Speculatively revert r146578 to determine if it is the cause of a number of
[oota-llvm.git] / lib / Transforms / Scalar / LoopUnswitch.cpp
1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops.  For example, it turns the left into the right code:
12 //
13 //  for (...)                  if (lic)
14 //    A                          for (...)
15 //    if (lic)                     A; B; C
16 //      B                      else
17 //    C                          for (...)
18 //                                 A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/Analysis/InlineCost.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <set>
52 using namespace llvm;
53
54 STATISTIC(NumBranches, "Number of branches unswitched");
55 STATISTIC(NumSwitches, "Number of switches unswitched");
56 STATISTIC(NumSelects , "Number of selects unswitched");
57 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
58 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
59
60 // The specific value of 50 here was chosen based only on intuition and a
61 // few specific examples.
62 static cl::opt<unsigned>
63 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
64           cl::init(50), cl::Hidden);
65   
66 namespace {
67   class LoopUnswitch : public LoopPass {
68     LoopInfo *LI;  // Loop information
69     LPPassManager *LPM;
70
71     // LoopProcessWorklist - Used to check if second loop needs processing
72     // after RewriteLoopBodyWithConditionConstant rewrites first loop.
73     std::vector<Loop*> LoopProcessWorklist;
74     SmallPtrSet<Value *,8> UnswitchedVals;
75     
76     bool OptimizeForSize;
77     bool redoLoop;
78
79     Loop *currentLoop;
80     DominatorTree *DT;
81     BasicBlock *loopHeader;
82     BasicBlock *loopPreheader;
83     
84     // LoopBlocks contains all of the basic blocks of the loop, including the
85     // preheader of the loop, the body of the loop, and the exit blocks of the 
86     // loop, in that order.
87     std::vector<BasicBlock*> LoopBlocks;
88     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
89     std::vector<BasicBlock*> NewBlocks;
90
91   public:
92     static char ID; // Pass ID, replacement for typeid
93     explicit LoopUnswitch(bool Os = false) : 
94       LoopPass(ID), OptimizeForSize(Os), redoLoop(false), 
95       currentLoop(NULL), DT(NULL), loopHeader(NULL),
96       loopPreheader(NULL) {
97         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
98       }
99
100     bool runOnLoop(Loop *L, LPPassManager &LPM);
101     bool processCurrentLoop();
102
103     /// This transformation requires natural loop information & requires that
104     /// loop preheaders be inserted into the CFG.
105     ///
106     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
107       AU.addRequiredID(LoopSimplifyID);
108       AU.addPreservedID(LoopSimplifyID);
109       AU.addRequired<LoopInfo>();
110       AU.addPreserved<LoopInfo>();
111       AU.addRequiredID(LCSSAID);
112       AU.addPreservedID(LCSSAID);
113       AU.addPreserved<DominatorTree>();
114       AU.addPreserved<ScalarEvolution>();
115     }
116
117   private:
118
119     virtual void releaseMemory() {
120       UnswitchedVals.clear();
121     }
122
123     /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
124     /// remove it.
125     void RemoveLoopFromWorklist(Loop *L) {
126       std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
127                                                  LoopProcessWorklist.end(), L);
128       if (I != LoopProcessWorklist.end())
129         LoopProcessWorklist.erase(I);
130     }
131
132     void initLoopData() {
133       loopHeader = currentLoop->getHeader();
134       loopPreheader = currentLoop->getLoopPreheader();
135     }
136
137     /// Split all of the edges from inside the loop to their exit blocks.
138     /// Update the appropriate Phi nodes as we do so.
139     void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
140
141     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
142     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
143                                   BasicBlock *ExitBlock);
144     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
145
146     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
147                                               Constant *Val, bool isEqual);
148
149     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
150                                         BasicBlock *TrueDest, 
151                                         BasicBlock *FalseDest,
152                                         Instruction *InsertPt);
153
154     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
155     void RemoveBlockIfDead(BasicBlock *BB,
156                            std::vector<Instruction*> &Worklist, Loop *l);
157     void RemoveLoopFromHierarchy(Loop *L);
158     bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
159                                     BasicBlock **LoopExit = 0);
160
161   };
162 }
163 char LoopUnswitch::ID = 0;
164 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
165                       false, false)
166 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
167 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
168 INITIALIZE_PASS_DEPENDENCY(LCSSA)
169 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
170                       false, false)
171
172 Pass *llvm::createLoopUnswitchPass(bool Os) { 
173   return new LoopUnswitch(Os); 
174 }
175
176 /// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
177 /// invariant in the loop, or has an invariant piece, return the invariant.
178 /// Otherwise, return null.
179 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
180   // We can never unswitch on vector conditions.
181   if (Cond->getType()->isVectorTy())
182     return 0;
183
184   // Constants should be folded, not unswitched on!
185   if (isa<Constant>(Cond)) return 0;
186
187   // TODO: Handle: br (VARIANT|INVARIANT).
188
189   // Hoist simple values out.
190   if (L->makeLoopInvariant(Cond, Changed))
191     return Cond;
192
193   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
194     if (BO->getOpcode() == Instruction::And ||
195         BO->getOpcode() == Instruction::Or) {
196       // If either the left or right side is invariant, we can unswitch on this,
197       // which will cause the branch to go away in one loop and the condition to
198       // simplify in the other one.
199       if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
200         return LHS;
201       if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
202         return RHS;
203     }
204   
205   return 0;
206 }
207
208 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
209   LI = &getAnalysis<LoopInfo>();
210   LPM = &LPM_Ref;
211   DT = getAnalysisIfAvailable<DominatorTree>();
212   currentLoop = L;
213   Function *F = currentLoop->getHeader()->getParent();
214   bool Changed = false;
215   do {
216     assert(currentLoop->isLCSSAForm(*DT));
217     redoLoop = false;
218     Changed |= processCurrentLoop();
219   } while(redoLoop);
220
221   if (Changed) {
222     // FIXME: Reconstruct dom info, because it is not preserved properly.
223     if (DT)
224       DT->runOnFunction(*F);
225   }
226   return Changed;
227 }
228
229 /// processCurrentLoop - Do actual work and unswitch loop if possible 
230 /// and profitable.
231 bool LoopUnswitch::processCurrentLoop() {
232   bool Changed = false;
233   LLVMContext &Context = currentLoop->getHeader()->getContext();
234
235   // Loop over all of the basic blocks in the loop.  If we find an interior
236   // block that is branching on a loop-invariant condition, we can unswitch this
237   // loop.
238   for (Loop::block_iterator I = currentLoop->block_begin(), 
239          E = currentLoop->block_end(); I != E; ++I) {
240     TerminatorInst *TI = (*I)->getTerminator();
241     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
242       // If this isn't branching on an invariant condition, we can't unswitch
243       // it.
244       if (BI->isConditional()) {
245         // See if this, or some part of it, is loop invariant.  If so, we can
246         // unswitch on it if we desire.
247         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 
248                                                currentLoop, Changed);
249         if (LoopCond && UnswitchIfProfitable(LoopCond, 
250                                              ConstantInt::getTrue(Context))) {
251           ++NumBranches;
252           return true;
253         }
254       }      
255     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
256       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 
257                                              currentLoop, Changed);
258       if (LoopCond && SI->getNumCases() > 1) {
259         // Find a value to unswitch on:
260         // FIXME: this should chose the most expensive case!
261         // FIXME: scan for a case with a non-critical edge?
262         Constant *UnswitchVal = SI->getCaseValue(1);
263         // Do not process same value again and again.
264         if (!UnswitchedVals.insert(UnswitchVal))
265           continue;
266
267         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
268           ++NumSwitches;
269           return true;
270         }
271       }
272     }
273     
274     // Scan the instructions to check for unswitchable values.
275     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 
276          BBI != E; ++BBI)
277       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
278         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 
279                                                currentLoop, Changed);
280         if (LoopCond && UnswitchIfProfitable(LoopCond, 
281                                              ConstantInt::getTrue(Context))) {
282           ++NumSelects;
283           return true;
284         }
285       }
286   }
287   return Changed;
288 }
289
290 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
291 /// loop with no side effects (including infinite loops).
292 ///
293 /// If true, we return true and set ExitBB to the block we
294 /// exit through.
295 ///
296 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
297                                          BasicBlock *&ExitBB,
298                                          std::set<BasicBlock*> &Visited) {
299   if (!Visited.insert(BB).second) {
300     // Already visited. Without more analysis, this could indicate an infinte loop.
301     return false;
302   } else if (!L->contains(BB)) {
303     // Otherwise, this is a loop exit, this is fine so long as this is the
304     // first exit.
305     if (ExitBB != 0) return false;
306     ExitBB = BB;
307     return true;
308   }
309   
310   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
311   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
312     // Check to see if the successor is a trivial loop exit.
313     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
314       return false;
315   }
316
317   // Okay, everything after this looks good, check to make sure that this block
318   // doesn't include any side effects.
319   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
320     if (I->mayHaveSideEffects())
321       return false;
322   
323   return true;
324 }
325
326 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
327 /// leads to an exit from the specified loop, and has no side-effects in the 
328 /// process.  If so, return the block that is exited to, otherwise return null.
329 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
330   std::set<BasicBlock*> Visited;
331   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
332   BasicBlock *ExitBB = 0;
333   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
334     return ExitBB;
335   return 0;
336 }
337
338 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
339 /// trivial: that is, that the condition controls whether or not the loop does
340 /// anything at all.  If this is a trivial condition, unswitching produces no
341 /// code duplications (equivalently, it produces a simpler loop and a new empty
342 /// loop, which gets deleted).
343 ///
344 /// If this is a trivial condition, return true, otherwise return false.  When
345 /// returning true, this sets Cond and Val to the condition that controls the
346 /// trivial condition: when Cond dynamically equals Val, the loop is known to
347 /// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
348 /// Cond == Val.
349 ///
350 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
351                                        BasicBlock **LoopExit) {
352   BasicBlock *Header = currentLoop->getHeader();
353   TerminatorInst *HeaderTerm = Header->getTerminator();
354   LLVMContext &Context = Header->getContext();
355   
356   BasicBlock *LoopExitBB = 0;
357   if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
358     // If the header block doesn't end with a conditional branch on Cond, we
359     // can't handle it.
360     if (!BI->isConditional() || BI->getCondition() != Cond)
361       return false;
362   
363     // Check to see if a successor of the branch is guaranteed to 
364     // exit through a unique exit block without having any 
365     // side-effects.  If so, determine the value of Cond that causes it to do
366     // this.
367     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 
368                                              BI->getSuccessor(0)))) {
369       if (Val) *Val = ConstantInt::getTrue(Context);
370     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 
371                                                     BI->getSuccessor(1)))) {
372       if (Val) *Val = ConstantInt::getFalse(Context);
373     }
374   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
375     // If this isn't a switch on Cond, we can't handle it.
376     if (SI->getCondition() != Cond) return false;
377     
378     // Check to see if a successor of the switch is guaranteed to go to the
379     // latch block or exit through a one exit block without having any 
380     // side-effects.  If so, determine the value of Cond that causes it to do
381     // this.  Note that we can't trivially unswitch on the default case.
382     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
383       if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 
384                                                SI->getSuccessor(i)))) {
385         // Okay, we found a trivial case, remember the value that is trivial.
386         if (Val) *Val = SI->getCaseValue(i);
387         break;
388       }
389   }
390
391   // If we didn't find a single unique LoopExit block, or if the loop exit block
392   // contains phi nodes, this isn't trivial.
393   if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
394     return false;   // Can't handle this.
395   
396   if (LoopExit) *LoopExit = LoopExitBB;
397   
398   // We already know that nothing uses any scalar values defined inside of this
399   // loop.  As such, we just have to check to see if this loop will execute any
400   // side-effecting instructions (e.g. stores, calls, volatile loads) in the
401   // part of the loop that the code *would* execute.  We already checked the
402   // tail, check the header now.
403   for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
404     if (I->mayHaveSideEffects())
405       return false;
406   return true;
407 }
408
409 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
410 /// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
411 /// unswitch the loop, reprocess the pieces, then return true.
412 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
413
414   initLoopData();
415
416   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
417   if (!loopPreheader)
418     return false;
419
420   Function *F = loopHeader->getParent();
421
422   Constant *CondVal = 0;
423   BasicBlock *ExitBlock = 0;
424   if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
425     // If the condition is trivial, always unswitch. There is no code growth
426     // for this case.
427     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
428     return true;
429   }
430
431   // Check to see if it would be profitable to unswitch current loop.
432
433   // Do not do non-trivial unswitch while optimizing for size.
434   if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
435     return false;
436
437   // FIXME: This is overly conservative because it does not take into
438   // consideration code simplification opportunities and code that can
439   // be shared by the resultant unswitched loops.
440   CodeMetrics Metrics;
441   for (Loop::block_iterator I = currentLoop->block_begin(), 
442          E = currentLoop->block_end();
443        I != E; ++I)
444     Metrics.analyzeBasicBlock(*I);
445
446   // Limit the number of instructions to avoid causing significant code
447   // expansion, and the number of basic blocks, to avoid loops with
448   // large numbers of branches which cause loop unswitching to go crazy.
449   // This is a very ad-hoc heuristic.
450   if (Metrics.NumInsts > Threshold ||
451       Metrics.NumBlocks * 5 > Threshold ||
452       Metrics.containsIndirectBr || Metrics.isRecursive) {
453     DEBUG(dbgs() << "NOT unswitching loop %"
454           << currentLoop->getHeader()->getName() << ", cost too high: "
455           << currentLoop->getBlocks().size() << "\n");
456     return false;
457   }
458
459   UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
460   return true;
461 }
462
463 /// CloneLoop - Recursively clone the specified loop and all of its children,
464 /// mapping the blocks with the specified map.
465 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
466                        LoopInfo *LI, LPPassManager *LPM) {
467   Loop *New = new Loop();
468   LPM->insertLoop(New, PL);
469
470   // Add all of the blocks in L to the new loop.
471   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
472        I != E; ++I)
473     if (LI->getLoopFor(*I) == L)
474       New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
475
476   // Add all of the subloops to the new loop.
477   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
478     CloneLoop(*I, New, VM, LI, LPM);
479
480   return New;
481 }
482
483 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
484 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
485 /// code immediately before InsertPt.
486 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
487                                                   BasicBlock *TrueDest,
488                                                   BasicBlock *FalseDest,
489                                                   Instruction *InsertPt) {
490   // Insert a conditional branch on LIC to the two preheaders.  The original
491   // code is the true version and the new code is the false version.
492   Value *BranchVal = LIC;
493   if (!isa<ConstantInt>(Val) ||
494       Val->getType() != Type::getInt1Ty(LIC->getContext()))
495     BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
496   else if (Val != ConstantInt::getTrue(Val->getContext()))
497     // We want to enter the new loop when the condition is true.
498     std::swap(TrueDest, FalseDest);
499
500   // Insert the new branch.
501   BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
502
503   // If either edge is critical, split it. This helps preserve LoopSimplify
504   // form for enclosing loops.
505   SplitCriticalEdge(BI, 0, this);
506   SplitCriticalEdge(BI, 1, this);
507 }
508
509 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
510 /// condition in it (a cond branch from its header block to its latch block,
511 /// where the path through the loop that doesn't execute its body has no 
512 /// side-effects), unswitch it.  This doesn't involve any code duplication, just
513 /// moving the conditional branch outside of the loop and updating loop info.
514 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 
515                                             Constant *Val, 
516                                             BasicBlock *ExitBlock) {
517   DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
518         << loopHeader->getName() << " [" << L->getBlocks().size()
519         << " blocks] in Function " << L->getHeader()->getParent()->getName()
520         << " on cond: " << *Val << " == " << *Cond << "\n");
521   
522   // First step, split the preheader, so that we know that there is a safe place
523   // to insert the conditional branch.  We will change loopPreheader to have a
524   // conditional branch on Cond.
525   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
526
527   // Now that we have a place to insert the conditional branch, create a place
528   // to branch to: this is the exit block out of the loop that we should
529   // short-circuit to.
530   
531   // Split this block now, so that the loop maintains its exit block, and so
532   // that the jump from the preheader can execute the contents of the exit block
533   // without actually branching to it (the exit block should be dominated by the
534   // loop header, not the preheader).
535   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
536   BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
537     
538   // Okay, now we have a position to branch from and a position to branch to, 
539   // insert the new conditional branch.
540   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 
541                                  loopPreheader->getTerminator());
542   LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
543   loopPreheader->getTerminator()->eraseFromParent();
544
545   // We need to reprocess this loop, it could be unswitched again.
546   redoLoop = true;
547   
548   // Now that we know that the loop is never entered when this condition is a
549   // particular value, rewrite the loop with this info.  We know that this will
550   // at least eliminate the old branch.
551   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
552   ++NumTrivial;
553 }
554
555 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
556 /// blocks.  Update the appropriate Phi nodes as we do so.
557 void LoopUnswitch::SplitExitEdges(Loop *L, 
558                                 const SmallVector<BasicBlock *, 8> &ExitBlocks){
559
560   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
561     BasicBlock *ExitBlock = ExitBlocks[i];
562     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
563                                        pred_end(ExitBlock));
564
565     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
566     // general, if we call it on all predecessors of all exits then it does.
567     if (!ExitBlock->isLandingPad()) {
568       SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
569     } else {
570       SmallVector<BasicBlock*, 2> NewBBs;
571       SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
572                                   this, NewBBs);
573     }
574   }
575 }
576
577 /// UnswitchNontrivialCondition - We determined that the loop is profitable 
578 /// to unswitch when LIC equal Val.  Split it into loop versions and test the 
579 /// condition outside of either loop.  Return the loops created as Out1/Out2.
580 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 
581                                                Loop *L) {
582   Function *F = loopHeader->getParent();
583   DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
584         << loopHeader->getName() << " [" << L->getBlocks().size()
585         << " blocks] in Function " << F->getName()
586         << " when '" << *Val << "' == " << *LIC << "\n");
587
588   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
589     SE->forgetLoop(L);
590
591   LoopBlocks.clear();
592   NewBlocks.clear();
593
594   // First step, split the preheader and exit blocks, and add these blocks to
595   // the LoopBlocks list.
596   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
597   LoopBlocks.push_back(NewPreheader);
598
599   // We want the loop to come after the preheader, but before the exit blocks.
600   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
601
602   SmallVector<BasicBlock*, 8> ExitBlocks;
603   L->getUniqueExitBlocks(ExitBlocks);
604
605   // Split all of the edges from inside the loop to their exit blocks.  Update
606   // the appropriate Phi nodes as we do so.
607   SplitExitEdges(L, ExitBlocks);
608
609   // The exit blocks may have been changed due to edge splitting, recompute.
610   ExitBlocks.clear();
611   L->getUniqueExitBlocks(ExitBlocks);
612
613   // Add exit blocks to the loop blocks.
614   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
615
616   // Next step, clone all of the basic blocks that make up the loop (including
617   // the loop preheader and exit blocks), keeping track of the mapping between
618   // the instructions and blocks.
619   NewBlocks.reserve(LoopBlocks.size());
620   ValueToValueMapTy VMap;
621   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
622     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
623     NewBlocks.push_back(NewBB);
624     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
625     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
626   }
627
628   // Splice the newly inserted blocks into the function right before the
629   // original preheader.
630   F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
631                                 NewBlocks[0], F->end());
632
633   // Now we create the new Loop object for the versioned loop.
634   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
635   Loop *ParentLoop = L->getParentLoop();
636   if (ParentLoop) {
637     // Make sure to add the cloned preheader and exit blocks to the parent loop
638     // as well.
639     ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
640   }
641
642   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
643     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
644     // The new exit block should be in the same loop as the old one.
645     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
646       ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
647     
648     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
649            "Exit block should have been split to have one successor!");
650     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
651
652     // If the successor of the exit block had PHI nodes, add an entry for
653     // NewExit.
654     PHINode *PN;
655     for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
656       PN = cast<PHINode>(I);
657       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
658       ValueToValueMapTy::iterator It = VMap.find(V);
659       if (It != VMap.end()) V = It->second;
660       PN->addIncoming(V, NewExit);
661     }
662
663     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
664       PN = PHINode::Create(LPad->getType(), 0, "",
665                            ExitSucc->getFirstInsertionPt());
666
667       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
668            I != E; ++I) {
669         BasicBlock *BB = *I;
670         LandingPadInst *LPI = BB->getLandingPadInst();
671         LPI->replaceAllUsesWith(PN);
672         PN->addIncoming(LPI, BB);
673       }
674     }
675   }
676
677   // Rewrite the code to refer to itself.
678   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
679     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
680            E = NewBlocks[i]->end(); I != E; ++I)
681       RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
682   
683   // Rewrite the original preheader to select between versions of the loop.
684   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
685   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
686          "Preheader splitting did not work correctly!");
687
688   // Emit the new branch that selects between the two versions of this loop.
689   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
690   LPM->deleteSimpleAnalysisValue(OldBR, L);
691   OldBR->eraseFromParent();
692
693   LoopProcessWorklist.push_back(NewLoop);
694   redoLoop = true;
695
696   // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
697   // deletes the instruction (for example by simplifying a PHI that feeds into
698   // the condition that we're unswitching on), we don't rewrite the second
699   // iteration.
700   WeakVH LICHandle(LIC);
701   
702   // Now we rewrite the original code to know that the condition is true and the
703   // new code to know that the condition is false.
704   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
705
706   // It's possible that simplifying one loop could cause the other to be
707   // changed to another value or a constant.  If its a constant, don't simplify
708   // it.
709   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
710       LICHandle && !isa<Constant>(LICHandle))
711     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
712 }
713
714 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
715 /// specified.
716 static void RemoveFromWorklist(Instruction *I, 
717                                std::vector<Instruction*> &Worklist) {
718   std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
719                                                      Worklist.end(), I);
720   while (WI != Worklist.end()) {
721     unsigned Offset = WI-Worklist.begin();
722     Worklist.erase(WI);
723     WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
724   }
725 }
726
727 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
728 /// program, replacing all uses with V and update the worklist.
729 static void ReplaceUsesOfWith(Instruction *I, Value *V, 
730                               std::vector<Instruction*> &Worklist,
731                               Loop *L, LPPassManager *LPM) {
732   DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
733
734   // Add uses to the worklist, which may be dead now.
735   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
736     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
737       Worklist.push_back(Use);
738
739   // Add users to the worklist which may be simplified now.
740   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
741        UI != E; ++UI)
742     Worklist.push_back(cast<Instruction>(*UI));
743   LPM->deleteSimpleAnalysisValue(I, L);
744   RemoveFromWorklist(I, Worklist);
745   I->replaceAllUsesWith(V);
746   I->eraseFromParent();
747   ++NumSimplify;
748 }
749
750 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
751 /// information, and remove any dead successors it has.
752 ///
753 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
754                                      std::vector<Instruction*> &Worklist,
755                                      Loop *L) {
756   if (pred_begin(BB) != pred_end(BB)) {
757     // This block isn't dead, since an edge to BB was just removed, see if there
758     // are any easy simplifications we can do now.
759     if (BasicBlock *Pred = BB->getSinglePredecessor()) {
760       // If it has one pred, fold phi nodes in BB.
761       while (isa<PHINode>(BB->begin()))
762         ReplaceUsesOfWith(BB->begin(), 
763                           cast<PHINode>(BB->begin())->getIncomingValue(0), 
764                           Worklist, L, LPM);
765       
766       // If this is the header of a loop and the only pred is the latch, we now
767       // have an unreachable loop.
768       if (Loop *L = LI->getLoopFor(BB))
769         if (loopHeader == BB && L->contains(Pred)) {
770           // Remove the branch from the latch to the header block, this makes
771           // the header dead, which will make the latch dead (because the header
772           // dominates the latch).
773           LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
774           Pred->getTerminator()->eraseFromParent();
775           new UnreachableInst(BB->getContext(), Pred);
776           
777           // The loop is now broken, remove it from LI.
778           RemoveLoopFromHierarchy(L);
779           
780           // Reprocess the header, which now IS dead.
781           RemoveBlockIfDead(BB, Worklist, L);
782           return;
783         }
784       
785       // If pred ends in a uncond branch, add uncond branch to worklist so that
786       // the two blocks will get merged.
787       if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
788         if (BI->isUnconditional())
789           Worklist.push_back(BI);
790     }
791     return;
792   }
793
794   DEBUG(dbgs() << "Nuking dead block: " << *BB);
795   
796   // Remove the instructions in the basic block from the worklist.
797   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
798     RemoveFromWorklist(I, Worklist);
799     
800     // Anything that uses the instructions in this basic block should have their
801     // uses replaced with undefs.
802     // If I is not void type then replaceAllUsesWith undef.
803     // This allows ValueHandlers and custom metadata to adjust itself.
804     if (!I->getType()->isVoidTy())
805       I->replaceAllUsesWith(UndefValue::get(I->getType()));
806   }
807   
808   // If this is the edge to the header block for a loop, remove the loop and
809   // promote all subloops.
810   if (Loop *BBLoop = LI->getLoopFor(BB)) {
811     if (BBLoop->getLoopLatch() == BB) {
812       RemoveLoopFromHierarchy(BBLoop);
813       if (currentLoop == BBLoop) {
814         currentLoop = 0;
815         redoLoop = false;
816       }
817     }
818   }
819
820   // Remove the block from the loop info, which removes it from any loops it
821   // was in.
822   LI->removeBlock(BB);
823   
824   
825   // Remove phi node entries in successors for this block.
826   TerminatorInst *TI = BB->getTerminator();
827   SmallVector<BasicBlock*, 4> Succs;
828   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
829     Succs.push_back(TI->getSuccessor(i));
830     TI->getSuccessor(i)->removePredecessor(BB);
831   }
832   
833   // Unique the successors, remove anything with multiple uses.
834   array_pod_sort(Succs.begin(), Succs.end());
835   Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
836   
837   // Remove the basic block, including all of the instructions contained in it.
838   LPM->deleteSimpleAnalysisValue(BB, L);  
839   BB->eraseFromParent();
840   // Remove successor blocks here that are not dead, so that we know we only
841   // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
842   // then getting removed before we revisit them, which is badness.
843   //
844   for (unsigned i = 0; i != Succs.size(); ++i)
845     if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
846       // One exception is loop headers.  If this block was the preheader for a
847       // loop, then we DO want to visit the loop so the loop gets deleted.
848       // We know that if the successor is a loop header, that this loop had to
849       // be the preheader: the case where this was the latch block was handled
850       // above and headers can only have two predecessors.
851       if (!LI->isLoopHeader(Succs[i])) {
852         Succs.erase(Succs.begin()+i);
853         --i;
854       }
855     }
856   
857   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
858     RemoveBlockIfDead(Succs[i], Worklist, L);
859 }
860
861 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
862 /// become unwrapped, either because the backedge was deleted, or because the
863 /// edge into the header was removed.  If the edge into the header from the
864 /// latch block was removed, the loop is unwrapped but subloops are still alive,
865 /// so they just reparent loops.  If the loops are actually dead, they will be
866 /// removed later.
867 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
868   LPM->deleteLoopFromQueue(L);
869   RemoveLoopFromWorklist(L);
870 }
871
872 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
873 // the value specified by Val in the specified loop, or we know it does NOT have
874 // that value.  Rewrite any uses of LIC or of properties correlated to it.
875 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
876                                                         Constant *Val,
877                                                         bool IsEqual) {
878   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
879   
880   // FIXME: Support correlated properties, like:
881   //  for (...)
882   //    if (li1 < li2)
883   //      ...
884   //    if (li1 > li2)
885   //      ...
886   
887   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
888   // selects, switches.
889   std::vector<Instruction*> Worklist;
890   LLVMContext &Context = Val->getContext();
891
892
893   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
894   // in the loop with the appropriate one directly.
895   if (IsEqual || (isa<ConstantInt>(Val) &&
896       Val->getType()->isIntegerTy(1))) {
897     Value *Replacement;
898     if (IsEqual)
899       Replacement = Val;
900     else
901       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 
902                                      !cast<ConstantInt>(Val)->getZExtValue());
903     
904     for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
905          UI != E; ++UI) {
906       Instruction *U = dyn_cast<Instruction>(*UI);
907       if (!U || !L->contains(U))
908         continue;
909       Worklist.push_back(U);
910     }
911     
912     for (std::vector<Instruction*>::iterator UI = Worklist.begin();
913          UI != Worklist.end(); ++UI)
914       (*UI)->replaceUsesOfWith(LIC, Replacement);        
915     
916     SimplifyCode(Worklist, L);
917     return;
918   }
919   
920   // Otherwise, we don't know the precise value of LIC, but we do know that it
921   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
922   // can.  This case occurs when we unswitch switch statements.
923   for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
924        UI != E; ++UI) {
925     Instruction *U = dyn_cast<Instruction>(*UI);
926     if (!U || !L->contains(U))
927       continue;
928
929     Worklist.push_back(U);
930
931     // TODO: We could do other simplifications, for example, turning 
932     // 'icmp eq LIC, Val' -> false.
933
934     // If we know that LIC is not Val, use this info to simplify code.
935     SwitchInst *SI = dyn_cast<SwitchInst>(U);
936     if (SI == 0 || !isa<ConstantInt>(Val)) continue;
937     
938     unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
939     if (DeadCase == 0) continue;  // Default case is live for multiple values.
940     
941     // Found a dead case value.  Don't remove PHI nodes in the 
942     // successor if they become single-entry, those PHI nodes may
943     // be in the Users list.
944
945     BasicBlock *Switch = SI->getParent();
946     BasicBlock *SISucc = SI->getSuccessor(DeadCase);
947     BasicBlock *Latch = L->getLoopLatch();
948     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
949     // If the DeadCase successor dominates the loop latch, then the
950     // transformation isn't safe since it will delete the sole predecessor edge
951     // to the latch.
952     if (Latch && DT->dominates(SISucc, Latch))
953       continue;
954
955     // FIXME: This is a hack.  We need to keep the successor around
956     // and hooked up so as to preserve the loop structure, because
957     // trying to update it is complicated.  So instead we preserve the
958     // loop structure and put the block on a dead code path.
959     SplitEdge(Switch, SISucc, this);
960     // Compute the successors instead of relying on the return value
961     // of SplitEdge, since it may have split the switch successor
962     // after PHI nodes.
963     BasicBlock *NewSISucc = SI->getSuccessor(DeadCase);
964     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
965     // Create an "unreachable" destination.
966     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
967                                            Switch->getParent(),
968                                            OldSISucc);
969     new UnreachableInst(Context, Abort);
970     // Force the new case destination to branch to the "unreachable"
971     // block while maintaining a (dead) CFG edge to the old block.
972     NewSISucc->getTerminator()->eraseFromParent();
973     BranchInst::Create(Abort, OldSISucc,
974                        ConstantInt::getTrue(Context), NewSISucc);
975     // Release the PHI operands for this edge.
976     for (BasicBlock::iterator II = NewSISucc->begin();
977          PHINode *PN = dyn_cast<PHINode>(II); ++II)
978       PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
979                            UndefValue::get(PN->getType()));
980     // Tell the domtree about the new block. We don't fully update the
981     // domtree here -- instead we force it to do a full recomputation
982     // after the pass is complete -- but we do need to inform it of
983     // new blocks.
984     if (DT)
985       DT->addNewBlock(Abort, NewSISucc);
986   }
987   
988   SimplifyCode(Worklist, L);
989 }
990
991 /// SimplifyCode - Okay, now that we have simplified some instructions in the
992 /// loop, walk over it and constant prop, dce, and fold control flow where
993 /// possible.  Note that this is effectively a very simple loop-structure-aware
994 /// optimizer.  During processing of this loop, L could very well be deleted, so
995 /// it must not be used.
996 ///
997 /// FIXME: When the loop optimizer is more mature, separate this out to a new
998 /// pass.
999 ///
1000 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1001   while (!Worklist.empty()) {
1002     Instruction *I = Worklist.back();
1003     Worklist.pop_back();
1004
1005     // Simple DCE.
1006     if (isInstructionTriviallyDead(I)) {
1007       DEBUG(dbgs() << "Remove dead instruction '" << *I);
1008       
1009       // Add uses to the worklist, which may be dead now.
1010       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1011         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1012           Worklist.push_back(Use);
1013       LPM->deleteSimpleAnalysisValue(I, L);
1014       RemoveFromWorklist(I, Worklist);
1015       I->eraseFromParent();
1016       ++NumSimplify;
1017       continue;
1018     }
1019
1020     // See if instruction simplification can hack this up.  This is common for
1021     // things like "select false, X, Y" after unswitching made the condition be
1022     // 'false'.
1023     if (Value *V = SimplifyInstruction(I, 0, 0, DT))
1024       if (LI->replacementPreservesLCSSAForm(I, V)) {
1025         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1026         continue;
1027       }
1028
1029     // Special case hacks that appear commonly in unswitched code.
1030     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1031       if (BI->isUnconditional()) {
1032         // If BI's parent is the only pred of the successor, fold the two blocks
1033         // together.
1034         BasicBlock *Pred = BI->getParent();
1035         BasicBlock *Succ = BI->getSuccessor(0);
1036         BasicBlock *SinglePred = Succ->getSinglePredecessor();
1037         if (!SinglePred) continue;  // Nothing to do.
1038         assert(SinglePred == Pred && "CFG broken");
1039
1040         DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 
1041               << Succ->getName() << "\n");
1042         
1043         // Resolve any single entry PHI nodes in Succ.
1044         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1045           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1046         
1047         // If Succ has any successors with PHI nodes, update them to have
1048         // entries coming from Pred instead of Succ.
1049         Succ->replaceAllUsesWith(Pred);
1050         
1051         // Move all of the successor contents from Succ to Pred.
1052         Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1053                                    Succ->end());
1054         LPM->deleteSimpleAnalysisValue(BI, L);
1055         BI->eraseFromParent();
1056         RemoveFromWorklist(BI, Worklist);
1057         
1058         // Remove Succ from the loop tree.
1059         LI->removeBlock(Succ);
1060         LPM->deleteSimpleAnalysisValue(Succ, L);
1061         Succ->eraseFromParent();
1062         ++NumSimplify;
1063         continue;
1064       }
1065       
1066       if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1067         // Conditional branch.  Turn it into an unconditional branch, then
1068         // remove dead blocks.
1069         continue;  // FIXME: Enable.
1070
1071         DEBUG(dbgs() << "Folded branch: " << *BI);
1072         BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1073         BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1074         DeadSucc->removePredecessor(BI->getParent(), true);
1075         Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1076         LPM->deleteSimpleAnalysisValue(BI, L);
1077         BI->eraseFromParent();
1078         RemoveFromWorklist(BI, Worklist);
1079         ++NumSimplify;
1080
1081         RemoveBlockIfDead(DeadSucc, Worklist, L);
1082       }
1083       continue;
1084     }
1085   }
1086 }