[RS4GC] Use an value handle to help isolate errors quickly
[oota-llvm.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/Hashing.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallBitVector.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include <algorithm>
79 using namespace llvm;
80
81 #define DEBUG_TYPE "loop-reduce"
82
83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
84 /// bail out. This threshold is far beyond the number of users that LSR can
85 /// conceivably solve, so it should not affect generated code, but catches the
86 /// worst cases before LSR burns too much compile time and stack space.
87 static const unsigned MaxIVUsers = 200;
88
89 // Temporary flag to cleanup congruent phis after LSR phi expansion.
90 // It's currently disabled until we can determine whether it's truly useful or
91 // not. The flag should be removed after the v3.0 release.
92 // This is now needed for ivchains.
93 static cl::opt<bool> EnablePhiElim(
94   "enable-lsr-phielim", cl::Hidden, cl::init(true),
95   cl::desc("Enable LSR phi elimination"));
96
97 #ifndef NDEBUG
98 // Stress test IV chain generation.
99 static cl::opt<bool> StressIVChain(
100   "stress-ivchain", cl::Hidden, cl::init(false),
101   cl::desc("Stress test LSR IV chains"));
102 #else
103 static bool StressIVChain = false;
104 #endif
105
106 namespace {
107
108 struct MemAccessTy {
109   /// Used in situations where the accessed memory type is unknown.
110   static const unsigned UnknownAddressSpace = ~0u;
111
112   Type *MemTy;
113   unsigned AddrSpace;
114
115   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
116
117   MemAccessTy(Type *Ty, unsigned AS) :
118     MemTy(Ty), AddrSpace(AS) {}
119
120   bool operator==(MemAccessTy Other) const {
121     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
122   }
123
124   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
125
126   static MemAccessTy getUnknown(LLVMContext &Ctx) {
127     return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
128   }
129 };
130
131 /// This class holds data which is used to order reuse candidates.
132 class RegSortData {
133 public:
134   /// This represents the set of LSRUse indices which reference
135   /// a particular register.
136   SmallBitVector UsedByIndices;
137
138   void print(raw_ostream &OS) const;
139   void dump() const;
140 };
141
142 }
143
144 void RegSortData::print(raw_ostream &OS) const {
145   OS << "[NumUses=" << UsedByIndices.count() << ']';
146 }
147
148 LLVM_DUMP_METHOD
149 void RegSortData::dump() const {
150   print(errs()); errs() << '\n';
151 }
152
153 namespace {
154
155 /// Map register candidates to information about how they are used.
156 class RegUseTracker {
157   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
158
159   RegUsesTy RegUsesMap;
160   SmallVector<const SCEV *, 16> RegSequence;
161
162 public:
163   void countRegister(const SCEV *Reg, size_t LUIdx);
164   void dropRegister(const SCEV *Reg, size_t LUIdx);
165   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
166
167   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
168
169   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
170
171   void clear();
172
173   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
174   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
175   iterator begin() { return RegSequence.begin(); }
176   iterator end()   { return RegSequence.end(); }
177   const_iterator begin() const { return RegSequence.begin(); }
178   const_iterator end() const   { return RegSequence.end(); }
179 };
180
181 }
182
183 void
184 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
185   std::pair<RegUsesTy::iterator, bool> Pair =
186     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
187   RegSortData &RSD = Pair.first->second;
188   if (Pair.second)
189     RegSequence.push_back(Reg);
190   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
191   RSD.UsedByIndices.set(LUIdx);
192 }
193
194 void
195 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
196   RegUsesTy::iterator It = RegUsesMap.find(Reg);
197   assert(It != RegUsesMap.end());
198   RegSortData &RSD = It->second;
199   assert(RSD.UsedByIndices.size() > LUIdx);
200   RSD.UsedByIndices.reset(LUIdx);
201 }
202
203 void
204 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
205   assert(LUIdx <= LastLUIdx);
206
207   // Update RegUses. The data structure is not optimized for this purpose;
208   // we must iterate through it and update each of the bit vectors.
209   for (auto &Pair : RegUsesMap) {
210     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
211     if (LUIdx < UsedByIndices.size())
212       UsedByIndices[LUIdx] =
213         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
214     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
215   }
216 }
217
218 bool
219 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
220   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
221   if (I == RegUsesMap.end())
222     return false;
223   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
224   int i = UsedByIndices.find_first();
225   if (i == -1) return false;
226   if ((size_t)i != LUIdx) return true;
227   return UsedByIndices.find_next(i) != -1;
228 }
229
230 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
231   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
232   assert(I != RegUsesMap.end() && "Unknown register!");
233   return I->second.UsedByIndices;
234 }
235
236 void RegUseTracker::clear() {
237   RegUsesMap.clear();
238   RegSequence.clear();
239 }
240
241 namespace {
242
243 /// This class holds information that describes a formula for computing
244 /// satisfying a use. It may include broken-out immediates and scaled registers.
245 struct Formula {
246   /// Global base address used for complex addressing.
247   GlobalValue *BaseGV;
248
249   /// Base offset for complex addressing.
250   int64_t BaseOffset;
251
252   /// Whether any complex addressing has a base register.
253   bool HasBaseReg;
254
255   /// The scale of any complex addressing.
256   int64_t Scale;
257
258   /// The list of "base" registers for this use. When this is non-empty. The
259   /// canonical representation of a formula is
260   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
261   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
262   /// #1 enforces that the scaled register is always used when at least two
263   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
264   /// #2 enforces that 1 * reg is reg.
265   /// This invariant can be temporarly broken while building a formula.
266   /// However, every formula inserted into the LSRInstance must be in canonical
267   /// form.
268   SmallVector<const SCEV *, 4> BaseRegs;
269
270   /// The 'scaled' register for this use. This should be non-null when Scale is
271   /// not zero.
272   const SCEV *ScaledReg;
273
274   /// An additional constant offset which added near the use. This requires a
275   /// temporary register, but the offset itself can live in an add immediate
276   /// field rather than a register.
277   int64_t UnfoldedOffset;
278
279   Formula()
280       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
281         ScaledReg(nullptr), UnfoldedOffset(0) {}
282
283   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
284
285   bool isCanonical() const;
286
287   void canonicalize();
288
289   bool unscale();
290
291   size_t getNumRegs() const;
292   Type *getType() const;
293
294   void deleteBaseReg(const SCEV *&S);
295
296   bool referencesReg(const SCEV *S) const;
297   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
298                                   const RegUseTracker &RegUses) const;
299
300   void print(raw_ostream &OS) const;
301   void dump() const;
302 };
303
304 }
305
306 /// Recursion helper for initialMatch.
307 static void DoInitialMatch(const SCEV *S, Loop *L,
308                            SmallVectorImpl<const SCEV *> &Good,
309                            SmallVectorImpl<const SCEV *> &Bad,
310                            ScalarEvolution &SE) {
311   // Collect expressions which properly dominate the loop header.
312   if (SE.properlyDominates(S, L->getHeader())) {
313     Good.push_back(S);
314     return;
315   }
316
317   // Look at add operands.
318   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
319     for (const SCEV *S : Add->operands())
320       DoInitialMatch(S, L, Good, Bad, SE);
321     return;
322   }
323
324   // Look at addrec operands.
325   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
326     if (!AR->getStart()->isZero()) {
327       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
328       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
329                                       AR->getStepRecurrence(SE),
330                                       // FIXME: AR->getNoWrapFlags()
331                                       AR->getLoop(), SCEV::FlagAnyWrap),
332                      L, Good, Bad, SE);
333       return;
334     }
335
336   // Handle a multiplication by -1 (negation) if it didn't fold.
337   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
338     if (Mul->getOperand(0)->isAllOnesValue()) {
339       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
340       const SCEV *NewMul = SE.getMulExpr(Ops);
341
342       SmallVector<const SCEV *, 4> MyGood;
343       SmallVector<const SCEV *, 4> MyBad;
344       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
345       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
346         SE.getEffectiveSCEVType(NewMul->getType())));
347       for (const SCEV *S : MyGood)
348         Good.push_back(SE.getMulExpr(NegOne, S));
349       for (const SCEV *S : MyBad)
350         Bad.push_back(SE.getMulExpr(NegOne, S));
351       return;
352     }
353
354   // Ok, we can't do anything interesting. Just stuff the whole thing into a
355   // register and hope for the best.
356   Bad.push_back(S);
357 }
358
359 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
360 /// all loop-invariant and loop-computable values in a single base register.
361 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
362   SmallVector<const SCEV *, 4> Good;
363   SmallVector<const SCEV *, 4> Bad;
364   DoInitialMatch(S, L, Good, Bad, SE);
365   if (!Good.empty()) {
366     const SCEV *Sum = SE.getAddExpr(Good);
367     if (!Sum->isZero())
368       BaseRegs.push_back(Sum);
369     HasBaseReg = true;
370   }
371   if (!Bad.empty()) {
372     const SCEV *Sum = SE.getAddExpr(Bad);
373     if (!Sum->isZero())
374       BaseRegs.push_back(Sum);
375     HasBaseReg = true;
376   }
377   canonicalize();
378 }
379
380 /// \brief Check whether or not this formula statisfies the canonical
381 /// representation.
382 /// \see Formula::BaseRegs.
383 bool Formula::isCanonical() const {
384   if (ScaledReg)
385     return Scale != 1 || !BaseRegs.empty();
386   return BaseRegs.size() <= 1;
387 }
388
389 /// \brief Helper method to morph a formula into its canonical representation.
390 /// \see Formula::BaseRegs.
391 /// Every formula having more than one base register, must use the ScaledReg
392 /// field. Otherwise, we would have to do special cases everywhere in LSR
393 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
394 /// On the other hand, 1*reg should be canonicalized into reg.
395 void Formula::canonicalize() {
396   if (isCanonical())
397     return;
398   // So far we did not need this case. This is easy to implement but it is
399   // useless to maintain dead code. Beside it could hurt compile time.
400   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
401   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
402   ScaledReg = BaseRegs.back();
403   BaseRegs.pop_back();
404   Scale = 1;
405   size_t BaseRegsSize = BaseRegs.size();
406   size_t Try = 0;
407   // If ScaledReg is an invariant, try to find a variant expression.
408   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
409     std::swap(ScaledReg, BaseRegs[Try++]);
410 }
411
412 /// \brief Get rid of the scale in the formula.
413 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
414 /// \return true if it was possible to get rid of the scale, false otherwise.
415 /// \note After this operation the formula may not be in the canonical form.
416 bool Formula::unscale() {
417   if (Scale != 1)
418     return false;
419   Scale = 0;
420   BaseRegs.push_back(ScaledReg);
421   ScaledReg = nullptr;
422   return true;
423 }
424
425 /// Return the total number of register operands used by this formula. This does
426 /// not include register uses implied by non-constant addrec strides.
427 size_t Formula::getNumRegs() const {
428   return !!ScaledReg + BaseRegs.size();
429 }
430
431 /// Return the type of this formula, if it has one, or null otherwise. This type
432 /// is meaningless except for the bit size.
433 Type *Formula::getType() const {
434   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
435          ScaledReg ? ScaledReg->getType() :
436          BaseGV ? BaseGV->getType() :
437          nullptr;
438 }
439
440 /// Delete the given base reg from the BaseRegs list.
441 void Formula::deleteBaseReg(const SCEV *&S) {
442   if (&S != &BaseRegs.back())
443     std::swap(S, BaseRegs.back());
444   BaseRegs.pop_back();
445 }
446
447 /// Test if this formula references the given register.
448 bool Formula::referencesReg(const SCEV *S) const {
449   return S == ScaledReg ||
450          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
451 }
452
453 /// Test whether this formula uses registers which are used by uses other than
454 /// the use with the given index.
455 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
456                                          const RegUseTracker &RegUses) const {
457   if (ScaledReg)
458     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
459       return true;
460   for (const SCEV *BaseReg : BaseRegs)
461     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
462       return true;
463   return false;
464 }
465
466 void Formula::print(raw_ostream &OS) const {
467   bool First = true;
468   if (BaseGV) {
469     if (!First) OS << " + "; else First = false;
470     BaseGV->printAsOperand(OS, /*PrintType=*/false);
471   }
472   if (BaseOffset != 0) {
473     if (!First) OS << " + "; else First = false;
474     OS << BaseOffset;
475   }
476   for (const SCEV *BaseReg : BaseRegs) {
477     if (!First) OS << " + "; else First = false;
478     OS << "reg(" << *BaseReg << ')';
479   }
480   if (HasBaseReg && BaseRegs.empty()) {
481     if (!First) OS << " + "; else First = false;
482     OS << "**error: HasBaseReg**";
483   } else if (!HasBaseReg && !BaseRegs.empty()) {
484     if (!First) OS << " + "; else First = false;
485     OS << "**error: !HasBaseReg**";
486   }
487   if (Scale != 0) {
488     if (!First) OS << " + "; else First = false;
489     OS << Scale << "*reg(";
490     if (ScaledReg)
491       OS << *ScaledReg;
492     else
493       OS << "<unknown>";
494     OS << ')';
495   }
496   if (UnfoldedOffset != 0) {
497     if (!First) OS << " + ";
498     OS << "imm(" << UnfoldedOffset << ')';
499   }
500 }
501
502 LLVM_DUMP_METHOD
503 void Formula::dump() const {
504   print(errs()); errs() << '\n';
505 }
506
507 /// Return true if the given addrec can be sign-extended without changing its
508 /// value.
509 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
510   Type *WideTy =
511     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
512   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
513 }
514
515 /// Return true if the given add can be sign-extended without changing its
516 /// value.
517 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
518   Type *WideTy =
519     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
520   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
521 }
522
523 /// Return true if the given mul can be sign-extended without changing its
524 /// value.
525 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
526   Type *WideTy =
527     IntegerType::get(SE.getContext(),
528                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
529   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
530 }
531
532 /// Return an expression for LHS /s RHS, if it can be determined and if the
533 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
534 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
535 /// the multiplication may overflow, which is useful when the result will be
536 /// used in a context where the most significant bits are ignored.
537 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
538                                 ScalarEvolution &SE,
539                                 bool IgnoreSignificantBits = false) {
540   // Handle the trivial case, which works for any SCEV type.
541   if (LHS == RHS)
542     return SE.getConstant(LHS->getType(), 1);
543
544   // Handle a few RHS special cases.
545   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
546   if (RC) {
547     const APInt &RA = RC->getAPInt();
548     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
549     // some folding.
550     if (RA.isAllOnesValue())
551       return SE.getMulExpr(LHS, RC);
552     // Handle x /s 1 as x.
553     if (RA == 1)
554       return LHS;
555   }
556
557   // Check for a division of a constant by a constant.
558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
559     if (!RC)
560       return nullptr;
561     const APInt &LA = C->getAPInt();
562     const APInt &RA = RC->getAPInt();
563     if (LA.srem(RA) != 0)
564       return nullptr;
565     return SE.getConstant(LA.sdiv(RA));
566   }
567
568   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
569   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
570     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
571       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
572                                       IgnoreSignificantBits);
573       if (!Step) return nullptr;
574       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
575                                        IgnoreSignificantBits);
576       if (!Start) return nullptr;
577       // FlagNW is independent of the start value, step direction, and is
578       // preserved with smaller magnitude steps.
579       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
580       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
581     }
582     return nullptr;
583   }
584
585   // Distribute the sdiv over add operands, if the add doesn't overflow.
586   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
587     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
588       SmallVector<const SCEV *, 8> Ops;
589       for (const SCEV *S : Add->operands()) {
590         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
591         if (!Op) return nullptr;
592         Ops.push_back(Op);
593       }
594       return SE.getAddExpr(Ops);
595     }
596     return nullptr;
597   }
598
599   // Check for a multiply operand that we can pull RHS out of.
600   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
601     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
602       SmallVector<const SCEV *, 4> Ops;
603       bool Found = false;
604       for (const SCEV *S : Mul->operands()) {
605         if (!Found)
606           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
607                                            IgnoreSignificantBits)) {
608             S = Q;
609             Found = true;
610           }
611         Ops.push_back(S);
612       }
613       return Found ? SE.getMulExpr(Ops) : nullptr;
614     }
615     return nullptr;
616   }
617
618   // Otherwise we don't know.
619   return nullptr;
620 }
621
622 /// If S involves the addition of a constant integer value, return that integer
623 /// value, and mutate S to point to a new SCEV with that value excluded.
624 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
625   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
626     if (C->getAPInt().getMinSignedBits() <= 64) {
627       S = SE.getConstant(C->getType(), 0);
628       return C->getValue()->getSExtValue();
629     }
630   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
631     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
632     int64_t Result = ExtractImmediate(NewOps.front(), SE);
633     if (Result != 0)
634       S = SE.getAddExpr(NewOps);
635     return Result;
636   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
637     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
638     int64_t Result = ExtractImmediate(NewOps.front(), SE);
639     if (Result != 0)
640       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
641                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
642                            SCEV::FlagAnyWrap);
643     return Result;
644   }
645   return 0;
646 }
647
648 /// If S involves the addition of a GlobalValue address, return that symbol, and
649 /// mutate S to point to a new SCEV with that value excluded.
650 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
651   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
652     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
653       S = SE.getConstant(GV->getType(), 0);
654       return GV;
655     }
656   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
657     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
658     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
659     if (Result)
660       S = SE.getAddExpr(NewOps);
661     return Result;
662   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
663     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
664     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
665     if (Result)
666       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
667                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
668                            SCEV::FlagAnyWrap);
669     return Result;
670   }
671   return nullptr;
672 }
673
674 /// Returns true if the specified instruction is using the specified value as an
675 /// address.
676 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
677   bool isAddress = isa<LoadInst>(Inst);
678   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
679     if (SI->getOperand(1) == OperandVal)
680       isAddress = true;
681   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
682     // Addressing modes can also be folded into prefetches and a variety
683     // of intrinsics.
684     switch (II->getIntrinsicID()) {
685       default: break;
686       case Intrinsic::prefetch:
687       case Intrinsic::x86_sse_storeu_ps:
688       case Intrinsic::x86_sse2_storeu_pd:
689       case Intrinsic::x86_sse2_storeu_dq:
690       case Intrinsic::x86_sse2_storel_dq:
691         if (II->getArgOperand(0) == OperandVal)
692           isAddress = true;
693         break;
694     }
695   }
696   return isAddress;
697 }
698
699 /// Return the type of the memory being accessed.
700 static MemAccessTy getAccessType(const Instruction *Inst) {
701   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
702   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
703     AccessTy.MemTy = SI->getOperand(0)->getType();
704     AccessTy.AddrSpace = SI->getPointerAddressSpace();
705   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
706     AccessTy.AddrSpace = LI->getPointerAddressSpace();
707   } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
708     // Addressing modes can also be folded into prefetches and a variety
709     // of intrinsics.
710     switch (II->getIntrinsicID()) {
711     default: break;
712     case Intrinsic::x86_sse_storeu_ps:
713     case Intrinsic::x86_sse2_storeu_pd:
714     case Intrinsic::x86_sse2_storeu_dq:
715     case Intrinsic::x86_sse2_storel_dq:
716       AccessTy.MemTy = II->getArgOperand(0)->getType();
717       break;
718     }
719   }
720
721   // All pointers have the same requirements, so canonicalize them to an
722   // arbitrary pointer type to minimize variation.
723   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
724     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
725                                       PTy->getAddressSpace());
726
727   return AccessTy;
728 }
729
730 /// Return true if this AddRec is already a phi in its loop.
731 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
732   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
733        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
734     if (SE.isSCEVable(PN->getType()) &&
735         (SE.getEffectiveSCEVType(PN->getType()) ==
736          SE.getEffectiveSCEVType(AR->getType())) &&
737         SE.getSCEV(PN) == AR)
738       return true;
739   }
740   return false;
741 }
742
743 /// Check if expanding this expression is likely to incur significant cost. This
744 /// is tricky because SCEV doesn't track which expressions are actually computed
745 /// by the current IR.
746 ///
747 /// We currently allow expansion of IV increments that involve adds,
748 /// multiplication by constants, and AddRecs from existing phis.
749 ///
750 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
751 /// obvious multiple of the UDivExpr.
752 static bool isHighCostExpansion(const SCEV *S,
753                                 SmallPtrSetImpl<const SCEV*> &Processed,
754                                 ScalarEvolution &SE) {
755   // Zero/One operand expressions
756   switch (S->getSCEVType()) {
757   case scUnknown:
758   case scConstant:
759     return false;
760   case scTruncate:
761     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
762                                Processed, SE);
763   case scZeroExtend:
764     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
765                                Processed, SE);
766   case scSignExtend:
767     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
768                                Processed, SE);
769   }
770
771   if (!Processed.insert(S).second)
772     return false;
773
774   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
775     for (const SCEV *S : Add->operands()) {
776       if (isHighCostExpansion(S, Processed, SE))
777         return true;
778     }
779     return false;
780   }
781
782   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
783     if (Mul->getNumOperands() == 2) {
784       // Multiplication by a constant is ok
785       if (isa<SCEVConstant>(Mul->getOperand(0)))
786         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
787
788       // If we have the value of one operand, check if an existing
789       // multiplication already generates this expression.
790       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
791         Value *UVal = U->getValue();
792         for (User *UR : UVal->users()) {
793           // If U is a constant, it may be used by a ConstantExpr.
794           Instruction *UI = dyn_cast<Instruction>(UR);
795           if (UI && UI->getOpcode() == Instruction::Mul &&
796               SE.isSCEVable(UI->getType())) {
797             return SE.getSCEV(UI) == Mul;
798           }
799         }
800       }
801     }
802   }
803
804   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
805     if (isExistingPhi(AR, SE))
806       return false;
807   }
808
809   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
810   return true;
811 }
812
813 /// If any of the instructions is the specified set are trivially dead, delete
814 /// them and see if this makes any of their operands subsequently dead.
815 static bool
816 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
817   bool Changed = false;
818
819   while (!DeadInsts.empty()) {
820     Value *V = DeadInsts.pop_back_val();
821     Instruction *I = dyn_cast_or_null<Instruction>(V);
822
823     if (!I || !isInstructionTriviallyDead(I))
824       continue;
825
826     for (Use &O : I->operands())
827       if (Instruction *U = dyn_cast<Instruction>(O)) {
828         O = nullptr;
829         if (U->use_empty())
830           DeadInsts.emplace_back(U);
831       }
832
833     I->eraseFromParent();
834     Changed = true;
835   }
836
837   return Changed;
838 }
839
840 namespace {
841 class LSRUse;
842 }
843
844 /// \brief Check if the addressing mode defined by \p F is completely
845 /// folded in \p LU at isel time.
846 /// This includes address-mode folding and special icmp tricks.
847 /// This function returns true if \p LU can accommodate what \p F
848 /// defines and up to 1 base + 1 scaled + offset.
849 /// In other words, if \p F has several base registers, this function may
850 /// still return true. Therefore, users still need to account for
851 /// additional base registers and/or unfolded offsets to derive an
852 /// accurate cost model.
853 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
854                                  const LSRUse &LU, const Formula &F);
855 // Get the cost of the scaling factor used in F for LU.
856 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
857                                      const LSRUse &LU, const Formula &F);
858
859 namespace {
860
861 /// This class is used to measure and compare candidate formulae.
862 class Cost {
863   /// TODO: Some of these could be merged. Also, a lexical ordering
864   /// isn't always optimal.
865   unsigned NumRegs;
866   unsigned AddRecCost;
867   unsigned NumIVMuls;
868   unsigned NumBaseAdds;
869   unsigned ImmCost;
870   unsigned SetupCost;
871   unsigned ScaleCost;
872
873 public:
874   Cost()
875     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
876       SetupCost(0), ScaleCost(0) {}
877
878   bool operator<(const Cost &Other) const;
879
880   void Lose();
881
882 #ifndef NDEBUG
883   // Once any of the metrics loses, they must all remain losers.
884   bool isValid() {
885     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
886              | ImmCost | SetupCost | ScaleCost) != ~0u)
887       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
888            & ImmCost & SetupCost & ScaleCost) == ~0u);
889   }
890 #endif
891
892   bool isLoser() {
893     assert(isValid() && "invalid cost");
894     return NumRegs == ~0u;
895   }
896
897   void RateFormula(const TargetTransformInfo &TTI,
898                    const Formula &F,
899                    SmallPtrSetImpl<const SCEV *> &Regs,
900                    const DenseSet<const SCEV *> &VisitedRegs,
901                    const Loop *L,
902                    const SmallVectorImpl<int64_t> &Offsets,
903                    ScalarEvolution &SE, DominatorTree &DT,
904                    const LSRUse &LU,
905                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
906
907   void print(raw_ostream &OS) const;
908   void dump() const;
909
910 private:
911   void RateRegister(const SCEV *Reg,
912                     SmallPtrSetImpl<const SCEV *> &Regs,
913                     const Loop *L,
914                     ScalarEvolution &SE, DominatorTree &DT);
915   void RatePrimaryRegister(const SCEV *Reg,
916                            SmallPtrSetImpl<const SCEV *> &Regs,
917                            const Loop *L,
918                            ScalarEvolution &SE, DominatorTree &DT,
919                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
920 };
921
922 }
923
924 /// Tally up interesting quantities from the given register.
925 void Cost::RateRegister(const SCEV *Reg,
926                         SmallPtrSetImpl<const SCEV *> &Regs,
927                         const Loop *L,
928                         ScalarEvolution &SE, DominatorTree &DT) {
929   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
930     // If this is an addrec for another loop, don't second-guess its addrec phi
931     // nodes. LSR isn't currently smart enough to reason about more than one
932     // loop at a time. LSR has already run on inner loops, will not run on outer
933     // loops, and cannot be expected to change sibling loops.
934     if (AR->getLoop() != L) {
935       // If the AddRec exists, consider it's register free and leave it alone.
936       if (isExistingPhi(AR, SE))
937         return;
938
939       // Otherwise, do not consider this formula at all.
940       Lose();
941       return;
942     }
943     AddRecCost += 1; /// TODO: This should be a function of the stride.
944
945     // Add the step value register, if it needs one.
946     // TODO: The non-affine case isn't precisely modeled here.
947     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
948       if (!Regs.count(AR->getOperand(1))) {
949         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
950         if (isLoser())
951           return;
952       }
953     }
954   }
955   ++NumRegs;
956
957   // Rough heuristic; favor registers which don't require extra setup
958   // instructions in the preheader.
959   if (!isa<SCEVUnknown>(Reg) &&
960       !isa<SCEVConstant>(Reg) &&
961       !(isa<SCEVAddRecExpr>(Reg) &&
962         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
963          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
964     ++SetupCost;
965
966     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
967                  SE.hasComputableLoopEvolution(Reg, L);
968 }
969
970 /// Record this register in the set. If we haven't seen it before, rate
971 /// it. Optional LoserRegs provides a way to declare any formula that refers to
972 /// one of those regs an instant loser.
973 void Cost::RatePrimaryRegister(const SCEV *Reg,
974                                SmallPtrSetImpl<const SCEV *> &Regs,
975                                const Loop *L,
976                                ScalarEvolution &SE, DominatorTree &DT,
977                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
978   if (LoserRegs && LoserRegs->count(Reg)) {
979     Lose();
980     return;
981   }
982   if (Regs.insert(Reg).second) {
983     RateRegister(Reg, Regs, L, SE, DT);
984     if (LoserRegs && isLoser())
985       LoserRegs->insert(Reg);
986   }
987 }
988
989 void Cost::RateFormula(const TargetTransformInfo &TTI,
990                        const Formula &F,
991                        SmallPtrSetImpl<const SCEV *> &Regs,
992                        const DenseSet<const SCEV *> &VisitedRegs,
993                        const Loop *L,
994                        const SmallVectorImpl<int64_t> &Offsets,
995                        ScalarEvolution &SE, DominatorTree &DT,
996                        const LSRUse &LU,
997                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
998   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
999   // Tally up the registers.
1000   if (const SCEV *ScaledReg = F.ScaledReg) {
1001     if (VisitedRegs.count(ScaledReg)) {
1002       Lose();
1003       return;
1004     }
1005     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1006     if (isLoser())
1007       return;
1008   }
1009   for (const SCEV *BaseReg : F.BaseRegs) {
1010     if (VisitedRegs.count(BaseReg)) {
1011       Lose();
1012       return;
1013     }
1014     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1015     if (isLoser())
1016       return;
1017   }
1018
1019   // Determine how many (unfolded) adds we'll need inside the loop.
1020   size_t NumBaseParts = F.getNumRegs();
1021   if (NumBaseParts > 1)
1022     // Do not count the base and a possible second register if the target
1023     // allows to fold 2 registers.
1024     NumBaseAdds +=
1025         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1026   NumBaseAdds += (F.UnfoldedOffset != 0);
1027
1028   // Accumulate non-free scaling amounts.
1029   ScaleCost += getScalingFactorCost(TTI, LU, F);
1030
1031   // Tally up the non-zero immediates.
1032   for (int64_t O : Offsets) {
1033     int64_t Offset = (uint64_t)O + F.BaseOffset;
1034     if (F.BaseGV)
1035       ImmCost += 64; // Handle symbolic values conservatively.
1036                      // TODO: This should probably be the pointer size.
1037     else if (Offset != 0)
1038       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1039   }
1040   assert(isValid() && "invalid cost");
1041 }
1042
1043 /// Set this cost to a losing value.
1044 void Cost::Lose() {
1045   NumRegs = ~0u;
1046   AddRecCost = ~0u;
1047   NumIVMuls = ~0u;
1048   NumBaseAdds = ~0u;
1049   ImmCost = ~0u;
1050   SetupCost = ~0u;
1051   ScaleCost = ~0u;
1052 }
1053
1054 /// Choose the lower cost.
1055 bool Cost::operator<(const Cost &Other) const {
1056   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1057                   ImmCost, SetupCost) <
1058          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1059                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1060                   Other.SetupCost);
1061 }
1062
1063 void Cost::print(raw_ostream &OS) const {
1064   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1065   if (AddRecCost != 0)
1066     OS << ", with addrec cost " << AddRecCost;
1067   if (NumIVMuls != 0)
1068     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1069   if (NumBaseAdds != 0)
1070     OS << ", plus " << NumBaseAdds << " base add"
1071        << (NumBaseAdds == 1 ? "" : "s");
1072   if (ScaleCost != 0)
1073     OS << ", plus " << ScaleCost << " scale cost";
1074   if (ImmCost != 0)
1075     OS << ", plus " << ImmCost << " imm cost";
1076   if (SetupCost != 0)
1077     OS << ", plus " << SetupCost << " setup cost";
1078 }
1079
1080 LLVM_DUMP_METHOD
1081 void Cost::dump() const {
1082   print(errs()); errs() << '\n';
1083 }
1084
1085 namespace {
1086
1087 /// An operand value in an instruction which is to be replaced with some
1088 /// equivalent, possibly strength-reduced, replacement.
1089 struct LSRFixup {
1090   /// The instruction which will be updated.
1091   Instruction *UserInst;
1092
1093   /// The operand of the instruction which will be replaced. The operand may be
1094   /// used more than once; every instance will be replaced.
1095   Value *OperandValToReplace;
1096
1097   /// If this user is to use the post-incremented value of an induction
1098   /// variable, this variable is non-null and holds the loop associated with the
1099   /// induction variable.
1100   PostIncLoopSet PostIncLoops;
1101
1102   /// The index of the LSRUse describing the expression which this fixup needs,
1103   /// minus an offset (below).
1104   size_t LUIdx;
1105
1106   /// A constant offset to be added to the LSRUse expression.  This allows
1107   /// multiple fixups to share the same LSRUse with different offsets, for
1108   /// example in an unrolled loop.
1109   int64_t Offset;
1110
1111   bool isUseFullyOutsideLoop(const Loop *L) const;
1112
1113   LSRFixup();
1114
1115   void print(raw_ostream &OS) const;
1116   void dump() const;
1117 };
1118
1119 }
1120
1121 LSRFixup::LSRFixup()
1122   : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
1123     Offset(0) {}
1124
1125 /// Test whether this fixup always uses its value outside of the given loop.
1126 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1127   // PHI nodes use their value in their incoming blocks.
1128   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1129     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1130       if (PN->getIncomingValue(i) == OperandValToReplace &&
1131           L->contains(PN->getIncomingBlock(i)))
1132         return false;
1133     return true;
1134   }
1135
1136   return !L->contains(UserInst);
1137 }
1138
1139 void LSRFixup::print(raw_ostream &OS) const {
1140   OS << "UserInst=";
1141   // Store is common and interesting enough to be worth special-casing.
1142   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1143     OS << "store ";
1144     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1145   } else if (UserInst->getType()->isVoidTy())
1146     OS << UserInst->getOpcodeName();
1147   else
1148     UserInst->printAsOperand(OS, /*PrintType=*/false);
1149
1150   OS << ", OperandValToReplace=";
1151   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1152
1153   for (const Loop *PIL : PostIncLoops) {
1154     OS << ", PostIncLoop=";
1155     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1156   }
1157
1158   if (LUIdx != ~size_t(0))
1159     OS << ", LUIdx=" << LUIdx;
1160
1161   if (Offset != 0)
1162     OS << ", Offset=" << Offset;
1163 }
1164
1165 LLVM_DUMP_METHOD
1166 void LSRFixup::dump() const {
1167   print(errs()); errs() << '\n';
1168 }
1169
1170 namespace {
1171
1172 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1173 /// SmallVectors of const SCEV*.
1174 struct UniquifierDenseMapInfo {
1175   static SmallVector<const SCEV *, 4> getEmptyKey() {
1176     SmallVector<const SCEV *, 4>  V;
1177     V.push_back(reinterpret_cast<const SCEV *>(-1));
1178     return V;
1179   }
1180
1181   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1182     SmallVector<const SCEV *, 4> V;
1183     V.push_back(reinterpret_cast<const SCEV *>(-2));
1184     return V;
1185   }
1186
1187   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1188     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1189   }
1190
1191   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1192                       const SmallVector<const SCEV *, 4> &RHS) {
1193     return LHS == RHS;
1194   }
1195 };
1196
1197 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1198 /// as uses invented by LSR itself. It includes information about what kinds of
1199 /// things can be folded into the user, information about the user itself, and
1200 /// information about how the use may be satisfied.  TODO: Represent multiple
1201 /// users of the same expression in common?
1202 class LSRUse {
1203   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1204
1205 public:
1206   /// An enum for a kind of use, indicating what types of scaled and immediate
1207   /// operands it might support.
1208   enum KindType {
1209     Basic,   ///< A normal use, with no folding.
1210     Special, ///< A special case of basic, allowing -1 scales.
1211     Address, ///< An address use; folding according to TargetLowering
1212     ICmpZero ///< An equality icmp with both operands folded into one.
1213     // TODO: Add a generic icmp too?
1214   };
1215
1216   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1217
1218   KindType Kind;
1219   MemAccessTy AccessTy;
1220
1221   SmallVector<int64_t, 8> Offsets;
1222   int64_t MinOffset;
1223   int64_t MaxOffset;
1224
1225   /// This records whether all of the fixups using this LSRUse are outside of
1226   /// the loop, in which case some special-case heuristics may be used.
1227   bool AllFixupsOutsideLoop;
1228
1229   /// RigidFormula is set to true to guarantee that this use will be associated
1230   /// with a single formula--the one that initially matched. Some SCEV
1231   /// expressions cannot be expanded. This allows LSR to consider the registers
1232   /// used by those expressions without the need to expand them later after
1233   /// changing the formula.
1234   bool RigidFormula;
1235
1236   /// This records the widest use type for any fixup using this
1237   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1238   /// fixup widths to be equivalent, because the narrower one may be relying on
1239   /// the implicit truncation to truncate away bogus bits.
1240   Type *WidestFixupType;
1241
1242   /// A list of ways to build a value that can satisfy this user.  After the
1243   /// list is populated, one of these is selected heuristically and used to
1244   /// formulate a replacement for OperandValToReplace in UserInst.
1245   SmallVector<Formula, 12> Formulae;
1246
1247   /// The set of register candidates used by all formulae in this LSRUse.
1248   SmallPtrSet<const SCEV *, 4> Regs;
1249
1250   LSRUse(KindType K, MemAccessTy AT)
1251       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1252         AllFixupsOutsideLoop(true), RigidFormula(false),
1253         WidestFixupType(nullptr) {}
1254
1255   bool HasFormulaWithSameRegs(const Formula &F) const;
1256   bool InsertFormula(const Formula &F);
1257   void DeleteFormula(Formula &F);
1258   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1259
1260   void print(raw_ostream &OS) const;
1261   void dump() const;
1262 };
1263
1264 }
1265
1266 /// Test whether this use as a formula which has the same registers as the given
1267 /// formula.
1268 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1269   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1270   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1271   // Unstable sort by host order ok, because this is only used for uniquifying.
1272   std::sort(Key.begin(), Key.end());
1273   return Uniquifier.count(Key);
1274 }
1275
1276 /// If the given formula has not yet been inserted, add it to the list, and
1277 /// return true. Return false otherwise.  The formula must be in canonical form.
1278 bool LSRUse::InsertFormula(const Formula &F) {
1279   assert(F.isCanonical() && "Invalid canonical representation");
1280
1281   if (!Formulae.empty() && RigidFormula)
1282     return false;
1283
1284   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1285   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1286   // Unstable sort by host order ok, because this is only used for uniquifying.
1287   std::sort(Key.begin(), Key.end());
1288
1289   if (!Uniquifier.insert(Key).second)
1290     return false;
1291
1292   // Using a register to hold the value of 0 is not profitable.
1293   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1294          "Zero allocated in a scaled register!");
1295 #ifndef NDEBUG
1296   for (const SCEV *BaseReg : F.BaseRegs)
1297     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1298 #endif
1299
1300   // Add the formula to the list.
1301   Formulae.push_back(F);
1302
1303   // Record registers now being used by this use.
1304   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1305   if (F.ScaledReg)
1306     Regs.insert(F.ScaledReg);
1307
1308   return true;
1309 }
1310
1311 /// Remove the given formula from this use's list.
1312 void LSRUse::DeleteFormula(Formula &F) {
1313   if (&F != &Formulae.back())
1314     std::swap(F, Formulae.back());
1315   Formulae.pop_back();
1316 }
1317
1318 /// Recompute the Regs field, and update RegUses.
1319 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1320   // Now that we've filtered out some formulae, recompute the Regs set.
1321   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1322   Regs.clear();
1323   for (const Formula &F : Formulae) {
1324     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1325     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1326   }
1327
1328   // Update the RegTracker.
1329   for (const SCEV *S : OldRegs)
1330     if (!Regs.count(S))
1331       RegUses.dropRegister(S, LUIdx);
1332 }
1333
1334 void LSRUse::print(raw_ostream &OS) const {
1335   OS << "LSR Use: Kind=";
1336   switch (Kind) {
1337   case Basic:    OS << "Basic"; break;
1338   case Special:  OS << "Special"; break;
1339   case ICmpZero: OS << "ICmpZero"; break;
1340   case Address:
1341     OS << "Address of ";
1342     if (AccessTy.MemTy->isPointerTy())
1343       OS << "pointer"; // the full pointer type could be really verbose
1344     else {
1345       OS << *AccessTy.MemTy;
1346     }
1347
1348     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1349   }
1350
1351   OS << ", Offsets={";
1352   bool NeedComma = false;
1353   for (int64_t O : Offsets) {
1354     if (NeedComma) OS << ',';
1355     OS << O;
1356     NeedComma = true;
1357   }
1358   OS << '}';
1359
1360   if (AllFixupsOutsideLoop)
1361     OS << ", all-fixups-outside-loop";
1362
1363   if (WidestFixupType)
1364     OS << ", widest fixup type: " << *WidestFixupType;
1365 }
1366
1367 LLVM_DUMP_METHOD
1368 void LSRUse::dump() const {
1369   print(errs()); errs() << '\n';
1370 }
1371
1372 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1373                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1374                                  GlobalValue *BaseGV, int64_t BaseOffset,
1375                                  bool HasBaseReg, int64_t Scale) {
1376   switch (Kind) {
1377   case LSRUse::Address:
1378     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1379                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1380
1381   case LSRUse::ICmpZero:
1382     // There's not even a target hook for querying whether it would be legal to
1383     // fold a GV into an ICmp.
1384     if (BaseGV)
1385       return false;
1386
1387     // ICmp only has two operands; don't allow more than two non-trivial parts.
1388     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1389       return false;
1390
1391     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1392     // putting the scaled register in the other operand of the icmp.
1393     if (Scale != 0 && Scale != -1)
1394       return false;
1395
1396     // If we have low-level target information, ask the target if it can fold an
1397     // integer immediate on an icmp.
1398     if (BaseOffset != 0) {
1399       // We have one of:
1400       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1401       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1402       // Offs is the ICmp immediate.
1403       if (Scale == 0)
1404         // The cast does the right thing with INT64_MIN.
1405         BaseOffset = -(uint64_t)BaseOffset;
1406       return TTI.isLegalICmpImmediate(BaseOffset);
1407     }
1408
1409     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1410     return true;
1411
1412   case LSRUse::Basic:
1413     // Only handle single-register values.
1414     return !BaseGV && Scale == 0 && BaseOffset == 0;
1415
1416   case LSRUse::Special:
1417     // Special case Basic to handle -1 scales.
1418     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1419   }
1420
1421   llvm_unreachable("Invalid LSRUse Kind!");
1422 }
1423
1424 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1425                                  int64_t MinOffset, int64_t MaxOffset,
1426                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1427                                  GlobalValue *BaseGV, int64_t BaseOffset,
1428                                  bool HasBaseReg, int64_t Scale) {
1429   // Check for overflow.
1430   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1431       (MinOffset > 0))
1432     return false;
1433   MinOffset = (uint64_t)BaseOffset + MinOffset;
1434   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1435       (MaxOffset > 0))
1436     return false;
1437   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1438
1439   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1440                               HasBaseReg, Scale) &&
1441          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1442                               HasBaseReg, Scale);
1443 }
1444
1445 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1446                                  int64_t MinOffset, int64_t MaxOffset,
1447                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1448                                  const Formula &F) {
1449   // For the purpose of isAMCompletelyFolded either having a canonical formula
1450   // or a scale not equal to zero is correct.
1451   // Problems may arise from non canonical formulae having a scale == 0.
1452   // Strictly speaking it would best to just rely on canonical formulae.
1453   // However, when we generate the scaled formulae, we first check that the
1454   // scaling factor is profitable before computing the actual ScaledReg for
1455   // compile time sake.
1456   assert((F.isCanonical() || F.Scale != 0));
1457   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1458                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1459 }
1460
1461 /// Test whether we know how to expand the current formula.
1462 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1463                        int64_t MaxOffset, LSRUse::KindType Kind,
1464                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1465                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1466   // We know how to expand completely foldable formulae.
1467   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1468                               BaseOffset, HasBaseReg, Scale) ||
1469          // Or formulae that use a base register produced by a sum of base
1470          // registers.
1471          (Scale == 1 &&
1472           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1473                                BaseGV, BaseOffset, true, 0));
1474 }
1475
1476 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1477                        int64_t MaxOffset, LSRUse::KindType Kind,
1478                        MemAccessTy AccessTy, const Formula &F) {
1479   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1480                     F.BaseOffset, F.HasBaseReg, F.Scale);
1481 }
1482
1483 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1484                                  const LSRUse &LU, const Formula &F) {
1485   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1486                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1487                               F.Scale);
1488 }
1489
1490 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1491                                      const LSRUse &LU, const Formula &F) {
1492   if (!F.Scale)
1493     return 0;
1494
1495   // If the use is not completely folded in that instruction, we will have to
1496   // pay an extra cost only for scale != 1.
1497   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1498                             LU.AccessTy, F))
1499     return F.Scale != 1;
1500
1501   switch (LU.Kind) {
1502   case LSRUse::Address: {
1503     // Check the scaling factor cost with both the min and max offsets.
1504     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1505         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1506         F.Scale, LU.AccessTy.AddrSpace);
1507     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1508         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1509         F.Scale, LU.AccessTy.AddrSpace);
1510
1511     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1512            "Legal addressing mode has an illegal cost!");
1513     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1514   }
1515   case LSRUse::ICmpZero:
1516   case LSRUse::Basic:
1517   case LSRUse::Special:
1518     // The use is completely folded, i.e., everything is folded into the
1519     // instruction.
1520     return 0;
1521   }
1522
1523   llvm_unreachable("Invalid LSRUse Kind!");
1524 }
1525
1526 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1527                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1528                              GlobalValue *BaseGV, int64_t BaseOffset,
1529                              bool HasBaseReg) {
1530   // Fast-path: zero is always foldable.
1531   if (BaseOffset == 0 && !BaseGV) return true;
1532
1533   // Conservatively, create an address with an immediate and a
1534   // base and a scale.
1535   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1536
1537   // Canonicalize a scale of 1 to a base register if the formula doesn't
1538   // already have a base register.
1539   if (!HasBaseReg && Scale == 1) {
1540     Scale = 0;
1541     HasBaseReg = true;
1542   }
1543
1544   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1545                               HasBaseReg, Scale);
1546 }
1547
1548 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1549                              ScalarEvolution &SE, int64_t MinOffset,
1550                              int64_t MaxOffset, LSRUse::KindType Kind,
1551                              MemAccessTy AccessTy, const SCEV *S,
1552                              bool HasBaseReg) {
1553   // Fast-path: zero is always foldable.
1554   if (S->isZero()) return true;
1555
1556   // Conservatively, create an address with an immediate and a
1557   // base and a scale.
1558   int64_t BaseOffset = ExtractImmediate(S, SE);
1559   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1560
1561   // If there's anything else involved, it's not foldable.
1562   if (!S->isZero()) return false;
1563
1564   // Fast-path: zero is always foldable.
1565   if (BaseOffset == 0 && !BaseGV) return true;
1566
1567   // Conservatively, create an address with an immediate and a
1568   // base and a scale.
1569   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1570
1571   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1572                               BaseOffset, HasBaseReg, Scale);
1573 }
1574
1575 namespace {
1576
1577 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1578 /// an expression that computes the IV it uses from the IV used by the previous
1579 /// link in the Chain.
1580 ///
1581 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1582 /// original IVOperand. The head of the chain's IVOperand is only valid during
1583 /// chain collection, before LSR replaces IV users. During chain generation,
1584 /// IncExpr can be used to find the new IVOperand that computes the same
1585 /// expression.
1586 struct IVInc {
1587   Instruction *UserInst;
1588   Value* IVOperand;
1589   const SCEV *IncExpr;
1590
1591   IVInc(Instruction *U, Value *O, const SCEV *E):
1592     UserInst(U), IVOperand(O), IncExpr(E) {}
1593 };
1594
1595 // The list of IV increments in program order.  We typically add the head of a
1596 // chain without finding subsequent links.
1597 struct IVChain {
1598   SmallVector<IVInc,1> Incs;
1599   const SCEV *ExprBase;
1600
1601   IVChain() : ExprBase(nullptr) {}
1602
1603   IVChain(const IVInc &Head, const SCEV *Base)
1604     : Incs(1, Head), ExprBase(Base) {}
1605
1606   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1607
1608   // Return the first increment in the chain.
1609   const_iterator begin() const {
1610     assert(!Incs.empty());
1611     return std::next(Incs.begin());
1612   }
1613   const_iterator end() const {
1614     return Incs.end();
1615   }
1616
1617   // Returns true if this chain contains any increments.
1618   bool hasIncs() const { return Incs.size() >= 2; }
1619
1620   // Add an IVInc to the end of this chain.
1621   void add(const IVInc &X) { Incs.push_back(X); }
1622
1623   // Returns the last UserInst in the chain.
1624   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1625
1626   // Returns true if IncExpr can be profitably added to this chain.
1627   bool isProfitableIncrement(const SCEV *OperExpr,
1628                              const SCEV *IncExpr,
1629                              ScalarEvolution&);
1630 };
1631
1632 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1633 /// between FarUsers that definitely cross IV increments and NearUsers that may
1634 /// be used between IV increments.
1635 struct ChainUsers {
1636   SmallPtrSet<Instruction*, 4> FarUsers;
1637   SmallPtrSet<Instruction*, 4> NearUsers;
1638 };
1639
1640 /// This class holds state for the main loop strength reduction logic.
1641 class LSRInstance {
1642   IVUsers &IU;
1643   ScalarEvolution &SE;
1644   DominatorTree &DT;
1645   LoopInfo &LI;
1646   const TargetTransformInfo &TTI;
1647   Loop *const L;
1648   bool Changed;
1649
1650   /// This is the insert position that the current loop's induction variable
1651   /// increment should be placed. In simple loops, this is the latch block's
1652   /// terminator. But in more complicated cases, this is a position which will
1653   /// dominate all the in-loop post-increment users.
1654   Instruction *IVIncInsertPos;
1655
1656   /// Interesting factors between use strides.
1657   SmallSetVector<int64_t, 8> Factors;
1658
1659   /// Interesting use types, to facilitate truncation reuse.
1660   SmallSetVector<Type *, 4> Types;
1661
1662   /// The list of operands which are to be replaced.
1663   SmallVector<LSRFixup, 16> Fixups;
1664
1665   /// The list of interesting uses.
1666   SmallVector<LSRUse, 16> Uses;
1667
1668   /// Track which uses use which register candidates.
1669   RegUseTracker RegUses;
1670
1671   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1672   // have more than a few IV increment chains in a loop. Missing a Chain falls
1673   // back to normal LSR behavior for those uses.
1674   static const unsigned MaxChains = 8;
1675
1676   /// IV users can form a chain of IV increments.
1677   SmallVector<IVChain, MaxChains> IVChainVec;
1678
1679   /// IV users that belong to profitable IVChains.
1680   SmallPtrSet<Use*, MaxChains> IVIncSet;
1681
1682   void OptimizeShadowIV();
1683   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1684   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1685   void OptimizeLoopTermCond();
1686
1687   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1688                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1689   void FinalizeChain(IVChain &Chain);
1690   void CollectChains();
1691   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1692                        SmallVectorImpl<WeakVH> &DeadInsts);
1693
1694   void CollectInterestingTypesAndFactors();
1695   void CollectFixupsAndInitialFormulae();
1696
1697   LSRFixup &getNewFixup() {
1698     Fixups.push_back(LSRFixup());
1699     return Fixups.back();
1700   }
1701
1702   // Support for sharing of LSRUses between LSRFixups.
1703   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1704   UseMapTy UseMap;
1705
1706   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1707                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1708
1709   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1710                                     MemAccessTy AccessTy);
1711
1712   void DeleteUse(LSRUse &LU, size_t LUIdx);
1713
1714   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1715
1716   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1717   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1718   void CountRegisters(const Formula &F, size_t LUIdx);
1719   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1720
1721   void CollectLoopInvariantFixupsAndFormulae();
1722
1723   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1724                               unsigned Depth = 0);
1725
1726   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1727                                   const Formula &Base, unsigned Depth,
1728                                   size_t Idx, bool IsScaledReg = false);
1729   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1730   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1731                                    const Formula &Base, size_t Idx,
1732                                    bool IsScaledReg = false);
1733   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1734   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1735                                    const Formula &Base,
1736                                    const SmallVectorImpl<int64_t> &Worklist,
1737                                    size_t Idx, bool IsScaledReg = false);
1738   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1739   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1740   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1741   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1742   void GenerateCrossUseConstantOffsets();
1743   void GenerateAllReuseFormulae();
1744
1745   void FilterOutUndesirableDedicatedRegisters();
1746
1747   size_t EstimateSearchSpaceComplexity() const;
1748   void NarrowSearchSpaceByDetectingSupersets();
1749   void NarrowSearchSpaceByCollapsingUnrolledCode();
1750   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1751   void NarrowSearchSpaceByPickingWinnerRegs();
1752   void NarrowSearchSpaceUsingHeuristics();
1753
1754   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1755                     Cost &SolutionCost,
1756                     SmallVectorImpl<const Formula *> &Workspace,
1757                     const Cost &CurCost,
1758                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1759                     DenseSet<const SCEV *> &VisitedRegs) const;
1760   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1761
1762   BasicBlock::iterator
1763     HoistInsertPosition(BasicBlock::iterator IP,
1764                         const SmallVectorImpl<Instruction *> &Inputs) const;
1765   BasicBlock::iterator
1766     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1767                                   const LSRFixup &LF,
1768                                   const LSRUse &LU,
1769                                   SCEVExpander &Rewriter) const;
1770
1771   Value *Expand(const LSRFixup &LF,
1772                 const Formula &F,
1773                 BasicBlock::iterator IP,
1774                 SCEVExpander &Rewriter,
1775                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1776   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1777                      const Formula &F,
1778                      SCEVExpander &Rewriter,
1779                      SmallVectorImpl<WeakVH> &DeadInsts) const;
1780   void Rewrite(const LSRFixup &LF,
1781                const Formula &F,
1782                SCEVExpander &Rewriter,
1783                SmallVectorImpl<WeakVH> &DeadInsts) const;
1784   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1785
1786 public:
1787   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1788               LoopInfo &LI, const TargetTransformInfo &TTI);
1789
1790   bool getChanged() const { return Changed; }
1791
1792   void print_factors_and_types(raw_ostream &OS) const;
1793   void print_fixups(raw_ostream &OS) const;
1794   void print_uses(raw_ostream &OS) const;
1795   void print(raw_ostream &OS) const;
1796   void dump() const;
1797 };
1798
1799 }
1800
1801 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1802 /// the cast operation.
1803 void LSRInstance::OptimizeShadowIV() {
1804   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1805   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1806     return;
1807
1808   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1809        UI != E; /* empty */) {
1810     IVUsers::const_iterator CandidateUI = UI;
1811     ++UI;
1812     Instruction *ShadowUse = CandidateUI->getUser();
1813     Type *DestTy = nullptr;
1814     bool IsSigned = false;
1815
1816     /* If shadow use is a int->float cast then insert a second IV
1817        to eliminate this cast.
1818
1819          for (unsigned i = 0; i < n; ++i)
1820            foo((double)i);
1821
1822        is transformed into
1823
1824          double d = 0.0;
1825          for (unsigned i = 0; i < n; ++i, ++d)
1826            foo(d);
1827     */
1828     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1829       IsSigned = false;
1830       DestTy = UCast->getDestTy();
1831     }
1832     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1833       IsSigned = true;
1834       DestTy = SCast->getDestTy();
1835     }
1836     if (!DestTy) continue;
1837
1838     // If target does not support DestTy natively then do not apply
1839     // this transformation.
1840     if (!TTI.isTypeLegal(DestTy)) continue;
1841
1842     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1843     if (!PH) continue;
1844     if (PH->getNumIncomingValues() != 2) continue;
1845
1846     Type *SrcTy = PH->getType();
1847     int Mantissa = DestTy->getFPMantissaWidth();
1848     if (Mantissa == -1) continue;
1849     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1850       continue;
1851
1852     unsigned Entry, Latch;
1853     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1854       Entry = 0;
1855       Latch = 1;
1856     } else {
1857       Entry = 1;
1858       Latch = 0;
1859     }
1860
1861     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1862     if (!Init) continue;
1863     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1864                                         (double)Init->getSExtValue() :
1865                                         (double)Init->getZExtValue());
1866
1867     BinaryOperator *Incr =
1868       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1869     if (!Incr) continue;
1870     if (Incr->getOpcode() != Instruction::Add
1871         && Incr->getOpcode() != Instruction::Sub)
1872       continue;
1873
1874     /* Initialize new IV, double d = 0.0 in above example. */
1875     ConstantInt *C = nullptr;
1876     if (Incr->getOperand(0) == PH)
1877       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1878     else if (Incr->getOperand(1) == PH)
1879       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1880     else
1881       continue;
1882
1883     if (!C) continue;
1884
1885     // Ignore negative constants, as the code below doesn't handle them
1886     // correctly. TODO: Remove this restriction.
1887     if (!C->getValue().isStrictlyPositive()) continue;
1888
1889     /* Add new PHINode. */
1890     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1891
1892     /* create new increment. '++d' in above example. */
1893     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1894     BinaryOperator *NewIncr =
1895       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1896                                Instruction::FAdd : Instruction::FSub,
1897                              NewPH, CFP, "IV.S.next.", Incr);
1898
1899     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1900     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1901
1902     /* Remove cast operation */
1903     ShadowUse->replaceAllUsesWith(NewPH);
1904     ShadowUse->eraseFromParent();
1905     Changed = true;
1906     break;
1907   }
1908 }
1909
1910 /// If Cond has an operand that is an expression of an IV, set the IV user and
1911 /// stride information and return true, otherwise return false.
1912 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1913   for (IVStrideUse &U : IU)
1914     if (U.getUser() == Cond) {
1915       // NOTE: we could handle setcc instructions with multiple uses here, but
1916       // InstCombine does it as well for simple uses, it's not clear that it
1917       // occurs enough in real life to handle.
1918       CondUse = &U;
1919       return true;
1920     }
1921   return false;
1922 }
1923
1924 /// Rewrite the loop's terminating condition if it uses a max computation.
1925 ///
1926 /// This is a narrow solution to a specific, but acute, problem. For loops
1927 /// like this:
1928 ///
1929 ///   i = 0;
1930 ///   do {
1931 ///     p[i] = 0.0;
1932 ///   } while (++i < n);
1933 ///
1934 /// the trip count isn't just 'n', because 'n' might not be positive. And
1935 /// unfortunately this can come up even for loops where the user didn't use
1936 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1937 /// will commonly be lowered like this:
1938 //
1939 ///   if (n > 0) {
1940 ///     i = 0;
1941 ///     do {
1942 ///       p[i] = 0.0;
1943 ///     } while (++i < n);
1944 ///   }
1945 ///
1946 /// and then it's possible for subsequent optimization to obscure the if
1947 /// test in such a way that indvars can't find it.
1948 ///
1949 /// When indvars can't find the if test in loops like this, it creates a
1950 /// max expression, which allows it to give the loop a canonical
1951 /// induction variable:
1952 ///
1953 ///   i = 0;
1954 ///   max = n < 1 ? 1 : n;
1955 ///   do {
1956 ///     p[i] = 0.0;
1957 ///   } while (++i != max);
1958 ///
1959 /// Canonical induction variables are necessary because the loop passes
1960 /// are designed around them. The most obvious example of this is the
1961 /// LoopInfo analysis, which doesn't remember trip count values. It
1962 /// expects to be able to rediscover the trip count each time it is
1963 /// needed, and it does this using a simple analysis that only succeeds if
1964 /// the loop has a canonical induction variable.
1965 ///
1966 /// However, when it comes time to generate code, the maximum operation
1967 /// can be quite costly, especially if it's inside of an outer loop.
1968 ///
1969 /// This function solves this problem by detecting this type of loop and
1970 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1971 /// the instructions for the maximum computation.
1972 ///
1973 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1974   // Check that the loop matches the pattern we're looking for.
1975   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1976       Cond->getPredicate() != CmpInst::ICMP_NE)
1977     return Cond;
1978
1979   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1980   if (!Sel || !Sel->hasOneUse()) return Cond;
1981
1982   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1983   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1984     return Cond;
1985   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1986
1987   // Add one to the backedge-taken count to get the trip count.
1988   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1989   if (IterationCount != SE.getSCEV(Sel)) return Cond;
1990
1991   // Check for a max calculation that matches the pattern. There's no check
1992   // for ICMP_ULE here because the comparison would be with zero, which
1993   // isn't interesting.
1994   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1995   const SCEVNAryExpr *Max = nullptr;
1996   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1997     Pred = ICmpInst::ICMP_SLE;
1998     Max = S;
1999   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2000     Pred = ICmpInst::ICMP_SLT;
2001     Max = S;
2002   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2003     Pred = ICmpInst::ICMP_ULT;
2004     Max = U;
2005   } else {
2006     // No match; bail.
2007     return Cond;
2008   }
2009
2010   // To handle a max with more than two operands, this optimization would
2011   // require additional checking and setup.
2012   if (Max->getNumOperands() != 2)
2013     return Cond;
2014
2015   const SCEV *MaxLHS = Max->getOperand(0);
2016   const SCEV *MaxRHS = Max->getOperand(1);
2017
2018   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2019   // for a comparison with 1. For <= and >=, a comparison with zero.
2020   if (!MaxLHS ||
2021       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2022     return Cond;
2023
2024   // Check the relevant induction variable for conformance to
2025   // the pattern.
2026   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2027   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2028   if (!AR || !AR->isAffine() ||
2029       AR->getStart() != One ||
2030       AR->getStepRecurrence(SE) != One)
2031     return Cond;
2032
2033   assert(AR->getLoop() == L &&
2034          "Loop condition operand is an addrec in a different loop!");
2035
2036   // Check the right operand of the select, and remember it, as it will
2037   // be used in the new comparison instruction.
2038   Value *NewRHS = nullptr;
2039   if (ICmpInst::isTrueWhenEqual(Pred)) {
2040     // Look for n+1, and grab n.
2041     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2042       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2043          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2044            NewRHS = BO->getOperand(0);
2045     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2046       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2047         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2048           NewRHS = BO->getOperand(0);
2049     if (!NewRHS)
2050       return Cond;
2051   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2052     NewRHS = Sel->getOperand(1);
2053   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2054     NewRHS = Sel->getOperand(2);
2055   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2056     NewRHS = SU->getValue();
2057   else
2058     // Max doesn't match expected pattern.
2059     return Cond;
2060
2061   // Determine the new comparison opcode. It may be signed or unsigned,
2062   // and the original comparison may be either equality or inequality.
2063   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2064     Pred = CmpInst::getInversePredicate(Pred);
2065
2066   // Ok, everything looks ok to change the condition into an SLT or SGE and
2067   // delete the max calculation.
2068   ICmpInst *NewCond =
2069     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2070
2071   // Delete the max calculation instructions.
2072   Cond->replaceAllUsesWith(NewCond);
2073   CondUse->setUser(NewCond);
2074   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2075   Cond->eraseFromParent();
2076   Sel->eraseFromParent();
2077   if (Cmp->use_empty())
2078     Cmp->eraseFromParent();
2079   return NewCond;
2080 }
2081
2082 /// Change loop terminating condition to use the postinc iv when possible.
2083 void
2084 LSRInstance::OptimizeLoopTermCond() {
2085   SmallPtrSet<Instruction *, 4> PostIncs;
2086
2087   BasicBlock *LatchBlock = L->getLoopLatch();
2088   SmallVector<BasicBlock*, 8> ExitingBlocks;
2089   L->getExitingBlocks(ExitingBlocks);
2090
2091   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2092
2093     // Get the terminating condition for the loop if possible.  If we
2094     // can, we want to change it to use a post-incremented version of its
2095     // induction variable, to allow coalescing the live ranges for the IV into
2096     // one register value.
2097
2098     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2099     if (!TermBr)
2100       continue;
2101     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2102     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2103       continue;
2104
2105     // Search IVUsesByStride to find Cond's IVUse if there is one.
2106     IVStrideUse *CondUse = nullptr;
2107     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2108     if (!FindIVUserForCond(Cond, CondUse))
2109       continue;
2110
2111     // If the trip count is computed in terms of a max (due to ScalarEvolution
2112     // being unable to find a sufficient guard, for example), change the loop
2113     // comparison to use SLT or ULT instead of NE.
2114     // One consequence of doing this now is that it disrupts the count-down
2115     // optimization. That's not always a bad thing though, because in such
2116     // cases it may still be worthwhile to avoid a max.
2117     Cond = OptimizeMax(Cond, CondUse);
2118
2119     // If this exiting block dominates the latch block, it may also use
2120     // the post-inc value if it won't be shared with other uses.
2121     // Check for dominance.
2122     if (!DT.dominates(ExitingBlock, LatchBlock))
2123       continue;
2124
2125     // Conservatively avoid trying to use the post-inc value in non-latch
2126     // exits if there may be pre-inc users in intervening blocks.
2127     if (LatchBlock != ExitingBlock)
2128       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2129         // Test if the use is reachable from the exiting block. This dominator
2130         // query is a conservative approximation of reachability.
2131         if (&*UI != CondUse &&
2132             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2133           // Conservatively assume there may be reuse if the quotient of their
2134           // strides could be a legal scale.
2135           const SCEV *A = IU.getStride(*CondUse, L);
2136           const SCEV *B = IU.getStride(*UI, L);
2137           if (!A || !B) continue;
2138           if (SE.getTypeSizeInBits(A->getType()) !=
2139               SE.getTypeSizeInBits(B->getType())) {
2140             if (SE.getTypeSizeInBits(A->getType()) >
2141                 SE.getTypeSizeInBits(B->getType()))
2142               B = SE.getSignExtendExpr(B, A->getType());
2143             else
2144               A = SE.getSignExtendExpr(A, B->getType());
2145           }
2146           if (const SCEVConstant *D =
2147                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2148             const ConstantInt *C = D->getValue();
2149             // Stride of one or negative one can have reuse with non-addresses.
2150             if (C->isOne() || C->isAllOnesValue())
2151               goto decline_post_inc;
2152             // Avoid weird situations.
2153             if (C->getValue().getMinSignedBits() >= 64 ||
2154                 C->getValue().isMinSignedValue())
2155               goto decline_post_inc;
2156             // Check for possible scaled-address reuse.
2157             MemAccessTy AccessTy = getAccessType(UI->getUser());
2158             int64_t Scale = C->getSExtValue();
2159             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2160                                           /*BaseOffset=*/0,
2161                                           /*HasBaseReg=*/false, Scale,
2162                                           AccessTy.AddrSpace))
2163               goto decline_post_inc;
2164             Scale = -Scale;
2165             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2166                                           /*BaseOffset=*/0,
2167                                           /*HasBaseReg=*/false, Scale,
2168                                           AccessTy.AddrSpace))
2169               goto decline_post_inc;
2170           }
2171         }
2172
2173     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2174                  << *Cond << '\n');
2175
2176     // It's possible for the setcc instruction to be anywhere in the loop, and
2177     // possible for it to have multiple users.  If it is not immediately before
2178     // the exiting block branch, move it.
2179     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2180       if (Cond->hasOneUse()) {
2181         Cond->moveBefore(TermBr);
2182       } else {
2183         // Clone the terminating condition and insert into the loopend.
2184         ICmpInst *OldCond = Cond;
2185         Cond = cast<ICmpInst>(Cond->clone());
2186         Cond->setName(L->getHeader()->getName() + ".termcond");
2187         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2188
2189         // Clone the IVUse, as the old use still exists!
2190         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2191         TermBr->replaceUsesOfWith(OldCond, Cond);
2192       }
2193     }
2194
2195     // If we get to here, we know that we can transform the setcc instruction to
2196     // use the post-incremented version of the IV, allowing us to coalesce the
2197     // live ranges for the IV correctly.
2198     CondUse->transformToPostInc(L);
2199     Changed = true;
2200
2201     PostIncs.insert(Cond);
2202   decline_post_inc:;
2203   }
2204
2205   // Determine an insertion point for the loop induction variable increment. It
2206   // must dominate all the post-inc comparisons we just set up, and it must
2207   // dominate the loop latch edge.
2208   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2209   for (Instruction *Inst : PostIncs) {
2210     BasicBlock *BB =
2211       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2212                                     Inst->getParent());
2213     if (BB == Inst->getParent())
2214       IVIncInsertPos = Inst;
2215     else if (BB != IVIncInsertPos->getParent())
2216       IVIncInsertPos = BB->getTerminator();
2217   }
2218 }
2219
2220 /// Determine if the given use can accommodate a fixup at the given offset and
2221 /// other details. If so, update the use and return true.
2222 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2223                                      bool HasBaseReg, LSRUse::KindType Kind,
2224                                      MemAccessTy AccessTy) {
2225   int64_t NewMinOffset = LU.MinOffset;
2226   int64_t NewMaxOffset = LU.MaxOffset;
2227   MemAccessTy NewAccessTy = AccessTy;
2228
2229   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2230   // something conservative, however this can pessimize in the case that one of
2231   // the uses will have all its uses outside the loop, for example.
2232   if (LU.Kind != Kind)
2233     return false;
2234
2235   // Check for a mismatched access type, and fall back conservatively as needed.
2236   // TODO: Be less conservative when the type is similar and can use the same
2237   // addressing modes.
2238   if (Kind == LSRUse::Address) {
2239     if (AccessTy != LU.AccessTy)
2240       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
2241   }
2242
2243   // Conservatively assume HasBaseReg is true for now.
2244   if (NewOffset < LU.MinOffset) {
2245     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2246                           LU.MaxOffset - NewOffset, HasBaseReg))
2247       return false;
2248     NewMinOffset = NewOffset;
2249   } else if (NewOffset > LU.MaxOffset) {
2250     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2251                           NewOffset - LU.MinOffset, HasBaseReg))
2252       return false;
2253     NewMaxOffset = NewOffset;
2254   }
2255
2256   // Update the use.
2257   LU.MinOffset = NewMinOffset;
2258   LU.MaxOffset = NewMaxOffset;
2259   LU.AccessTy = NewAccessTy;
2260   if (NewOffset != LU.Offsets.back())
2261     LU.Offsets.push_back(NewOffset);
2262   return true;
2263 }
2264
2265 /// Return an LSRUse index and an offset value for a fixup which needs the given
2266 /// expression, with the given kind and optional access type.  Either reuse an
2267 /// existing use or create a new one, as needed.
2268 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2269                                                LSRUse::KindType Kind,
2270                                                MemAccessTy AccessTy) {
2271   const SCEV *Copy = Expr;
2272   int64_t Offset = ExtractImmediate(Expr, SE);
2273
2274   // Basic uses can't accept any offset, for example.
2275   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2276                         Offset, /*HasBaseReg=*/ true)) {
2277     Expr = Copy;
2278     Offset = 0;
2279   }
2280
2281   std::pair<UseMapTy::iterator, bool> P =
2282     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2283   if (!P.second) {
2284     // A use already existed with this base.
2285     size_t LUIdx = P.first->second;
2286     LSRUse &LU = Uses[LUIdx];
2287     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2288       // Reuse this use.
2289       return std::make_pair(LUIdx, Offset);
2290   }
2291
2292   // Create a new use.
2293   size_t LUIdx = Uses.size();
2294   P.first->second = LUIdx;
2295   Uses.push_back(LSRUse(Kind, AccessTy));
2296   LSRUse &LU = Uses[LUIdx];
2297
2298   // We don't need to track redundant offsets, but we don't need to go out
2299   // of our way here to avoid them.
2300   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2301     LU.Offsets.push_back(Offset);
2302
2303   LU.MinOffset = Offset;
2304   LU.MaxOffset = Offset;
2305   return std::make_pair(LUIdx, Offset);
2306 }
2307
2308 /// Delete the given use from the Uses list.
2309 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2310   if (&LU != &Uses.back())
2311     std::swap(LU, Uses.back());
2312   Uses.pop_back();
2313
2314   // Update RegUses.
2315   RegUses.swapAndDropUse(LUIdx, Uses.size());
2316 }
2317
2318 /// Look for a use distinct from OrigLU which is has a formula that has the same
2319 /// registers as the given formula.
2320 LSRUse *
2321 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2322                                        const LSRUse &OrigLU) {
2323   // Search all uses for the formula. This could be more clever.
2324   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2325     LSRUse &LU = Uses[LUIdx];
2326     // Check whether this use is close enough to OrigLU, to see whether it's
2327     // worthwhile looking through its formulae.
2328     // Ignore ICmpZero uses because they may contain formulae generated by
2329     // GenerateICmpZeroScales, in which case adding fixup offsets may
2330     // be invalid.
2331     if (&LU != &OrigLU &&
2332         LU.Kind != LSRUse::ICmpZero &&
2333         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2334         LU.WidestFixupType == OrigLU.WidestFixupType &&
2335         LU.HasFormulaWithSameRegs(OrigF)) {
2336       // Scan through this use's formulae.
2337       for (const Formula &F : LU.Formulae) {
2338         // Check to see if this formula has the same registers and symbols
2339         // as OrigF.
2340         if (F.BaseRegs == OrigF.BaseRegs &&
2341             F.ScaledReg == OrigF.ScaledReg &&
2342             F.BaseGV == OrigF.BaseGV &&
2343             F.Scale == OrigF.Scale &&
2344             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2345           if (F.BaseOffset == 0)
2346             return &LU;
2347           // This is the formula where all the registers and symbols matched;
2348           // there aren't going to be any others. Since we declined it, we
2349           // can skip the rest of the formulae and proceed to the next LSRUse.
2350           break;
2351         }
2352       }
2353     }
2354   }
2355
2356   // Nothing looked good.
2357   return nullptr;
2358 }
2359
2360 void LSRInstance::CollectInterestingTypesAndFactors() {
2361   SmallSetVector<const SCEV *, 4> Strides;
2362
2363   // Collect interesting types and strides.
2364   SmallVector<const SCEV *, 4> Worklist;
2365   for (const IVStrideUse &U : IU) {
2366     const SCEV *Expr = IU.getExpr(U);
2367
2368     // Collect interesting types.
2369     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2370
2371     // Add strides for mentioned loops.
2372     Worklist.push_back(Expr);
2373     do {
2374       const SCEV *S = Worklist.pop_back_val();
2375       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2376         if (AR->getLoop() == L)
2377           Strides.insert(AR->getStepRecurrence(SE));
2378         Worklist.push_back(AR->getStart());
2379       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2380         Worklist.append(Add->op_begin(), Add->op_end());
2381       }
2382     } while (!Worklist.empty());
2383   }
2384
2385   // Compute interesting factors from the set of interesting strides.
2386   for (SmallSetVector<const SCEV *, 4>::const_iterator
2387        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2388     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2389          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2390       const SCEV *OldStride = *I;
2391       const SCEV *NewStride = *NewStrideIter;
2392
2393       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2394           SE.getTypeSizeInBits(NewStride->getType())) {
2395         if (SE.getTypeSizeInBits(OldStride->getType()) >
2396             SE.getTypeSizeInBits(NewStride->getType()))
2397           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2398         else
2399           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2400       }
2401       if (const SCEVConstant *Factor =
2402             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2403                                                         SE, true))) {
2404         if (Factor->getAPInt().getMinSignedBits() <= 64)
2405           Factors.insert(Factor->getAPInt().getSExtValue());
2406       } else if (const SCEVConstant *Factor =
2407                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2408                                                                NewStride,
2409                                                                SE, true))) {
2410         if (Factor->getAPInt().getMinSignedBits() <= 64)
2411           Factors.insert(Factor->getAPInt().getSExtValue());
2412       }
2413     }
2414
2415   // If all uses use the same type, don't bother looking for truncation-based
2416   // reuse.
2417   if (Types.size() == 1)
2418     Types.clear();
2419
2420   DEBUG(print_factors_and_types(dbgs()));
2421 }
2422
2423 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2424 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2425 /// IVStrideUses, we could partially skip this.
2426 static User::op_iterator
2427 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2428               Loop *L, ScalarEvolution &SE) {
2429   for(; OI != OE; ++OI) {
2430     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2431       if (!SE.isSCEVable(Oper->getType()))
2432         continue;
2433
2434       if (const SCEVAddRecExpr *AR =
2435           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2436         if (AR->getLoop() == L)
2437           break;
2438       }
2439     }
2440   }
2441   return OI;
2442 }
2443
2444 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2445 /// a convenient helper.
2446 static Value *getWideOperand(Value *Oper) {
2447   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2448     return Trunc->getOperand(0);
2449   return Oper;
2450 }
2451
2452 /// Return true if we allow an IV chain to include both types.
2453 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2454   Type *LType = LVal->getType();
2455   Type *RType = RVal->getType();
2456   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2457 }
2458
2459 /// Return an approximation of this SCEV expression's "base", or NULL for any
2460 /// constant. Returning the expression itself is conservative. Returning a
2461 /// deeper subexpression is more precise and valid as long as it isn't less
2462 /// complex than another subexpression. For expressions involving multiple
2463 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2464 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2465 /// IVInc==b-a.
2466 ///
2467 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2468 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2469 static const SCEV *getExprBase(const SCEV *S) {
2470   switch (S->getSCEVType()) {
2471   default: // uncluding scUnknown.
2472     return S;
2473   case scConstant:
2474     return nullptr;
2475   case scTruncate:
2476     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2477   case scZeroExtend:
2478     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2479   case scSignExtend:
2480     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2481   case scAddExpr: {
2482     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2483     // there's nothing more complex.
2484     // FIXME: not sure if we want to recognize negation.
2485     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2486     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2487            E(Add->op_begin()); I != E; ++I) {
2488       const SCEV *SubExpr = *I;
2489       if (SubExpr->getSCEVType() == scAddExpr)
2490         return getExprBase(SubExpr);
2491
2492       if (SubExpr->getSCEVType() != scMulExpr)
2493         return SubExpr;
2494     }
2495     return S; // all operands are scaled, be conservative.
2496   }
2497   case scAddRecExpr:
2498     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2499   }
2500 }
2501
2502 /// Return true if the chain increment is profitable to expand into a loop
2503 /// invariant value, which may require its own register. A profitable chain
2504 /// increment will be an offset relative to the same base. We allow such offsets
2505 /// to potentially be used as chain increment as long as it's not obviously
2506 /// expensive to expand using real instructions.
2507 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2508                                     const SCEV *IncExpr,
2509                                     ScalarEvolution &SE) {
2510   // Aggressively form chains when -stress-ivchain.
2511   if (StressIVChain)
2512     return true;
2513
2514   // Do not replace a constant offset from IV head with a nonconstant IV
2515   // increment.
2516   if (!isa<SCEVConstant>(IncExpr)) {
2517     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2518     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2519       return 0;
2520   }
2521
2522   SmallPtrSet<const SCEV*, 8> Processed;
2523   return !isHighCostExpansion(IncExpr, Processed, SE);
2524 }
2525
2526 /// Return true if the number of registers needed for the chain is estimated to
2527 /// be less than the number required for the individual IV users. First prohibit
2528 /// any IV users that keep the IV live across increments (the Users set should
2529 /// be empty). Next count the number and type of increments in the chain.
2530 ///
2531 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2532 /// effectively use postinc addressing modes. Only consider it profitable it the
2533 /// increments can be computed in fewer registers when chained.
2534 ///
2535 /// TODO: Consider IVInc free if it's already used in another chains.
2536 static bool
2537 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2538                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2539   if (StressIVChain)
2540     return true;
2541
2542   if (!Chain.hasIncs())
2543     return false;
2544
2545   if (!Users.empty()) {
2546     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2547           for (Instruction *Inst : Users) {
2548             dbgs() << "  " << *Inst << "\n";
2549           });
2550     return false;
2551   }
2552   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2553
2554   // The chain itself may require a register, so intialize cost to 1.
2555   int cost = 1;
2556
2557   // A complete chain likely eliminates the need for keeping the original IV in
2558   // a register. LSR does not currently know how to form a complete chain unless
2559   // the header phi already exists.
2560   if (isa<PHINode>(Chain.tailUserInst())
2561       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2562     --cost;
2563   }
2564   const SCEV *LastIncExpr = nullptr;
2565   unsigned NumConstIncrements = 0;
2566   unsigned NumVarIncrements = 0;
2567   unsigned NumReusedIncrements = 0;
2568   for (const IVInc &Inc : Chain) {
2569     if (Inc.IncExpr->isZero())
2570       continue;
2571
2572     // Incrementing by zero or some constant is neutral. We assume constants can
2573     // be folded into an addressing mode or an add's immediate operand.
2574     if (isa<SCEVConstant>(Inc.IncExpr)) {
2575       ++NumConstIncrements;
2576       continue;
2577     }
2578
2579     if (Inc.IncExpr == LastIncExpr)
2580       ++NumReusedIncrements;
2581     else
2582       ++NumVarIncrements;
2583
2584     LastIncExpr = Inc.IncExpr;
2585   }
2586   // An IV chain with a single increment is handled by LSR's postinc
2587   // uses. However, a chain with multiple increments requires keeping the IV's
2588   // value live longer than it needs to be if chained.
2589   if (NumConstIncrements > 1)
2590     --cost;
2591
2592   // Materializing increment expressions in the preheader that didn't exist in
2593   // the original code may cost a register. For example, sign-extended array
2594   // indices can produce ridiculous increments like this:
2595   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2596   cost += NumVarIncrements;
2597
2598   // Reusing variable increments likely saves a register to hold the multiple of
2599   // the stride.
2600   cost -= NumReusedIncrements;
2601
2602   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2603                << "\n");
2604
2605   return cost < 0;
2606 }
2607
2608 /// Add this IV user to an existing chain or make it the head of a new chain.
2609 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2610                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2611   // When IVs are used as types of varying widths, they are generally converted
2612   // to a wider type with some uses remaining narrow under a (free) trunc.
2613   Value *const NextIV = getWideOperand(IVOper);
2614   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2615   const SCEV *const OperExprBase = getExprBase(OperExpr);
2616
2617   // Visit all existing chains. Check if its IVOper can be computed as a
2618   // profitable loop invariant increment from the last link in the Chain.
2619   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2620   const SCEV *LastIncExpr = nullptr;
2621   for (; ChainIdx < NChains; ++ChainIdx) {
2622     IVChain &Chain = IVChainVec[ChainIdx];
2623
2624     // Prune the solution space aggressively by checking that both IV operands
2625     // are expressions that operate on the same unscaled SCEVUnknown. This
2626     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2627     // first avoids creating extra SCEV expressions.
2628     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2629       continue;
2630
2631     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2632     if (!isCompatibleIVType(PrevIV, NextIV))
2633       continue;
2634
2635     // A phi node terminates a chain.
2636     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2637       continue;
2638
2639     // The increment must be loop-invariant so it can be kept in a register.
2640     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2641     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2642     if (!SE.isLoopInvariant(IncExpr, L))
2643       continue;
2644
2645     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2646       LastIncExpr = IncExpr;
2647       break;
2648     }
2649   }
2650   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2651   // bother for phi nodes, because they must be last in the chain.
2652   if (ChainIdx == NChains) {
2653     if (isa<PHINode>(UserInst))
2654       return;
2655     if (NChains >= MaxChains && !StressIVChain) {
2656       DEBUG(dbgs() << "IV Chain Limit\n");
2657       return;
2658     }
2659     LastIncExpr = OperExpr;
2660     // IVUsers may have skipped over sign/zero extensions. We don't currently
2661     // attempt to form chains involving extensions unless they can be hoisted
2662     // into this loop's AddRec.
2663     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2664       return;
2665     ++NChains;
2666     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2667                                  OperExprBase));
2668     ChainUsersVec.resize(NChains);
2669     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2670                  << ") IV=" << *LastIncExpr << "\n");
2671   } else {
2672     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2673                  << ") IV+" << *LastIncExpr << "\n");
2674     // Add this IV user to the end of the chain.
2675     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2676   }
2677   IVChain &Chain = IVChainVec[ChainIdx];
2678
2679   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2680   // This chain's NearUsers become FarUsers.
2681   if (!LastIncExpr->isZero()) {
2682     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2683                                             NearUsers.end());
2684     NearUsers.clear();
2685   }
2686
2687   // All other uses of IVOperand become near uses of the chain.
2688   // We currently ignore intermediate values within SCEV expressions, assuming
2689   // they will eventually be used be the current chain, or can be computed
2690   // from one of the chain increments. To be more precise we could
2691   // transitively follow its user and only add leaf IV users to the set.
2692   for (User *U : IVOper->users()) {
2693     Instruction *OtherUse = dyn_cast<Instruction>(U);
2694     if (!OtherUse)
2695       continue;
2696     // Uses in the chain will no longer be uses if the chain is formed.
2697     // Include the head of the chain in this iteration (not Chain.begin()).
2698     IVChain::const_iterator IncIter = Chain.Incs.begin();
2699     IVChain::const_iterator IncEnd = Chain.Incs.end();
2700     for( ; IncIter != IncEnd; ++IncIter) {
2701       if (IncIter->UserInst == OtherUse)
2702         break;
2703     }
2704     if (IncIter != IncEnd)
2705       continue;
2706
2707     if (SE.isSCEVable(OtherUse->getType())
2708         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2709         && IU.isIVUserOrOperand(OtherUse)) {
2710       continue;
2711     }
2712     NearUsers.insert(OtherUse);
2713   }
2714
2715   // Since this user is part of the chain, it's no longer considered a use
2716   // of the chain.
2717   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2718 }
2719
2720 /// Populate the vector of Chains.
2721 ///
2722 /// This decreases ILP at the architecture level. Targets with ample registers,
2723 /// multiple memory ports, and no register renaming probably don't want
2724 /// this. However, such targets should probably disable LSR altogether.
2725 ///
2726 /// The job of LSR is to make a reasonable choice of induction variables across
2727 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2728 /// ILP *within the loop* if the target wants it.
2729 ///
2730 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2731 /// will not reorder memory operations, it will recognize this as a chain, but
2732 /// will generate redundant IV increments. Ideally this would be corrected later
2733 /// by a smart scheduler:
2734 ///        = A[i]
2735 ///        = A[i+x]
2736 /// A[i]   =
2737 /// A[i+x] =
2738 ///
2739 /// TODO: Walk the entire domtree within this loop, not just the path to the
2740 /// loop latch. This will discover chains on side paths, but requires
2741 /// maintaining multiple copies of the Chains state.
2742 void LSRInstance::CollectChains() {
2743   DEBUG(dbgs() << "Collecting IV Chains.\n");
2744   SmallVector<ChainUsers, 8> ChainUsersVec;
2745
2746   SmallVector<BasicBlock *,8> LatchPath;
2747   BasicBlock *LoopHeader = L->getHeader();
2748   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2749        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2750     LatchPath.push_back(Rung->getBlock());
2751   }
2752   LatchPath.push_back(LoopHeader);
2753
2754   // Walk the instruction stream from the loop header to the loop latch.
2755   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2756          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2757        BBIter != BBEnd; ++BBIter) {
2758     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2759          I != E; ++I) {
2760       // Skip instructions that weren't seen by IVUsers analysis.
2761       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I))
2762         continue;
2763
2764       // Ignore users that are part of a SCEV expression. This way we only
2765       // consider leaf IV Users. This effectively rediscovers a portion of
2766       // IVUsers analysis but in program order this time.
2767       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I)))
2768         continue;
2769
2770       // Remove this instruction from any NearUsers set it may be in.
2771       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2772            ChainIdx < NChains; ++ChainIdx) {
2773         ChainUsersVec[ChainIdx].NearUsers.erase(&*I);
2774       }
2775       // Search for operands that can be chained.
2776       SmallPtrSet<Instruction*, 4> UniqueOperands;
2777       User::op_iterator IVOpEnd = I->op_end();
2778       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2779       while (IVOpIter != IVOpEnd) {
2780         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2781         if (UniqueOperands.insert(IVOpInst).second)
2782           ChainInstruction(&*I, IVOpInst, ChainUsersVec);
2783         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2784       }
2785     } // Continue walking down the instructions.
2786   } // Continue walking down the domtree.
2787   // Visit phi backedges to determine if the chain can generate the IV postinc.
2788   for (BasicBlock::iterator I = L->getHeader()->begin();
2789        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2790     if (!SE.isSCEVable(PN->getType()))
2791       continue;
2792
2793     Instruction *IncV =
2794       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2795     if (IncV)
2796       ChainInstruction(PN, IncV, ChainUsersVec);
2797   }
2798   // Remove any unprofitable chains.
2799   unsigned ChainIdx = 0;
2800   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2801        UsersIdx < NChains; ++UsersIdx) {
2802     if (!isProfitableChain(IVChainVec[UsersIdx],
2803                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2804       continue;
2805     // Preserve the chain at UsesIdx.
2806     if (ChainIdx != UsersIdx)
2807       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2808     FinalizeChain(IVChainVec[ChainIdx]);
2809     ++ChainIdx;
2810   }
2811   IVChainVec.resize(ChainIdx);
2812 }
2813
2814 void LSRInstance::FinalizeChain(IVChain &Chain) {
2815   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2816   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2817
2818   for (const IVInc &Inc : Chain) {
2819     DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
2820     auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
2821                           Inc.IVOperand);
2822     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2823     IVIncSet.insert(UseI);
2824   }
2825 }
2826
2827 /// Return true if the IVInc can be folded into an addressing mode.
2828 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2829                              Value *Operand, const TargetTransformInfo &TTI) {
2830   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2831   if (!IncConst || !isAddressUse(UserInst, Operand))
2832     return false;
2833
2834   if (IncConst->getAPInt().getMinSignedBits() > 64)
2835     return false;
2836
2837   MemAccessTy AccessTy = getAccessType(UserInst);
2838   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2839   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2840                         IncOffset, /*HaseBaseReg=*/false))
2841     return false;
2842
2843   return true;
2844 }
2845
2846 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2847 /// user's operand from the previous IV user's operand.
2848 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2849                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2850   // Find the new IVOperand for the head of the chain. It may have been replaced
2851   // by LSR.
2852   const IVInc &Head = Chain.Incs[0];
2853   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2854   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2855   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2856                                              IVOpEnd, L, SE);
2857   Value *IVSrc = nullptr;
2858   while (IVOpIter != IVOpEnd) {
2859     IVSrc = getWideOperand(*IVOpIter);
2860
2861     // If this operand computes the expression that the chain needs, we may use
2862     // it. (Check this after setting IVSrc which is used below.)
2863     //
2864     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2865     // narrow for the chain, so we can no longer use it. We do allow using a
2866     // wider phi, assuming the LSR checked for free truncation. In that case we
2867     // should already have a truncate on this operand such that
2868     // getSCEV(IVSrc) == IncExpr.
2869     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2870         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2871       break;
2872     }
2873     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2874   }
2875   if (IVOpIter == IVOpEnd) {
2876     // Gracefully give up on this chain.
2877     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2878     return;
2879   }
2880
2881   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2882   Type *IVTy = IVSrc->getType();
2883   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2884   const SCEV *LeftOverExpr = nullptr;
2885   for (const IVInc &Inc : Chain) {
2886     Instruction *InsertPt = Inc.UserInst;
2887     if (isa<PHINode>(InsertPt))
2888       InsertPt = L->getLoopLatch()->getTerminator();
2889
2890     // IVOper will replace the current IV User's operand. IVSrc is the IV
2891     // value currently held in a register.
2892     Value *IVOper = IVSrc;
2893     if (!Inc.IncExpr->isZero()) {
2894       // IncExpr was the result of subtraction of two narrow values, so must
2895       // be signed.
2896       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2897       LeftOverExpr = LeftOverExpr ?
2898         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2899     }
2900     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2901       // Expand the IV increment.
2902       Rewriter.clearPostInc();
2903       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2904       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2905                                              SE.getUnknown(IncV));
2906       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2907
2908       // If an IV increment can't be folded, use it as the next IV value.
2909       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2910         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2911         IVSrc = IVOper;
2912         LeftOverExpr = nullptr;
2913       }
2914     }
2915     Type *OperTy = Inc.IVOperand->getType();
2916     if (IVTy != OperTy) {
2917       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2918              "cannot extend a chained IV");
2919       IRBuilder<> Builder(InsertPt);
2920       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2921     }
2922     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2923     DeadInsts.emplace_back(Inc.IVOperand);
2924   }
2925   // If LSR created a new, wider phi, we may also replace its postinc. We only
2926   // do this if we also found a wide value for the head of the chain.
2927   if (isa<PHINode>(Chain.tailUserInst())) {
2928     for (BasicBlock::iterator I = L->getHeader()->begin();
2929          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2930       if (!isCompatibleIVType(Phi, IVSrc))
2931         continue;
2932       Instruction *PostIncV = dyn_cast<Instruction>(
2933         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2934       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2935         continue;
2936       Value *IVOper = IVSrc;
2937       Type *PostIncTy = PostIncV->getType();
2938       if (IVTy != PostIncTy) {
2939         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2940         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2941         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2942         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2943       }
2944       Phi->replaceUsesOfWith(PostIncV, IVOper);
2945       DeadInsts.emplace_back(PostIncV);
2946     }
2947   }
2948 }
2949
2950 void LSRInstance::CollectFixupsAndInitialFormulae() {
2951   for (const IVStrideUse &U : IU) {
2952     Instruction *UserInst = U.getUser();
2953     // Skip IV users that are part of profitable IV Chains.
2954     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2955                                        U.getOperandValToReplace());
2956     assert(UseI != UserInst->op_end() && "cannot find IV operand");
2957     if (IVIncSet.count(UseI))
2958       continue;
2959
2960     // Record the uses.
2961     LSRFixup &LF = getNewFixup();
2962     LF.UserInst = UserInst;
2963     LF.OperandValToReplace = U.getOperandValToReplace();
2964     LF.PostIncLoops = U.getPostIncLoops();
2965
2966     LSRUse::KindType Kind = LSRUse::Basic;
2967     MemAccessTy AccessTy;
2968     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2969       Kind = LSRUse::Address;
2970       AccessTy = getAccessType(LF.UserInst);
2971     }
2972
2973     const SCEV *S = IU.getExpr(U);
2974
2975     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2976     // (N - i == 0), and this allows (N - i) to be the expression that we work
2977     // with rather than just N or i, so we can consider the register
2978     // requirements for both N and i at the same time. Limiting this code to
2979     // equality icmps is not a problem because all interesting loops use
2980     // equality icmps, thanks to IndVarSimplify.
2981     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2982       if (CI->isEquality()) {
2983         // Swap the operands if needed to put the OperandValToReplace on the
2984         // left, for consistency.
2985         Value *NV = CI->getOperand(1);
2986         if (NV == LF.OperandValToReplace) {
2987           CI->setOperand(1, CI->getOperand(0));
2988           CI->setOperand(0, NV);
2989           NV = CI->getOperand(1);
2990           Changed = true;
2991         }
2992
2993         // x == y  -->  x - y == 0
2994         const SCEV *N = SE.getSCEV(NV);
2995         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
2996           // S is normalized, so normalize N before folding it into S
2997           // to keep the result normalized.
2998           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
2999                                      LF.PostIncLoops, SE, DT);
3000           Kind = LSRUse::ICmpZero;
3001           S = SE.getMinusSCEV(N, S);
3002         }
3003
3004         // -1 and the negations of all interesting strides (except the negation
3005         // of -1) are now also interesting.
3006         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3007           if (Factors[i] != -1)
3008             Factors.insert(-(uint64_t)Factors[i]);
3009         Factors.insert(-1);
3010       }
3011
3012     // Set up the initial formula for this use.
3013     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3014     LF.LUIdx = P.first;
3015     LF.Offset = P.second;
3016     LSRUse &LU = Uses[LF.LUIdx];
3017     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3018     if (!LU.WidestFixupType ||
3019         SE.getTypeSizeInBits(LU.WidestFixupType) <
3020         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3021       LU.WidestFixupType = LF.OperandValToReplace->getType();
3022
3023     // If this is the first use of this LSRUse, give it a formula.
3024     if (LU.Formulae.empty()) {
3025       InsertInitialFormula(S, LU, LF.LUIdx);
3026       CountRegisters(LU.Formulae.back(), LF.LUIdx);
3027     }
3028   }
3029
3030   DEBUG(print_fixups(dbgs()));
3031 }
3032
3033 /// Insert a formula for the given expression into the given use, separating out
3034 /// loop-variant portions from loop-invariant and loop-computable portions.
3035 void
3036 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3037   // Mark uses whose expressions cannot be expanded.
3038   if (!isSafeToExpand(S, SE))
3039     LU.RigidFormula = true;
3040
3041   Formula F;
3042   F.initialMatch(S, L, SE);
3043   bool Inserted = InsertFormula(LU, LUIdx, F);
3044   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3045 }
3046
3047 /// Insert a simple single-register formula for the given expression into the
3048 /// given use.
3049 void
3050 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3051                                        LSRUse &LU, size_t LUIdx) {
3052   Formula F;
3053   F.BaseRegs.push_back(S);
3054   F.HasBaseReg = true;
3055   bool Inserted = InsertFormula(LU, LUIdx, F);
3056   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3057 }
3058
3059 /// Note which registers are used by the given formula, updating RegUses.
3060 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3061   if (F.ScaledReg)
3062     RegUses.countRegister(F.ScaledReg, LUIdx);
3063   for (const SCEV *BaseReg : F.BaseRegs)
3064     RegUses.countRegister(BaseReg, LUIdx);
3065 }
3066
3067 /// If the given formula has not yet been inserted, add it to the list, and
3068 /// return true. Return false otherwise.
3069 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3070   // Do not insert formula that we will not be able to expand.
3071   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3072          "Formula is illegal");
3073   if (!LU.InsertFormula(F))
3074     return false;
3075
3076   CountRegisters(F, LUIdx);
3077   return true;
3078 }
3079
3080 /// Check for other uses of loop-invariant values which we're tracking. These
3081 /// other uses will pin these values in registers, making them less profitable
3082 /// for elimination.
3083 /// TODO: This currently misses non-constant addrec step registers.
3084 /// TODO: Should this give more weight to users inside the loop?
3085 void
3086 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3087   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3088   SmallPtrSet<const SCEV *, 32> Visited;
3089
3090   while (!Worklist.empty()) {
3091     const SCEV *S = Worklist.pop_back_val();
3092
3093     // Don't process the same SCEV twice
3094     if (!Visited.insert(S).second)
3095       continue;
3096
3097     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3098       Worklist.append(N->op_begin(), N->op_end());
3099     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3100       Worklist.push_back(C->getOperand());
3101     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3102       Worklist.push_back(D->getLHS());
3103       Worklist.push_back(D->getRHS());
3104     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3105       const Value *V = US->getValue();
3106       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3107         // Look for instructions defined outside the loop.
3108         if (L->contains(Inst)) continue;
3109       } else if (isa<UndefValue>(V))
3110         // Undef doesn't have a live range, so it doesn't matter.
3111         continue;
3112       for (const Use &U : V->uses()) {
3113         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3114         // Ignore non-instructions.
3115         if (!UserInst)
3116           continue;
3117         // Ignore instructions in other functions (as can happen with
3118         // Constants).
3119         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3120           continue;
3121         // Ignore instructions not dominated by the loop.
3122         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3123           UserInst->getParent() :
3124           cast<PHINode>(UserInst)->getIncomingBlock(
3125             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3126         if (!DT.dominates(L->getHeader(), UseBB))
3127           continue;
3128         // Don't bother if the instruction is in a BB which ends in an EHPad.
3129         if (UseBB->getTerminator()->isEHPad())
3130           continue;
3131         // Ignore uses which are part of other SCEV expressions, to avoid
3132         // analyzing them multiple times.
3133         if (SE.isSCEVable(UserInst->getType())) {
3134           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3135           // If the user is a no-op, look through to its uses.
3136           if (!isa<SCEVUnknown>(UserS))
3137             continue;
3138           if (UserS == US) {
3139             Worklist.push_back(
3140               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3141             continue;
3142           }
3143         }
3144         // Ignore icmp instructions which are already being analyzed.
3145         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3146           unsigned OtherIdx = !U.getOperandNo();
3147           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3148           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3149             continue;
3150         }
3151
3152         LSRFixup &LF = getNewFixup();
3153         LF.UserInst = const_cast<Instruction *>(UserInst);
3154         LF.OperandValToReplace = U;
3155         std::pair<size_t, int64_t> P = getUse(
3156             S, LSRUse::Basic, MemAccessTy());
3157         LF.LUIdx = P.first;
3158         LF.Offset = P.second;
3159         LSRUse &LU = Uses[LF.LUIdx];
3160         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3161         if (!LU.WidestFixupType ||
3162             SE.getTypeSizeInBits(LU.WidestFixupType) <
3163             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3164           LU.WidestFixupType = LF.OperandValToReplace->getType();
3165         InsertSupplementalFormula(US, LU, LF.LUIdx);
3166         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3167         break;
3168       }
3169     }
3170   }
3171 }
3172
3173 /// Split S into subexpressions which can be pulled out into separate
3174 /// registers. If C is non-null, multiply each subexpression by C.
3175 ///
3176 /// Return remainder expression after factoring the subexpressions captured by
3177 /// Ops. If Ops is complete, return NULL.
3178 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3179                                    SmallVectorImpl<const SCEV *> &Ops,
3180                                    const Loop *L,
3181                                    ScalarEvolution &SE,
3182                                    unsigned Depth = 0) {
3183   // Arbitrarily cap recursion to protect compile time.
3184   if (Depth >= 3)
3185     return S;
3186
3187   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3188     // Break out add operands.
3189     for (const SCEV *S : Add->operands()) {
3190       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3191       if (Remainder)
3192         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3193     }
3194     return nullptr;
3195   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3196     // Split a non-zero base out of an addrec.
3197     if (AR->getStart()->isZero())
3198       return S;
3199
3200     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3201                                             C, Ops, L, SE, Depth+1);
3202     // Split the non-zero AddRec unless it is part of a nested recurrence that
3203     // does not pertain to this loop.
3204     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3205       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3206       Remainder = nullptr;
3207     }
3208     if (Remainder != AR->getStart()) {
3209       if (!Remainder)
3210         Remainder = SE.getConstant(AR->getType(), 0);
3211       return SE.getAddRecExpr(Remainder,
3212                               AR->getStepRecurrence(SE),
3213                               AR->getLoop(),
3214                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3215                               SCEV::FlagAnyWrap);
3216     }
3217   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3218     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3219     if (Mul->getNumOperands() != 2)
3220       return S;
3221     if (const SCEVConstant *Op0 =
3222         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3223       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3224       const SCEV *Remainder =
3225         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3226       if (Remainder)
3227         Ops.push_back(SE.getMulExpr(C, Remainder));
3228       return nullptr;
3229     }
3230   }
3231   return S;
3232 }
3233
3234 /// \brief Helper function for LSRInstance::GenerateReassociations.
3235 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3236                                              const Formula &Base,
3237                                              unsigned Depth, size_t Idx,
3238                                              bool IsScaledReg) {
3239   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3240   SmallVector<const SCEV *, 8> AddOps;
3241   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3242   if (Remainder)
3243     AddOps.push_back(Remainder);
3244
3245   if (AddOps.size() == 1)
3246     return;
3247
3248   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3249                                                      JE = AddOps.end();
3250        J != JE; ++J) {
3251
3252     // Loop-variant "unknown" values are uninteresting; we won't be able to
3253     // do anything meaningful with them.
3254     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3255       continue;
3256
3257     // Don't pull a constant into a register if the constant could be folded
3258     // into an immediate field.
3259     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3260                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3261       continue;
3262
3263     // Collect all operands except *J.
3264     SmallVector<const SCEV *, 8> InnerAddOps(
3265         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3266     InnerAddOps.append(std::next(J),
3267                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3268
3269     // Don't leave just a constant behind in a register if the constant could
3270     // be folded into an immediate field.
3271     if (InnerAddOps.size() == 1 &&
3272         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3273                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3274       continue;
3275
3276     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3277     if (InnerSum->isZero())
3278       continue;
3279     Formula F = Base;
3280
3281     // Add the remaining pieces of the add back into the new formula.
3282     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3283     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3284         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3285                                 InnerSumSC->getValue()->getZExtValue())) {
3286       F.UnfoldedOffset =
3287           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3288       if (IsScaledReg)
3289         F.ScaledReg = nullptr;
3290       else
3291         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3292     } else if (IsScaledReg)
3293       F.ScaledReg = InnerSum;
3294     else
3295       F.BaseRegs[Idx] = InnerSum;
3296
3297     // Add J as its own register, or an unfolded immediate.
3298     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3299     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3300         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3301                                 SC->getValue()->getZExtValue()))
3302       F.UnfoldedOffset =
3303           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3304     else
3305       F.BaseRegs.push_back(*J);
3306     // We may have changed the number of register in base regs, adjust the
3307     // formula accordingly.
3308     F.canonicalize();
3309
3310     if (InsertFormula(LU, LUIdx, F))
3311       // If that formula hadn't been seen before, recurse to find more like
3312       // it.
3313       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3314   }
3315 }
3316
3317 /// Split out subexpressions from adds and the bases of addrecs.
3318 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3319                                          Formula Base, unsigned Depth) {
3320   assert(Base.isCanonical() && "Input must be in the canonical form");
3321   // Arbitrarily cap recursion to protect compile time.
3322   if (Depth >= 3)
3323     return;
3324
3325   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3326     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3327
3328   if (Base.Scale == 1)
3329     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3330                                /* Idx */ -1, /* IsScaledReg */ true);
3331 }
3332
3333 ///  Generate a formula consisting of all of the loop-dominating registers added
3334 /// into a single register.
3335 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3336                                        Formula Base) {
3337   // This method is only interesting on a plurality of registers.
3338   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3339     return;
3340
3341   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3342   // processing the formula.
3343   Base.unscale();
3344   Formula F = Base;
3345   F.BaseRegs.clear();
3346   SmallVector<const SCEV *, 4> Ops;
3347   for (const SCEV *BaseReg : Base.BaseRegs) {
3348     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3349         !SE.hasComputableLoopEvolution(BaseReg, L))
3350       Ops.push_back(BaseReg);
3351     else
3352       F.BaseRegs.push_back(BaseReg);
3353   }
3354   if (Ops.size() > 1) {
3355     const SCEV *Sum = SE.getAddExpr(Ops);
3356     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3357     // opportunity to fold something. For now, just ignore such cases
3358     // rather than proceed with zero in a register.
3359     if (!Sum->isZero()) {
3360       F.BaseRegs.push_back(Sum);
3361       F.canonicalize();
3362       (void)InsertFormula(LU, LUIdx, F);
3363     }
3364   }
3365 }
3366
3367 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3368 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3369                                               const Formula &Base, size_t Idx,
3370                                               bool IsScaledReg) {
3371   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3372   GlobalValue *GV = ExtractSymbol(G, SE);
3373   if (G->isZero() || !GV)
3374     return;
3375   Formula F = Base;
3376   F.BaseGV = GV;
3377   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3378     return;
3379   if (IsScaledReg)
3380     F.ScaledReg = G;
3381   else
3382     F.BaseRegs[Idx] = G;
3383   (void)InsertFormula(LU, LUIdx, F);
3384 }
3385
3386 /// Generate reuse formulae using symbolic offsets.
3387 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3388                                           Formula Base) {
3389   // We can't add a symbolic offset if the address already contains one.
3390   if (Base.BaseGV) return;
3391
3392   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3393     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3394   if (Base.Scale == 1)
3395     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3396                                 /* IsScaledReg */ true);
3397 }
3398
3399 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3400 void LSRInstance::GenerateConstantOffsetsImpl(
3401     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3402     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3403   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3404   for (int64_t Offset : Worklist) {
3405     Formula F = Base;
3406     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3407     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3408                    LU.AccessTy, F)) {
3409       // Add the offset to the base register.
3410       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3411       // If it cancelled out, drop the base register, otherwise update it.
3412       if (NewG->isZero()) {
3413         if (IsScaledReg) {
3414           F.Scale = 0;
3415           F.ScaledReg = nullptr;
3416         } else
3417           F.deleteBaseReg(F.BaseRegs[Idx]);
3418         F.canonicalize();
3419       } else if (IsScaledReg)
3420         F.ScaledReg = NewG;
3421       else
3422         F.BaseRegs[Idx] = NewG;
3423
3424       (void)InsertFormula(LU, LUIdx, F);
3425     }
3426   }
3427
3428   int64_t Imm = ExtractImmediate(G, SE);
3429   if (G->isZero() || Imm == 0)
3430     return;
3431   Formula F = Base;
3432   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3433   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3434     return;
3435   if (IsScaledReg)
3436     F.ScaledReg = G;
3437   else
3438     F.BaseRegs[Idx] = G;
3439   (void)InsertFormula(LU, LUIdx, F);
3440 }
3441
3442 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3443 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3444                                           Formula Base) {
3445   // TODO: For now, just add the min and max offset, because it usually isn't
3446   // worthwhile looking at everything inbetween.
3447   SmallVector<int64_t, 2> Worklist;
3448   Worklist.push_back(LU.MinOffset);
3449   if (LU.MaxOffset != LU.MinOffset)
3450     Worklist.push_back(LU.MaxOffset);
3451
3452   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3453     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3454   if (Base.Scale == 1)
3455     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3456                                 /* IsScaledReg */ true);
3457 }
3458
3459 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3460 /// == y -> x*c == y*c.
3461 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3462                                          Formula Base) {
3463   if (LU.Kind != LSRUse::ICmpZero) return;
3464
3465   // Determine the integer type for the base formula.
3466   Type *IntTy = Base.getType();
3467   if (!IntTy) return;
3468   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3469
3470   // Don't do this if there is more than one offset.
3471   if (LU.MinOffset != LU.MaxOffset) return;
3472
3473   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3474
3475   // Check each interesting stride.
3476   for (int64_t Factor : Factors) {
3477     // Check that the multiplication doesn't overflow.
3478     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3479       continue;
3480     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3481     if (NewBaseOffset / Factor != Base.BaseOffset)
3482       continue;
3483     // If the offset will be truncated at this use, check that it is in bounds.
3484     if (!IntTy->isPointerTy() &&
3485         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3486       continue;
3487
3488     // Check that multiplying with the use offset doesn't overflow.
3489     int64_t Offset = LU.MinOffset;
3490     if (Offset == INT64_MIN && Factor == -1)
3491       continue;
3492     Offset = (uint64_t)Offset * Factor;
3493     if (Offset / Factor != LU.MinOffset)
3494       continue;
3495     // If the offset will be truncated at this use, check that it is in bounds.
3496     if (!IntTy->isPointerTy() &&
3497         !ConstantInt::isValueValidForType(IntTy, Offset))
3498       continue;
3499
3500     Formula F = Base;
3501     F.BaseOffset = NewBaseOffset;
3502
3503     // Check that this scale is legal.
3504     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3505       continue;
3506
3507     // Compensate for the use having MinOffset built into it.
3508     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3509
3510     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3511
3512     // Check that multiplying with each base register doesn't overflow.
3513     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3514       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3515       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3516         goto next;
3517     }
3518
3519     // Check that multiplying with the scaled register doesn't overflow.
3520     if (F.ScaledReg) {
3521       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3522       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3523         continue;
3524     }
3525
3526     // Check that multiplying with the unfolded offset doesn't overflow.
3527     if (F.UnfoldedOffset != 0) {
3528       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3529         continue;
3530       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3531       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3532         continue;
3533       // If the offset will be truncated, check that it is in bounds.
3534       if (!IntTy->isPointerTy() &&
3535           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3536         continue;
3537     }
3538
3539     // If we make it here and it's legal, add it.
3540     (void)InsertFormula(LU, LUIdx, F);
3541   next:;
3542   }
3543 }
3544
3545 /// Generate stride factor reuse formulae by making use of scaled-offset address
3546 /// modes, for example.
3547 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3548   // Determine the integer type for the base formula.
3549   Type *IntTy = Base.getType();
3550   if (!IntTy) return;
3551
3552   // If this Formula already has a scaled register, we can't add another one.
3553   // Try to unscale the formula to generate a better scale.
3554   if (Base.Scale != 0 && !Base.unscale())
3555     return;
3556
3557   assert(Base.Scale == 0 && "unscale did not did its job!");
3558
3559   // Check each interesting stride.
3560   for (int64_t Factor : Factors) {
3561     Base.Scale = Factor;
3562     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3563     // Check whether this scale is going to be legal.
3564     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3565                     Base)) {
3566       // As a special-case, handle special out-of-loop Basic users specially.
3567       // TODO: Reconsider this special case.
3568       if (LU.Kind == LSRUse::Basic &&
3569           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3570                      LU.AccessTy, Base) &&
3571           LU.AllFixupsOutsideLoop)
3572         LU.Kind = LSRUse::Special;
3573       else
3574         continue;
3575     }
3576     // For an ICmpZero, negating a solitary base register won't lead to
3577     // new solutions.
3578     if (LU.Kind == LSRUse::ICmpZero &&
3579         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3580       continue;
3581     // For each addrec base reg, apply the scale, if possible.
3582     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3583       if (const SCEVAddRecExpr *AR =
3584             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3585         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3586         if (FactorS->isZero())
3587           continue;
3588         // Divide out the factor, ignoring high bits, since we'll be
3589         // scaling the value back up in the end.
3590         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3591           // TODO: This could be optimized to avoid all the copying.
3592           Formula F = Base;
3593           F.ScaledReg = Quotient;
3594           F.deleteBaseReg(F.BaseRegs[i]);
3595           // The canonical representation of 1*reg is reg, which is already in
3596           // Base. In that case, do not try to insert the formula, it will be
3597           // rejected anyway.
3598           if (F.Scale == 1 && F.BaseRegs.empty())
3599             continue;
3600           (void)InsertFormula(LU, LUIdx, F);
3601         }
3602       }
3603   }
3604 }
3605
3606 /// Generate reuse formulae from different IV types.
3607 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3608   // Don't bother truncating symbolic values.
3609   if (Base.BaseGV) return;
3610
3611   // Determine the integer type for the base formula.
3612   Type *DstTy = Base.getType();
3613   if (!DstTy) return;
3614   DstTy = SE.getEffectiveSCEVType(DstTy);
3615
3616   for (Type *SrcTy : Types) {
3617     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3618       Formula F = Base;
3619
3620       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3621       for (const SCEV *&BaseReg : F.BaseRegs)
3622         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3623
3624       // TODO: This assumes we've done basic processing on all uses and
3625       // have an idea what the register usage is.
3626       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3627         continue;
3628
3629       (void)InsertFormula(LU, LUIdx, F);
3630     }
3631   }
3632 }
3633
3634 namespace {
3635
3636 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3637 /// modifications so that the search phase doesn't have to worry about the data
3638 /// structures moving underneath it.
3639 struct WorkItem {
3640   size_t LUIdx;
3641   int64_t Imm;
3642   const SCEV *OrigReg;
3643
3644   WorkItem(size_t LI, int64_t I, const SCEV *R)
3645     : LUIdx(LI), Imm(I), OrigReg(R) {}
3646
3647   void print(raw_ostream &OS) const;
3648   void dump() const;
3649 };
3650
3651 }
3652
3653 void WorkItem::print(raw_ostream &OS) const {
3654   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3655      << " , add offset " << Imm;
3656 }
3657
3658 LLVM_DUMP_METHOD
3659 void WorkItem::dump() const {
3660   print(errs()); errs() << '\n';
3661 }
3662
3663 /// Look for registers which are a constant distance apart and try to form reuse
3664 /// opportunities between them.
3665 void LSRInstance::GenerateCrossUseConstantOffsets() {
3666   // Group the registers by their value without any added constant offset.
3667   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3668   DenseMap<const SCEV *, ImmMapTy> Map;
3669   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3670   SmallVector<const SCEV *, 8> Sequence;
3671   for (const SCEV *Use : RegUses) {
3672     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3673     int64_t Imm = ExtractImmediate(Reg, SE);
3674     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3675     if (Pair.second)
3676       Sequence.push_back(Reg);
3677     Pair.first->second.insert(std::make_pair(Imm, Use));
3678     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3679   }
3680
3681   // Now examine each set of registers with the same base value. Build up
3682   // a list of work to do and do the work in a separate step so that we're
3683   // not adding formulae and register counts while we're searching.
3684   SmallVector<WorkItem, 32> WorkItems;
3685   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3686   for (const SCEV *Reg : Sequence) {
3687     const ImmMapTy &Imms = Map.find(Reg)->second;
3688
3689     // It's not worthwhile looking for reuse if there's only one offset.
3690     if (Imms.size() == 1)
3691       continue;
3692
3693     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3694           for (const auto &Entry : Imms)
3695             dbgs() << ' ' << Entry.first;
3696           dbgs() << '\n');
3697
3698     // Examine each offset.
3699     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3700          J != JE; ++J) {
3701       const SCEV *OrigReg = J->second;
3702
3703       int64_t JImm = J->first;
3704       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3705
3706       if (!isa<SCEVConstant>(OrigReg) &&
3707           UsedByIndicesMap[Reg].count() == 1) {
3708         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3709         continue;
3710       }
3711
3712       // Conservatively examine offsets between this orig reg a few selected
3713       // other orig regs.
3714       ImmMapTy::const_iterator OtherImms[] = {
3715         Imms.begin(), std::prev(Imms.end()),
3716         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3717                          2)
3718       };
3719       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3720         ImmMapTy::const_iterator M = OtherImms[i];
3721         if (M == J || M == JE) continue;
3722
3723         // Compute the difference between the two.
3724         int64_t Imm = (uint64_t)JImm - M->first;
3725         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3726              LUIdx = UsedByIndices.find_next(LUIdx))
3727           // Make a memo of this use, offset, and register tuple.
3728           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3729             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3730       }
3731     }
3732   }
3733
3734   Map.clear();
3735   Sequence.clear();
3736   UsedByIndicesMap.clear();
3737   UniqueItems.clear();
3738
3739   // Now iterate through the worklist and add new formulae.
3740   for (const WorkItem &WI : WorkItems) {
3741     size_t LUIdx = WI.LUIdx;
3742     LSRUse &LU = Uses[LUIdx];
3743     int64_t Imm = WI.Imm;
3744     const SCEV *OrigReg = WI.OrigReg;
3745
3746     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3747     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3748     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3749
3750     // TODO: Use a more targeted data structure.
3751     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3752       Formula F = LU.Formulae[L];
3753       // FIXME: The code for the scaled and unscaled registers looks
3754       // very similar but slightly different. Investigate if they
3755       // could be merged. That way, we would not have to unscale the
3756       // Formula.
3757       F.unscale();
3758       // Use the immediate in the scaled register.
3759       if (F.ScaledReg == OrigReg) {
3760         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3761         // Don't create 50 + reg(-50).
3762         if (F.referencesReg(SE.getSCEV(
3763                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3764           continue;
3765         Formula NewF = F;
3766         NewF.BaseOffset = Offset;
3767         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3768                         NewF))
3769           continue;
3770         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3771
3772         // If the new scale is a constant in a register, and adding the constant
3773         // value to the immediate would produce a value closer to zero than the
3774         // immediate itself, then the formula isn't worthwhile.
3775         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3776           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3777               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3778                   .ule(std::abs(NewF.BaseOffset)))
3779             continue;
3780
3781         // OK, looks good.
3782         NewF.canonicalize();
3783         (void)InsertFormula(LU, LUIdx, NewF);
3784       } else {
3785         // Use the immediate in a base register.
3786         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3787           const SCEV *BaseReg = F.BaseRegs[N];
3788           if (BaseReg != OrigReg)
3789             continue;
3790           Formula NewF = F;
3791           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3792           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3793                           LU.Kind, LU.AccessTy, NewF)) {
3794             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3795               continue;
3796             NewF = F;
3797             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3798           }
3799           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3800
3801           // If the new formula has a constant in a register, and adding the
3802           // constant value to the immediate would produce a value closer to
3803           // zero than the immediate itself, then the formula isn't worthwhile.
3804           for (const SCEV *NewReg : NewF.BaseRegs)
3805             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3806               if ((C->getAPInt() + NewF.BaseOffset)
3807                       .abs()
3808                       .slt(std::abs(NewF.BaseOffset)) &&
3809                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3810                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3811                 goto skip_formula;
3812
3813           // Ok, looks good.
3814           NewF.canonicalize();
3815           (void)InsertFormula(LU, LUIdx, NewF);
3816           break;
3817         skip_formula:;
3818         }
3819       }
3820     }
3821   }
3822 }
3823
3824 /// Generate formulae for each use.
3825 void
3826 LSRInstance::GenerateAllReuseFormulae() {
3827   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3828   // queries are more precise.
3829   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3830     LSRUse &LU = Uses[LUIdx];
3831     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3832       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3833     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3834       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3835   }
3836   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3837     LSRUse &LU = Uses[LUIdx];
3838     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3839       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3840     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3841       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3842     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3843       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3844     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3845       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3846   }
3847   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3848     LSRUse &LU = Uses[LUIdx];
3849     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3850       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3851   }
3852
3853   GenerateCrossUseConstantOffsets();
3854
3855   DEBUG(dbgs() << "\n"
3856                   "After generating reuse formulae:\n";
3857         print_uses(dbgs()));
3858 }
3859
3860 /// If there are multiple formulae with the same set of registers used
3861 /// by other uses, pick the best one and delete the others.
3862 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3863   DenseSet<const SCEV *> VisitedRegs;
3864   SmallPtrSet<const SCEV *, 16> Regs;
3865   SmallPtrSet<const SCEV *, 16> LoserRegs;
3866 #ifndef NDEBUG
3867   bool ChangedFormulae = false;
3868 #endif
3869
3870   // Collect the best formula for each unique set of shared registers. This
3871   // is reset for each use.
3872   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3873     BestFormulaeTy;
3874   BestFormulaeTy BestFormulae;
3875
3876   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3877     LSRUse &LU = Uses[LUIdx];
3878     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3879
3880     bool Any = false;
3881     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3882          FIdx != NumForms; ++FIdx) {
3883       Formula &F = LU.Formulae[FIdx];
3884
3885       // Some formulas are instant losers. For example, they may depend on
3886       // nonexistent AddRecs from other loops. These need to be filtered
3887       // immediately, otherwise heuristics could choose them over others leading
3888       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3889       // avoids the need to recompute this information across formulae using the
3890       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3891       // the corresponding bad register from the Regs set.
3892       Cost CostF;
3893       Regs.clear();
3894       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3895                         &LoserRegs);
3896       if (CostF.isLoser()) {
3897         // During initial formula generation, undesirable formulae are generated
3898         // by uses within other loops that have some non-trivial address mode or
3899         // use the postinc form of the IV. LSR needs to provide these formulae
3900         // as the basis of rediscovering the desired formula that uses an AddRec
3901         // corresponding to the existing phi. Once all formulae have been
3902         // generated, these initial losers may be pruned.
3903         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3904               dbgs() << "\n");
3905       }
3906       else {
3907         SmallVector<const SCEV *, 4> Key;
3908         for (const SCEV *Reg : F.BaseRegs) {
3909           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3910             Key.push_back(Reg);
3911         }
3912         if (F.ScaledReg &&
3913             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3914           Key.push_back(F.ScaledReg);
3915         // Unstable sort by host order ok, because this is only used for
3916         // uniquifying.
3917         std::sort(Key.begin(), Key.end());
3918
3919         std::pair<BestFormulaeTy::const_iterator, bool> P =
3920           BestFormulae.insert(std::make_pair(Key, FIdx));
3921         if (P.second)
3922           continue;
3923
3924         Formula &Best = LU.Formulae[P.first->second];
3925
3926         Cost CostBest;
3927         Regs.clear();
3928         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3929                              DT, LU);
3930         if (CostF < CostBest)
3931           std::swap(F, Best);
3932         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3933               dbgs() << "\n"
3934                         "    in favor of formula "; Best.print(dbgs());
3935               dbgs() << '\n');
3936       }
3937 #ifndef NDEBUG
3938       ChangedFormulae = true;
3939 #endif
3940       LU.DeleteFormula(F);
3941       --FIdx;
3942       --NumForms;
3943       Any = true;
3944     }
3945
3946     // Now that we've filtered out some formulae, recompute the Regs set.
3947     if (Any)
3948       LU.RecomputeRegs(LUIdx, RegUses);
3949
3950     // Reset this to prepare for the next use.
3951     BestFormulae.clear();
3952   }
3953
3954   DEBUG(if (ChangedFormulae) {
3955           dbgs() << "\n"
3956                     "After filtering out undesirable candidates:\n";
3957           print_uses(dbgs());
3958         });
3959 }
3960
3961 // This is a rough guess that seems to work fairly well.
3962 static const size_t ComplexityLimit = UINT16_MAX;
3963
3964 /// Estimate the worst-case number of solutions the solver might have to
3965 /// consider. It almost never considers this many solutions because it prune the
3966 /// search space, but the pruning isn't always sufficient.
3967 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3968   size_t Power = 1;
3969   for (const LSRUse &LU : Uses) {
3970     size_t FSize = LU.Formulae.size();
3971     if (FSize >= ComplexityLimit) {
3972       Power = ComplexityLimit;
3973       break;
3974     }
3975     Power *= FSize;
3976     if (Power >= ComplexityLimit)
3977       break;
3978   }
3979   return Power;
3980 }
3981
3982 /// When one formula uses a superset of the registers of another formula, it
3983 /// won't help reduce register pressure (though it may not necessarily hurt
3984 /// register pressure); remove it to simplify the system.
3985 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3986   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3987     DEBUG(dbgs() << "The search space is too complex.\n");
3988
3989     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3990                     "which use a superset of registers used by other "
3991                     "formulae.\n");
3992
3993     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3994       LSRUse &LU = Uses[LUIdx];
3995       bool Any = false;
3996       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3997         Formula &F = LU.Formulae[i];
3998         // Look for a formula with a constant or GV in a register. If the use
3999         // also has a formula with that same value in an immediate field,
4000         // delete the one that uses a register.
4001         for (SmallVectorImpl<const SCEV *>::const_iterator
4002              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4003           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4004             Formula NewF = F;
4005             NewF.BaseOffset += C->getValue()->getSExtValue();
4006             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4007                                 (I - F.BaseRegs.begin()));
4008             if (LU.HasFormulaWithSameRegs(NewF)) {
4009               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4010               LU.DeleteFormula(F);
4011               --i;
4012               --e;
4013               Any = true;
4014               break;
4015             }
4016           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4017             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4018               if (!F.BaseGV) {
4019                 Formula NewF = F;
4020                 NewF.BaseGV = GV;
4021                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4022                                     (I - F.BaseRegs.begin()));
4023                 if (LU.HasFormulaWithSameRegs(NewF)) {
4024                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4025                         dbgs() << '\n');
4026                   LU.DeleteFormula(F);
4027                   --i;
4028                   --e;
4029                   Any = true;
4030                   break;
4031                 }
4032               }
4033           }
4034         }
4035       }
4036       if (Any)
4037         LU.RecomputeRegs(LUIdx, RegUses);
4038     }
4039
4040     DEBUG(dbgs() << "After pre-selection:\n";
4041           print_uses(dbgs()));
4042   }
4043 }
4044
4045 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4046 /// allocate a single register for them.
4047 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4048   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4049     return;
4050
4051   DEBUG(dbgs() << "The search space is too complex.\n"
4052                   "Narrowing the search space by assuming that uses separated "
4053                   "by a constant offset will use the same registers.\n");
4054
4055   // This is especially useful for unrolled loops.
4056
4057   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4058     LSRUse &LU = Uses[LUIdx];
4059     for (const Formula &F : LU.Formulae) {
4060       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4061         continue;
4062
4063       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4064       if (!LUThatHas)
4065         continue;
4066
4067       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4068                               LU.Kind, LU.AccessTy))
4069         continue;
4070
4071       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4072
4073       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4074
4075       // Update the relocs to reference the new use.
4076       for (LSRFixup &Fixup : Fixups) {
4077         if (Fixup.LUIdx == LUIdx) {
4078           Fixup.LUIdx = LUThatHas - &Uses.front();
4079           Fixup.Offset += F.BaseOffset;
4080           // Add the new offset to LUThatHas' offset list.
4081           if (LUThatHas->Offsets.back() != Fixup.Offset) {
4082             LUThatHas->Offsets.push_back(Fixup.Offset);
4083             if (Fixup.Offset > LUThatHas->MaxOffset)
4084               LUThatHas->MaxOffset = Fixup.Offset;
4085             if (Fixup.Offset < LUThatHas->MinOffset)
4086               LUThatHas->MinOffset = Fixup.Offset;
4087           }
4088           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4089         }
4090         if (Fixup.LUIdx == NumUses-1)
4091           Fixup.LUIdx = LUIdx;
4092       }
4093
4094       // Delete formulae from the new use which are no longer legal.
4095       bool Any = false;
4096       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4097         Formula &F = LUThatHas->Formulae[i];
4098         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4099                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4100           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4101                 dbgs() << '\n');
4102           LUThatHas->DeleteFormula(F);
4103           --i;
4104           --e;
4105           Any = true;
4106         }
4107       }
4108
4109       if (Any)
4110         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4111
4112       // Delete the old use.
4113       DeleteUse(LU, LUIdx);
4114       --LUIdx;
4115       --NumUses;
4116       break;
4117     }
4118   }
4119
4120   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4121 }
4122
4123 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4124 /// we've done more filtering, as it may be able to find more formulae to
4125 /// eliminate.
4126 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4127   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4128     DEBUG(dbgs() << "The search space is too complex.\n");
4129
4130     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4131                     "undesirable dedicated registers.\n");
4132
4133     FilterOutUndesirableDedicatedRegisters();
4134
4135     DEBUG(dbgs() << "After pre-selection:\n";
4136           print_uses(dbgs()));
4137   }
4138 }
4139
4140 /// Pick a register which seems likely to be profitable, and then in any use
4141 /// which has any reference to that register, delete all formulae which do not
4142 /// reference that register.
4143 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4144   // With all other options exhausted, loop until the system is simple
4145   // enough to handle.
4146   SmallPtrSet<const SCEV *, 4> Taken;
4147   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4148     // Ok, we have too many of formulae on our hands to conveniently handle.
4149     // Use a rough heuristic to thin out the list.
4150     DEBUG(dbgs() << "The search space is too complex.\n");
4151
4152     // Pick the register which is used by the most LSRUses, which is likely
4153     // to be a good reuse register candidate.
4154     const SCEV *Best = nullptr;
4155     unsigned BestNum = 0;
4156     for (const SCEV *Reg : RegUses) {
4157       if (Taken.count(Reg))
4158         continue;
4159       if (!Best)
4160         Best = Reg;
4161       else {
4162         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4163         if (Count > BestNum) {
4164           Best = Reg;
4165           BestNum = Count;
4166         }
4167       }
4168     }
4169
4170     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4171                  << " will yield profitable reuse.\n");
4172     Taken.insert(Best);
4173
4174     // In any use with formulae which references this register, delete formulae
4175     // which don't reference it.
4176     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4177       LSRUse &LU = Uses[LUIdx];
4178       if (!LU.Regs.count(Best)) continue;
4179
4180       bool Any = false;
4181       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4182         Formula &F = LU.Formulae[i];
4183         if (!F.referencesReg(Best)) {
4184           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4185           LU.DeleteFormula(F);
4186           --e;
4187           --i;
4188           Any = true;
4189           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4190           continue;
4191         }
4192       }
4193
4194       if (Any)
4195         LU.RecomputeRegs(LUIdx, RegUses);
4196     }
4197
4198     DEBUG(dbgs() << "After pre-selection:\n";
4199           print_uses(dbgs()));
4200   }
4201 }
4202
4203 /// If there are an extraordinary number of formulae to choose from, use some
4204 /// rough heuristics to prune down the number of formulae. This keeps the main
4205 /// solver from taking an extraordinary amount of time in some worst-case
4206 /// scenarios.
4207 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4208   NarrowSearchSpaceByDetectingSupersets();
4209   NarrowSearchSpaceByCollapsingUnrolledCode();
4210   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4211   NarrowSearchSpaceByPickingWinnerRegs();
4212 }
4213
4214 /// This is the recursive solver.
4215 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4216                                Cost &SolutionCost,
4217                                SmallVectorImpl<const Formula *> &Workspace,
4218                                const Cost &CurCost,
4219                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4220                                DenseSet<const SCEV *> &VisitedRegs) const {
4221   // Some ideas:
4222   //  - prune more:
4223   //    - use more aggressive filtering
4224   //    - sort the formula so that the most profitable solutions are found first
4225   //    - sort the uses too
4226   //  - search faster:
4227   //    - don't compute a cost, and then compare. compare while computing a cost
4228   //      and bail early.
4229   //    - track register sets with SmallBitVector
4230
4231   const LSRUse &LU = Uses[Workspace.size()];
4232
4233   // If this use references any register that's already a part of the
4234   // in-progress solution, consider it a requirement that a formula must
4235   // reference that register in order to be considered. This prunes out
4236   // unprofitable searching.
4237   SmallSetVector<const SCEV *, 4> ReqRegs;
4238   for (const SCEV *S : CurRegs)
4239     if (LU.Regs.count(S))
4240       ReqRegs.insert(S);
4241
4242   SmallPtrSet<const SCEV *, 16> NewRegs;
4243   Cost NewCost;
4244   for (const Formula &F : LU.Formulae) {
4245     // Ignore formulae which may not be ideal in terms of register reuse of
4246     // ReqRegs.  The formula should use all required registers before
4247     // introducing new ones.
4248     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4249     for (const SCEV *Reg : ReqRegs) {
4250       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4251           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
4252           F.BaseRegs.end()) {
4253         --NumReqRegsToFind;
4254         if (NumReqRegsToFind == 0)
4255           break;
4256       }
4257     }
4258     if (NumReqRegsToFind != 0) {
4259       // If none of the formulae satisfied the required registers, then we could
4260       // clear ReqRegs and try again. Currently, we simply give up in this case.
4261       continue;
4262     }
4263
4264     // Evaluate the cost of the current formula. If it's already worse than
4265     // the current best, prune the search at that point.
4266     NewCost = CurCost;
4267     NewRegs = CurRegs;
4268     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4269                         LU);
4270     if (NewCost < SolutionCost) {
4271       Workspace.push_back(&F);
4272       if (Workspace.size() != Uses.size()) {
4273         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4274                      NewRegs, VisitedRegs);
4275         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4276           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4277       } else {
4278         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4279               dbgs() << ".\n Regs:";
4280               for (const SCEV *S : NewRegs)
4281                 dbgs() << ' ' << *S;
4282               dbgs() << '\n');
4283
4284         SolutionCost = NewCost;
4285         Solution = Workspace;
4286       }
4287       Workspace.pop_back();
4288     }
4289   }
4290 }
4291
4292 /// Choose one formula from each use. Return the results in the given Solution
4293 /// vector.
4294 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4295   SmallVector<const Formula *, 8> Workspace;
4296   Cost SolutionCost;
4297   SolutionCost.Lose();
4298   Cost CurCost;
4299   SmallPtrSet<const SCEV *, 16> CurRegs;
4300   DenseSet<const SCEV *> VisitedRegs;
4301   Workspace.reserve(Uses.size());
4302
4303   // SolveRecurse does all the work.
4304   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4305                CurRegs, VisitedRegs);
4306   if (Solution.empty()) {
4307     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4308     return;
4309   }
4310
4311   // Ok, we've now made all our decisions.
4312   DEBUG(dbgs() << "\n"
4313                   "The chosen solution requires "; SolutionCost.print(dbgs());
4314         dbgs() << ":\n";
4315         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4316           dbgs() << "  ";
4317           Uses[i].print(dbgs());
4318           dbgs() << "\n"
4319                     "    ";
4320           Solution[i]->print(dbgs());
4321           dbgs() << '\n';
4322         });
4323
4324   assert(Solution.size() == Uses.size() && "Malformed solution!");
4325 }
4326
4327 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4328 /// we can go while still being dominated by the input positions. This helps
4329 /// canonicalize the insert position, which encourages sharing.
4330 BasicBlock::iterator
4331 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4332                                  const SmallVectorImpl<Instruction *> &Inputs)
4333                                                                          const {
4334   for (;;) {
4335     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4336     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4337
4338     BasicBlock *IDom;
4339     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4340       if (!Rung) return IP;
4341       Rung = Rung->getIDom();
4342       if (!Rung) return IP;
4343       IDom = Rung->getBlock();
4344
4345       // Don't climb into a loop though.
4346       const Loop *IDomLoop = LI.getLoopFor(IDom);
4347       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4348       if (IDomDepth <= IPLoopDepth &&
4349           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4350         break;
4351     }
4352
4353     bool AllDominate = true;
4354     Instruction *BetterPos = nullptr;
4355     Instruction *Tentative = IDom->getTerminator();
4356     for (Instruction *Inst : Inputs) {
4357       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4358         AllDominate = false;
4359         break;
4360       }
4361       // Attempt to find an insert position in the middle of the block,
4362       // instead of at the end, so that it can be used for other expansions.
4363       if (IDom == Inst->getParent() &&
4364           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4365         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4366     }
4367     if (!AllDominate)
4368       break;
4369     if (BetterPos)
4370       IP = BetterPos->getIterator();
4371     else
4372       IP = Tentative->getIterator();
4373   }
4374
4375   return IP;
4376 }
4377
4378 /// Determine an input position which will be dominated by the operands and
4379 /// which will dominate the result.
4380 BasicBlock::iterator
4381 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4382                                            const LSRFixup &LF,
4383                                            const LSRUse &LU,
4384                                            SCEVExpander &Rewriter) const {
4385   // Collect some instructions which must be dominated by the
4386   // expanding replacement. These must be dominated by any operands that
4387   // will be required in the expansion.
4388   SmallVector<Instruction *, 4> Inputs;
4389   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4390     Inputs.push_back(I);
4391   if (LU.Kind == LSRUse::ICmpZero)
4392     if (Instruction *I =
4393           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4394       Inputs.push_back(I);
4395   if (LF.PostIncLoops.count(L)) {
4396     if (LF.isUseFullyOutsideLoop(L))
4397       Inputs.push_back(L->getLoopLatch()->getTerminator());
4398     else
4399       Inputs.push_back(IVIncInsertPos);
4400   }
4401   // The expansion must also be dominated by the increment positions of any
4402   // loops it for which it is using post-inc mode.
4403   for (const Loop *PIL : LF.PostIncLoops) {
4404     if (PIL == L) continue;
4405
4406     // Be dominated by the loop exit.
4407     SmallVector<BasicBlock *, 4> ExitingBlocks;
4408     PIL->getExitingBlocks(ExitingBlocks);
4409     if (!ExitingBlocks.empty()) {
4410       BasicBlock *BB = ExitingBlocks[0];
4411       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4412         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4413       Inputs.push_back(BB->getTerminator());
4414     }
4415   }
4416
4417   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4418          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4419          "Insertion point must be a normal instruction");
4420
4421   // Then, climb up the immediate dominator tree as far as we can go while
4422   // still being dominated by the input positions.
4423   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4424
4425   // Don't insert instructions before PHI nodes.
4426   while (isa<PHINode>(IP)) ++IP;
4427
4428   // Ignore landingpad instructions.
4429   while (!isa<TerminatorInst>(IP) && IP->isEHPad()) ++IP;
4430
4431   // Ignore debug intrinsics.
4432   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4433
4434   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4435   // IP consistent across expansions and allows the previously inserted
4436   // instructions to be reused by subsequent expansion.
4437   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4438     ++IP;
4439
4440   return IP;
4441 }
4442
4443 /// Emit instructions for the leading candidate expression for this LSRUse (this
4444 /// is called "expanding").
4445 Value *LSRInstance::Expand(const LSRFixup &LF,
4446                            const Formula &F,
4447                            BasicBlock::iterator IP,
4448                            SCEVExpander &Rewriter,
4449                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4450   const LSRUse &LU = Uses[LF.LUIdx];
4451   if (LU.RigidFormula)
4452     return LF.OperandValToReplace;
4453
4454   // Determine an input position which will be dominated by the operands and
4455   // which will dominate the result.
4456   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4457
4458   // Inform the Rewriter if we have a post-increment use, so that it can
4459   // perform an advantageous expansion.
4460   Rewriter.setPostInc(LF.PostIncLoops);
4461
4462   // This is the type that the user actually needs.
4463   Type *OpTy = LF.OperandValToReplace->getType();
4464   // This will be the type that we'll initially expand to.
4465   Type *Ty = F.getType();
4466   if (!Ty)
4467     // No type known; just expand directly to the ultimate type.
4468     Ty = OpTy;
4469   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4470     // Expand directly to the ultimate type if it's the right size.
4471     Ty = OpTy;
4472   // This is the type to do integer arithmetic in.
4473   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4474
4475   // Build up a list of operands to add together to form the full base.
4476   SmallVector<const SCEV *, 8> Ops;
4477
4478   // Expand the BaseRegs portion.
4479   for (const SCEV *Reg : F.BaseRegs) {
4480     assert(!Reg->isZero() && "Zero allocated in a base register!");
4481
4482     // If we're expanding for a post-inc user, make the post-inc adjustment.
4483     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4484     Reg = TransformForPostIncUse(Denormalize, Reg,
4485                                  LF.UserInst, LF.OperandValToReplace,
4486                                  Loops, SE, DT);
4487
4488     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP)));
4489   }
4490
4491   // Expand the ScaledReg portion.
4492   Value *ICmpScaledV = nullptr;
4493   if (F.Scale != 0) {
4494     const SCEV *ScaledS = F.ScaledReg;
4495
4496     // If we're expanding for a post-inc user, make the post-inc adjustment.
4497     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4498     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4499                                      LF.UserInst, LF.OperandValToReplace,
4500                                      Loops, SE, DT);
4501
4502     if (LU.Kind == LSRUse::ICmpZero) {
4503       // Expand ScaleReg as if it was part of the base regs.
4504       if (F.Scale == 1)
4505         Ops.push_back(
4506             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)));
4507       else {
4508         // An interesting way of "folding" with an icmp is to use a negated
4509         // scale, which we'll implement by inserting it into the other operand
4510         // of the icmp.
4511         assert(F.Scale == -1 &&
4512                "The only scale supported by ICmpZero uses is -1!");
4513         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP);
4514       }
4515     } else {
4516       // Otherwise just expand the scaled register and an explicit scale,
4517       // which is expected to be matched as part of the address.
4518
4519       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4520       // Unless the addressing mode will not be folded.
4521       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4522           isAMCompletelyFolded(TTI, LU, F)) {
4523         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4524         Ops.clear();
4525         Ops.push_back(SE.getUnknown(FullV));
4526       }
4527       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP));
4528       if (F.Scale != 1)
4529         ScaledS =
4530             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4531       Ops.push_back(ScaledS);
4532     }
4533   }
4534
4535   // Expand the GV portion.
4536   if (F.BaseGV) {
4537     // Flush the operand list to suppress SCEVExpander hoisting.
4538     if (!Ops.empty()) {
4539       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4540       Ops.clear();
4541       Ops.push_back(SE.getUnknown(FullV));
4542     }
4543     Ops.push_back(SE.getUnknown(F.BaseGV));
4544   }
4545
4546   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4547   // unfolded offsets. LSR assumes they both live next to their uses.
4548   if (!Ops.empty()) {
4549     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4550     Ops.clear();
4551     Ops.push_back(SE.getUnknown(FullV));
4552   }
4553
4554   // Expand the immediate portion.
4555   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4556   if (Offset != 0) {
4557     if (LU.Kind == LSRUse::ICmpZero) {
4558       // The other interesting way of "folding" with an ICmpZero is to use a
4559       // negated immediate.
4560       if (!ICmpScaledV)
4561         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4562       else {
4563         Ops.push_back(SE.getUnknown(ICmpScaledV));
4564         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4565       }
4566     } else {
4567       // Just add the immediate values. These again are expected to be matched
4568       // as part of the address.
4569       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4570     }
4571   }
4572
4573   // Expand the unfolded offset portion.
4574   int64_t UnfoldedOffset = F.UnfoldedOffset;
4575   if (UnfoldedOffset != 0) {
4576     // Just add the immediate values.
4577     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4578                                                        UnfoldedOffset)));
4579   }
4580
4581   // Emit instructions summing all the operands.
4582   const SCEV *FullS = Ops.empty() ?
4583                       SE.getConstant(IntTy, 0) :
4584                       SE.getAddExpr(Ops);
4585   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP);
4586
4587   // We're done expanding now, so reset the rewriter.
4588   Rewriter.clearPostInc();
4589
4590   // An ICmpZero Formula represents an ICmp which we're handling as a
4591   // comparison against zero. Now that we've expanded an expression for that
4592   // form, update the ICmp's other operand.
4593   if (LU.Kind == LSRUse::ICmpZero) {
4594     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4595     DeadInsts.emplace_back(CI->getOperand(1));
4596     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4597                            "a scale at the same time!");
4598     if (F.Scale == -1) {
4599       if (ICmpScaledV->getType() != OpTy) {
4600         Instruction *Cast =
4601           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4602                                                    OpTy, false),
4603                            ICmpScaledV, OpTy, "tmp", CI);
4604         ICmpScaledV = Cast;
4605       }
4606       CI->setOperand(1, ICmpScaledV);
4607     } else {
4608       // A scale of 1 means that the scale has been expanded as part of the
4609       // base regs.
4610       assert((F.Scale == 0 || F.Scale == 1) &&
4611              "ICmp does not support folding a global value and "
4612              "a scale at the same time!");
4613       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4614                                            -(uint64_t)Offset);
4615       if (C->getType() != OpTy)
4616         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4617                                                           OpTy, false),
4618                                   C, OpTy);
4619
4620       CI->setOperand(1, C);
4621     }
4622   }
4623
4624   return FullV;
4625 }
4626
4627 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4628 /// effectively happens in their predecessor blocks, so the expression may need
4629 /// to be expanded in multiple places.
4630 void LSRInstance::RewriteForPHI(PHINode *PN,
4631                                 const LSRFixup &LF,
4632                                 const Formula &F,
4633                                 SCEVExpander &Rewriter,
4634                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
4635   DenseMap<BasicBlock *, Value *> Inserted;
4636   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4637     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4638       BasicBlock *BB = PN->getIncomingBlock(i);
4639
4640       // If this is a critical edge, split the edge so that we do not insert
4641       // the code on all predecessor/successor paths.  We do this unless this
4642       // is the canonical backedge for this loop, which complicates post-inc
4643       // users.
4644       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4645           !isa<IndirectBrInst>(BB->getTerminator())) {
4646         BasicBlock *Parent = PN->getParent();
4647         Loop *PNLoop = LI.getLoopFor(Parent);
4648         if (!PNLoop || Parent != PNLoop->getHeader()) {
4649           // Split the critical edge.
4650           BasicBlock *NewBB = nullptr;
4651           if (!Parent->isLandingPad()) {
4652             NewBB = SplitCriticalEdge(BB, Parent,
4653                                       CriticalEdgeSplittingOptions(&DT, &LI)
4654                                           .setMergeIdenticalEdges()
4655                                           .setDontDeleteUselessPHIs());
4656           } else {
4657             SmallVector<BasicBlock*, 2> NewBBs;
4658             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4659             NewBB = NewBBs[0];
4660           }
4661           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4662           // phi predecessors are identical. The simple thing to do is skip
4663           // splitting in this case rather than complicate the API.
4664           if (NewBB) {
4665             // If PN is outside of the loop and BB is in the loop, we want to
4666             // move the block to be immediately before the PHI block, not
4667             // immediately after BB.
4668             if (L->contains(BB) && !L->contains(PN))
4669               NewBB->moveBefore(PN->getParent());
4670
4671             // Splitting the edge can reduce the number of PHI entries we have.
4672             e = PN->getNumIncomingValues();
4673             BB = NewBB;
4674             i = PN->getBasicBlockIndex(BB);
4675           }
4676         }
4677       }
4678
4679       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4680         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4681       if (!Pair.second)
4682         PN->setIncomingValue(i, Pair.first->second);
4683       else {
4684         Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(),
4685                               Rewriter, DeadInsts);
4686
4687         // If this is reuse-by-noop-cast, insert the noop cast.
4688         Type *OpTy = LF.OperandValToReplace->getType();
4689         if (FullV->getType() != OpTy)
4690           FullV =
4691             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4692                                                      OpTy, false),
4693                              FullV, LF.OperandValToReplace->getType(),
4694                              "tmp", BB->getTerminator());
4695
4696         PN->setIncomingValue(i, FullV);
4697         Pair.first->second = FullV;
4698       }
4699     }
4700 }
4701
4702 /// Emit instructions for the leading candidate expression for this LSRUse (this
4703 /// is called "expanding"), and update the UserInst to reference the newly
4704 /// expanded value.
4705 void LSRInstance::Rewrite(const LSRFixup &LF,
4706                           const Formula &F,
4707                           SCEVExpander &Rewriter,
4708                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4709   // First, find an insertion point that dominates UserInst. For PHI nodes,
4710   // find the nearest block which dominates all the relevant uses.
4711   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4712     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
4713   } else {
4714     Value *FullV =
4715         Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4716
4717     // If this is reuse-by-noop-cast, insert the noop cast.
4718     Type *OpTy = LF.OperandValToReplace->getType();
4719     if (FullV->getType() != OpTy) {
4720       Instruction *Cast =
4721         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4722                          FullV, OpTy, "tmp", LF.UserInst);
4723       FullV = Cast;
4724     }
4725
4726     // Update the user. ICmpZero is handled specially here (for now) because
4727     // Expand may have updated one of the operands of the icmp already, and
4728     // its new value may happen to be equal to LF.OperandValToReplace, in
4729     // which case doing replaceUsesOfWith leads to replacing both operands
4730     // with the same value. TODO: Reorganize this.
4731     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4732       LF.UserInst->setOperand(0, FullV);
4733     else
4734       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4735   }
4736
4737   DeadInsts.emplace_back(LF.OperandValToReplace);
4738 }
4739
4740 /// Rewrite all the fixup locations with new values, following the chosen
4741 /// solution.
4742 void LSRInstance::ImplementSolution(
4743     const SmallVectorImpl<const Formula *> &Solution) {
4744   // Keep track of instructions we may have made dead, so that
4745   // we can remove them after we are done working.
4746   SmallVector<WeakVH, 16> DeadInsts;
4747
4748   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4749                         "lsr");
4750 #ifndef NDEBUG
4751   Rewriter.setDebugType(DEBUG_TYPE);
4752 #endif
4753   Rewriter.disableCanonicalMode();
4754   Rewriter.enableLSRMode();
4755   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4756
4757   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4758   for (const IVChain &Chain : IVChainVec) {
4759     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4760       Rewriter.setChainedPhi(PN);
4761   }
4762
4763   // Expand the new value definitions and update the users.
4764   for (const LSRFixup &Fixup : Fixups) {
4765     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
4766
4767     Changed = true;
4768   }
4769
4770   for (const IVChain &Chain : IVChainVec) {
4771     GenerateIVChain(Chain, Rewriter, DeadInsts);
4772     Changed = true;
4773   }
4774   // Clean up after ourselves. This must be done before deleting any
4775   // instructions.
4776   Rewriter.clear();
4777
4778   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4779 }
4780
4781 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4782                          DominatorTree &DT, LoopInfo &LI,
4783                          const TargetTransformInfo &TTI)
4784     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4785       IVIncInsertPos(nullptr) {
4786   // If LoopSimplify form is not available, stay out of trouble.
4787   if (!L->isLoopSimplifyForm())
4788     return;
4789
4790   // If there's no interesting work to be done, bail early.
4791   if (IU.empty()) return;
4792
4793   // If there's too much analysis to be done, bail early. We won't be able to
4794   // model the problem anyway.
4795   unsigned NumUsers = 0;
4796   for (const IVStrideUse &U : IU) {
4797     if (++NumUsers > MaxIVUsers) {
4798       (void)U;
4799       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4800       return;
4801     }
4802   }
4803
4804 #ifndef NDEBUG
4805   // All dominating loops must have preheaders, or SCEVExpander may not be able
4806   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4807   //
4808   // IVUsers analysis should only create users that are dominated by simple loop
4809   // headers. Since this loop should dominate all of its users, its user list
4810   // should be empty if this loop itself is not within a simple loop nest.
4811   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4812        Rung; Rung = Rung->getIDom()) {
4813     BasicBlock *BB = Rung->getBlock();
4814     const Loop *DomLoop = LI.getLoopFor(BB);
4815     if (DomLoop && DomLoop->getHeader() == BB) {
4816       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4817     }
4818   }
4819 #endif // DEBUG
4820
4821   DEBUG(dbgs() << "\nLSR on loop ";
4822         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4823         dbgs() << ":\n");
4824
4825   // First, perform some low-level loop optimizations.
4826   OptimizeShadowIV();
4827   OptimizeLoopTermCond();
4828
4829   // If loop preparation eliminates all interesting IV users, bail.
4830   if (IU.empty()) return;
4831
4832   // Skip nested loops until we can model them better with formulae.
4833   if (!L->empty()) {
4834     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4835     return;
4836   }
4837
4838   // Start collecting data and preparing for the solver.
4839   CollectChains();
4840   CollectInterestingTypesAndFactors();
4841   CollectFixupsAndInitialFormulae();
4842   CollectLoopInvariantFixupsAndFormulae();
4843
4844   assert(!Uses.empty() && "IVUsers reported at least one use");
4845   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4846         print_uses(dbgs()));
4847
4848   // Now use the reuse data to generate a bunch of interesting ways
4849   // to formulate the values needed for the uses.
4850   GenerateAllReuseFormulae();
4851
4852   FilterOutUndesirableDedicatedRegisters();
4853   NarrowSearchSpaceUsingHeuristics();
4854
4855   SmallVector<const Formula *, 8> Solution;
4856   Solve(Solution);
4857
4858   // Release memory that is no longer needed.
4859   Factors.clear();
4860   Types.clear();
4861   RegUses.clear();
4862
4863   if (Solution.empty())
4864     return;
4865
4866 #ifndef NDEBUG
4867   // Formulae should be legal.
4868   for (const LSRUse &LU : Uses) {
4869     for (const Formula &F : LU.Formulae)
4870       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4871                         F) && "Illegal formula generated!");
4872   };
4873 #endif
4874
4875   // Now that we've decided what we want, make it so.
4876   ImplementSolution(Solution);
4877 }
4878
4879 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4880   if (Factors.empty() && Types.empty()) return;
4881
4882   OS << "LSR has identified the following interesting factors and types: ";
4883   bool First = true;
4884
4885   for (int64_t Factor : Factors) {
4886     if (!First) OS << ", ";
4887     First = false;
4888     OS << '*' << Factor;
4889   }
4890
4891   for (Type *Ty : Types) {
4892     if (!First) OS << ", ";
4893     First = false;
4894     OS << '(' << *Ty << ')';
4895   }
4896   OS << '\n';
4897 }
4898
4899 void LSRInstance::print_fixups(raw_ostream &OS) const {
4900   OS << "LSR is examining the following fixup sites:\n";
4901   for (const LSRFixup &LF : Fixups) {
4902     dbgs() << "  ";
4903     LF.print(OS);
4904     OS << '\n';
4905   }
4906 }
4907
4908 void LSRInstance::print_uses(raw_ostream &OS) const {
4909   OS << "LSR is examining the following uses:\n";
4910   for (const LSRUse &LU : Uses) {
4911     dbgs() << "  ";
4912     LU.print(OS);
4913     OS << '\n';
4914     for (const Formula &F : LU.Formulae) {
4915       OS << "    ";
4916       F.print(OS);
4917       OS << '\n';
4918     }
4919   }
4920 }
4921
4922 void LSRInstance::print(raw_ostream &OS) const {
4923   print_factors_and_types(OS);
4924   print_fixups(OS);
4925   print_uses(OS);
4926 }
4927
4928 LLVM_DUMP_METHOD
4929 void LSRInstance::dump() const {
4930   print(errs()); errs() << '\n';
4931 }
4932
4933 namespace {
4934
4935 class LoopStrengthReduce : public LoopPass {
4936 public:
4937   static char ID; // Pass ID, replacement for typeid
4938   LoopStrengthReduce();
4939
4940 private:
4941   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4942   void getAnalysisUsage(AnalysisUsage &AU) const override;
4943 };
4944
4945 }
4946
4947 char LoopStrengthReduce::ID = 0;
4948 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4949                 "Loop Strength Reduction", false, false)
4950 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4951 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4952 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4953 INITIALIZE_PASS_DEPENDENCY(IVUsers)
4954 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
4955 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4956 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4957                 "Loop Strength Reduction", false, false)
4958
4959
4960 Pass *llvm::createLoopStrengthReducePass() {
4961   return new LoopStrengthReduce();
4962 }
4963
4964 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4965   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4966 }
4967
4968 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4969   // We split critical edges, so we change the CFG.  However, we do update
4970   // many analyses if they are around.
4971   AU.addPreservedID(LoopSimplifyID);
4972
4973   AU.addRequired<LoopInfoWrapperPass>();
4974   AU.addPreserved<LoopInfoWrapperPass>();
4975   AU.addRequiredID(LoopSimplifyID);
4976   AU.addRequired<DominatorTreeWrapperPass>();
4977   AU.addPreserved<DominatorTreeWrapperPass>();
4978   AU.addRequired<ScalarEvolutionWrapperPass>();
4979   AU.addPreserved<ScalarEvolutionWrapperPass>();
4980   // Requiring LoopSimplify a second time here prevents IVUsers from running
4981   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4982   AU.addRequiredID(LoopSimplifyID);
4983   AU.addRequired<IVUsers>();
4984   AU.addPreserved<IVUsers>();
4985   AU.addRequired<TargetTransformInfoWrapperPass>();
4986 }
4987
4988 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4989   if (skipOptnoneFunction(L))
4990     return false;
4991
4992   auto &IU = getAnalysis<IVUsers>();
4993   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4994   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4995   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4996   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
4997       *L->getHeader()->getParent());
4998   bool Changed = false;
4999
5000   // Run the main LSR transformation.
5001   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5002
5003   // Remove any extra phis created by processing inner loops.
5004   Changed |= DeleteDeadPHIs(L->getHeader());
5005   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5006     SmallVector<WeakVH, 16> DeadInsts;
5007     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5008     SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL,
5009                           "lsr");
5010 #ifndef NDEBUG
5011     Rewriter.setDebugType(DEBUG_TYPE);
5012 #endif
5013     unsigned numFolded = Rewriter.replaceCongruentIVs(
5014         L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
5015         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5016             *L->getHeader()->getParent()));
5017     if (numFolded) {
5018       Changed = true;
5019       DeleteTriviallyDeadInstructions(DeadInsts);
5020       DeleteDeadPHIs(L->getHeader());
5021     }
5022   }
5023   return Changed;
5024 }