     return false;
721
722   // All the checks have passed, so do the transformation.
723   bool changedArgument = false;
724   for (unsigned i = 0; i < CS.arg_size(); ++i)
725     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
726       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
727         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
728                                       cpyDest->getName(), C);
729       changedArgument = true;
730       if (CS.getArgument(i)->getType() == Dest->getType())
731         CS.setArgument(i, Dest);
732       else
733         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
734                           CS.getArgument(i)->getType(), Dest->getName(), C));
735     }
736
737   if (!changedArgument)
738     return false;
739
740   // If the destination wasn't sufficiently aligned then increase its alignment.
741   if (!isDestSufficientlyAligned) {
742     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
743     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
744   }
745
746   // Drop any cached information about the call, because we may have changed
747   // its dependence information by changing its parameter.
748   MD->removeInstruction(C);
749
750   // Update AA metadata
751   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
752   // handled here, but combineMetadata doesn't support them yet
753   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
754                          LLVMContext::MD_noalias,
755                          LLVMContext::MD_invariant_group};
756   combineMetadata(C, cpy, KnownIDs);
757
758   // Remove the memcpy.
759   MD->removeInstruction(cpy);
760   ++NumMemCpyInstr;
761
762   return true;
763 }
764
765 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
766 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
767 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep) {
768   // We can only transforms memcpy's where the dest of one is the source of the
769   // other.
770   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
771     return false;
772
773   // If dep instruction is reading from our current input, then it is a noop
774   // transfer and substituting the input won't change this instruction.  Just
775   // ignore the input and let someone else zap MDep.  This handles cases like:
776   //    memcpy(a <- a)
777   //    memcpy(b <- a)
778   if (M->getSource() == MDep->getSource())
779     return false;
780
781   // Second, the length of the memcpy's must be the same, or the preceding one
782   // must be larger than the following one.
783   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
784   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
785   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
786     return false;
787
788   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
789
790   // Verify that the copied-from memory doesn't change in between the two
791   // transfers.  For example, in:
792   //    memcpy(a <- b)
793   //    *b = 42;
794   //    memcpy(c <- a)
795   // It would be invalid to transform the second memcpy into memcpy(c <- b).
796   //
797   // TODO: If the code between M and MDep is transparent to the destination "c",
798   // then we could still perform the xform by moving M up to the first memcpy.
799   //
800   // NOTE: This is conservative, it will stop on any read from the source loc,
801   // not just the defining memcpy.
802   MemDepResult SourceDep =
803       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
804                                    M->getIterator(), M->getParent());
805   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
806     return false;
807
808   // If the dest of the second might alias the source of the first, then the
809   // source and dest might overlap.  We still want to eliminate the intermediate
810   // value, but we have to generate a memmove instead of memcpy.
811   bool UseMemMove = false;
812   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
813                     MemoryLocation::getForSource(MDep)))
814     UseMemMove = true;
815
816   // If all checks passed, then we can transform M.
817
818   // Make sure to use the lesser of the alignment of the source and the dest
819   // since we're changing where we're reading from, but don't want to increase
820   // the alignment past what can be read from or written to.
821   // TODO: Is this worth it if we're creating a less aligned memcpy? For
822   // example we could be moving from movaps -> movq on x86.
823   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
824
825   IRBuilder<> Builder(M);
826   if (UseMemMove)
827     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
828                           Align, M->isVolatile());
829   else
830     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
831                          Align, M->isVolatile());
832
833   // Remove the instruction we're replacing.
834   MD->removeInstruction(M);
835   M->eraseFromParent();
836   ++NumMemCpyInstr;
837   return true;
838 }
839
840 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
841 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
842 /// weren't copied over by \p MemCpy.
843 ///
844 /// In other words, transform:
845 /// \code
846 ///   memset(dst, c, dst_size);
847 ///   memcpy(dst, src, src_size);
848 /// \endcode
849 /// into:
850 /// \code
851 ///   memcpy(dst, src, src_size);
852 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
853 /// \endcode
854 bool MemCpyOpt::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
855                                               MemSetInst *MemSet) {
856   // We can only transform memset/memcpy with the same destination.
857   if (MemSet->getDest() != MemCpy->getDest())
858     return false;
859
860   // Check that there are no other dependencies on the memset destination.
861   MemDepResult DstDepInfo =
862       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
863                                    MemCpy->getIterator(), MemCpy->getParent());
864   if (DstDepInfo.getInst() != MemSet)
865     return false;
866
867   // Use the same i8* dest as the memcpy, killing the memset dest if different.
868   Value *Dest = MemCpy->getRawDest();
869   Value *DestSize = MemSet->getLength();
870   Value *SrcSize = MemCpy->getLength();
871
872   // By default, create an unaligned memset.
873   unsigned Align = 1;
874   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
875   // of the sum.
876   const unsigned DestAlign =
877       std::max(MemSet->getAlignment(), MemCpy->getAlignment());
878   if (DestAlign > 1)
879     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
880       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
881
882   IRBuilder<> Builder(MemCpy);
883
884   // If the sizes have different types, zext the smaller one.
885   if (DestSize->getType() != SrcSize->getType()) {
886     if (DestSize->getType()->getIntegerBitWidth() >
887         SrcSize->getType()->getIntegerBitWidth())
888       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
889     else
890       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
891   }
892
893   Value *MemsetLen =
894       Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize),
895                            ConstantInt::getNullValue(DestSize->getType()),
896                            Builder.CreateSub(DestSize, SrcSize));
897   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
898                        MemsetLen, Align);
899
900   MD->removeInstruction(MemSet);
901   MemSet->eraseFromParent();
902   return true;
903 }
904
905 /// Transform memcpy to memset when its source was just memset.
906 /// In other words, turn:
907 /// \code
908 ///   memset(dst1, c, dst1_size);
909 ///   memcpy(dst2, dst1, dst2_size);
910 /// \endcode
911 /// into:
912 /// \code
913 ///   memset(dst1, c, dst1_size);
914 ///   memset(dst2, c, dst2_size);
915 /// \endcode
916 /// When dst2_size <= dst1_size.
917 ///
918 /// The \p MemCpy must have a Constant length.
919 bool MemCpyOpt::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
920                                            MemSetInst *MemSet) {
921   // This only makes sense on memcpy(..., memset(...), ...).
922   if (MemSet->getRawDest() != MemCpy->getRawSource())
923     return false;
924
925   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
926   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
927   // Make sure the memcpy doesn't read any more than what the memset wrote.
928   // Don't worry about sizes larger than i64.
929   if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
930     return false;
931
932   IRBuilder<> Builder(MemCpy);
933   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
934                        CopySize, MemCpy->getAlignment());
935   return true;
936 }
937
938 /// Perform simplification of memcpy's.  If we have memcpy A
939 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
940 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
941 /// circumstances). This allows later passes to remove the first memcpy
942 /// altogether.
943 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
944   // We can only optimize non-volatile memcpy's.
945   if (M->isVolatile()) return false;
946
947   // If the source and destination of the memcpy are the same, then zap it.
948   if (M->getSource() == M->getDest()) {
949     MD->removeInstruction(M);
950     M->eraseFromParent();
951     return false;
952   }
953
954   // If copying from a constant, try to turn the memcpy into a memset.
955   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
956     if (GV->isConstant() && GV->hasDefinitiveInitializer())
957       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
958         IRBuilder<> Builder(M);
959         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
960                              M->getAlignment(), false);
961         MD->removeInstruction(M);
962         M->eraseFromParent();
963         ++NumCpyToSet;
964         return true;
965       }
966
967   MemDepResult DepInfo = MD->getDependency(M);
968
969   // Try to turn a partially redundant memset + memcpy into
970   // memcpy + smaller memset.  We don't need the memcpy size for this.
971   if (DepInfo.isClobber())
972     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
973       if (processMemSetMemCpyDependence(M, MDep))
974         return true;
975
976   // The optimizations after this point require the memcpy size.
977   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
978   if (!CopySize) return false;
979
980   // There are four possible optimizations we can do for memcpy:
981   //   a) memcpy-memcpy xform which exposes redundance for DSE.
982   //   b) call-memcpy xform for return slot optimization.
983   //   c) memcpy from freshly alloca'd space or space that has just started its
984   //      lifetime copies undefined data, and we can therefore eliminate the
985   //      memcpy in favor of the data that was already at the destination.
986   //   d) memcpy from a just-memset'd source can be turned into memset.
987   if (DepInfo.isClobber()) {
988     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
989       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
990                                CopySize->getZExtValue(), M->getAlignment(),
991                                C)) {
992         MD->removeInstruction(M);
993         M->eraseFromParent();
994         return true;
995       }
996     }
997   }
998
999   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1000   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1001       SrcLoc, true, M->getIterator(), M->getParent());
1002
1003   if (SrcDepInfo.isClobber()) {
1004     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1005       return processMemCpyMemCpyDependence(M, MDep);
1006   } else if (SrcDepInfo.isDef()) {
1007     Instruction *I = SrcDepInfo.getInst();
1008     bool hasUndefContents = false;
1009
1010     if (isa<AllocaInst>(I)) {
1011       hasUndefContents = true;
1012     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1013       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1014         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1015           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
1016             hasUndefContents = true;
1017     }
1018
1019     if (hasUndefContents) {
1020       MD->removeInstruction(M);
1021       M->eraseFromParent();
1022       ++NumMemCpyInstr;
1023       return true;
1024     }
1025   }
1026
1027   if (SrcDepInfo.isClobber())
1028     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1029       if (performMemCpyToMemSetOptzn(M, MDep)) {
1030         MD->removeInstruction(M);
1031         M->eraseFromParent();
1032         ++NumCpyToSet;
1033         return true;
1034       }
1035
1036   return false;
1037 }
1038
1039 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1040 /// not to alias.
1041 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
1042   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1043
1044   if (!TLI->has(LibFunc::memmove))
1045     return false;
1046
1047   // See if the pointers alias.
1048   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1049                     MemoryLocation::getForSource(M)))
1050     return false;
1051
1052   DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
1053
1054   // If not, then we know we can transform this.
1055   Module *Mod = M->getParent()->getParent()->getParent();
1056   Type *ArgTys[3] = { M->getRawDest()->getType(),
1057                       M->getRawSource()->getType(),
1058                       M->getLength()->getType() };
1059   M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
1060                                                  ArgTys));
1061
1062   // MemDep may have over conservative information about this instruction, just
1063   // conservatively flush it from the cache.
1064   MD->removeInstruction(M);
1065
1066   ++NumMoveToCpy;
1067   return true;
1068 }
1069
1070 /// This is called on every byval argument in call sites.
1071 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
1072   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1073   // Find out what feeds this byval argument.
1074   Value *ByValArg = CS.getArgument(ArgNo);
1075   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1076   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1077   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1078       MemoryLocation(ByValArg, ByValSize), true,
1079       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1080   if (!DepInfo.isClobber())
1081     return false;
1082
1083   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1084   // a memcpy, see if we can byval from the source of the memcpy instead of the
1085   // result.
1086   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1087   if (!MDep || MDep->isVolatile() ||
1088       ByValArg->stripPointerCasts() != MDep->getDest())
1089     return false;
1090
1091   // The length of the memcpy must be larger or equal to the size of the byval.
1092   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1093   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1094     return false;
1095
1096   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1097   // then it is some target specific value that we can't know.
1098   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
1099   if (ByValAlign == 0) return false;
1100
1101   // If it is greater than the memcpy, then we check to see if we can force the
1102   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1103   AssumptionCache &AC =
1104       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
1105           *CS->getParent()->getParent());
1106   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1107   if (MDep->getAlignment() < ByValAlign &&
1108       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1109                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
1110     return false;
1111
1112   // Verify that the copied-from memory doesn't change in between the memcpy and
1113   // the byval call.
1114   //    memcpy(a <- b)
1115   //    *b = 42;
1116   //    foo(*a)
1117   // It would be invalid to transform the second memcpy into foo(*b).
1118   //
1119   // NOTE: This is conservative, it will stop on any read from the source loc,
1120   // not just the defining memcpy.
1121   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1122       MemoryLocation::getForSource(MDep), false,
1123       CS.getInstruction()->getIterator(), MDep->getParent());
1124   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1125     return false;
1126
1127   Value *TmpCast = MDep->getSource();
1128   if (MDep->getSource()->getType() != ByValArg->getType())
1129     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1130                               "tmpcast", CS.getInstruction());
1131
1132   DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
1133                << "  " << *MDep << "\n"
1134                << "  " << *CS.getInstruction() << "\n");
1135
1136   // Otherwise we're good!  Update the byval argument.
1137   CS.setArgument(ArgNo, TmpCast);
1138   ++NumMemCpyInstr;
1139   return true;
1140 }
1141
1142 /// Executes one iteration of MemCpyOpt.
1143 bool MemCpyOpt::iterateOnFunction(Function &F) {
1144   bool MadeChange = false;
1145
1146   // Walk all instruction in the function.
1147   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
1148     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
1149       // Avoid invalidating the iterator.
1150       Instruction *I = &*BI++;
1151
1152       bool RepeatInstruction = false;
1153
1154       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1155         MadeChange |= processStore(SI, BI);
1156       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1157         RepeatInstruction = processMemSet(M, BI);
1158       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1159         RepeatInstruction = processMemCpy(M);
1160       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1161         RepeatInstruction = processMemMove(M);
1162       else if (auto CS = CallSite(I)) {
1163         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1164           if (CS.isByValArgument(i))
1165             MadeChange |= processByValArgument(CS, i);
1166       }
1167
1168       // Reprocess the instruction if desired.
1169       if (RepeatInstruction) {
1170         if (BI != BB->begin()) --BI;
1171         MadeChange = true;
1172       }
1173     }
1174   }
1175
1176   return MadeChange;
1177 }
1178
1179 /// This is the main transformation entry point for a function.
1180 bool MemCpyOpt::runOnFunction(Function &F) {
1181   if (skipOptnoneFunction(F))
1182     return false;
1183
1184   bool MadeChange = false;
1185   MD = &getAnalysis<MemoryDependenceAnalysis>();
1186   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1187
1188   // If we don't have at least memset and memcpy, there is little point of doing
1189   // anything here.  These are required by a freestanding implementation, so if
1190   // even they are disabled, there is no point in trying hard.
1191   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
1192     return false;
1193
1194   while (1) {
1195     if (!iterateOnFunction(F))
1196       break;
1197     MadeChange = true;
1198   }
1199
1200   MD = nullptr;
1201   return MadeChange;
1202 }