[RS4GC] Fix rematerialization of bitcast of bitcast.
[oota-llvm.git] / lib / Transforms / Scalar / LoopInterchange.cpp
1 //===- LoopInterchange.cpp - Loop interchange pass------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/AliasSetTracker.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpander.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/LoopUtils.h"
43 #include "llvm/Transforms/Utils/SSAUpdater.h"
44 using namespace llvm;
45
46 #define DEBUG_TYPE "loop-interchange"
47
48 namespace {
49
50 typedef SmallVector<Loop *, 8> LoopVector;
51
52 // TODO: Check if we can use a sparse matrix here.
53 typedef std::vector<std::vector<char>> CharMatrix;
54
55 // Maximum number of dependencies that can be handled in the dependency matrix.
56 static const unsigned MaxMemInstrCount = 100;
57
58 // Maximum loop depth supported.
59 static const unsigned MaxLoopNestDepth = 10;
60
61 struct LoopInterchange;
62
63 #ifdef DUMP_DEP_MATRICIES
64 void printDepMatrix(CharMatrix &DepMatrix) {
65   for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) {
66     std::vector<char> Vec = *I;
67     for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II)
68       DEBUG(dbgs() << *II << " ");
69     DEBUG(dbgs() << "\n");
70   }
71 }
72 #endif
73
74 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
75                                      Loop *L, DependenceAnalysis *DA) {
76   typedef SmallVector<Value *, 16> ValueVector;
77   ValueVector MemInstr;
78
79   if (Level > MaxLoopNestDepth) {
80     DEBUG(dbgs() << "Cannot handle loops of depth greater than "
81                  << MaxLoopNestDepth << "\n");
82     return false;
83   }
84
85   // For each block.
86   for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
87        BB != BE; ++BB) {
88     // Scan the BB and collect legal loads and stores.
89     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E;
90          ++I) {
91       Instruction *Ins = dyn_cast<Instruction>(I);
92       if (!Ins)
93         return false;
94       LoadInst *Ld = dyn_cast<LoadInst>(I);
95       StoreInst *St = dyn_cast<StoreInst>(I);
96       if (!St && !Ld)
97         continue;
98       if (Ld && !Ld->isSimple())
99         return false;
100       if (St && !St->isSimple())
101         return false;
102       MemInstr.push_back(&*I);
103     }
104   }
105
106   DEBUG(dbgs() << "Found " << MemInstr.size()
107                << " Loads and Stores to analyze\n");
108
109   ValueVector::iterator I, IE, J, JE;
110
111   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
112     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
113       std::vector<char> Dep;
114       Instruction *Src = dyn_cast<Instruction>(*I);
115       Instruction *Des = dyn_cast<Instruction>(*J);
116       if (Src == Des)
117         continue;
118       if (isa<LoadInst>(Src) && isa<LoadInst>(Des))
119         continue;
120       if (auto D = DA->depends(Src, Des, true)) {
121         DEBUG(dbgs() << "Found Dependency between Src=" << Src << " Des=" << Des
122                      << "\n");
123         if (D->isFlow()) {
124           // TODO: Handle Flow dependence.Check if it is sufficient to populate
125           // the Dependence Matrix with the direction reversed.
126           DEBUG(dbgs() << "Flow dependence not handled");
127           return false;
128         }
129         if (D->isAnti()) {
130           DEBUG(dbgs() << "Found Anti dependence \n");
131           unsigned Levels = D->getLevels();
132           char Direction;
133           for (unsigned II = 1; II <= Levels; ++II) {
134             const SCEV *Distance = D->getDistance(II);
135             const SCEVConstant *SCEVConst =
136                 dyn_cast_or_null<SCEVConstant>(Distance);
137             if (SCEVConst) {
138               const ConstantInt *CI = SCEVConst->getValue();
139               if (CI->isNegative())
140                 Direction = '<';
141               else if (CI->isZero())
142                 Direction = '=';
143               else
144                 Direction = '>';
145               Dep.push_back(Direction);
146             } else if (D->isScalar(II)) {
147               Direction = 'S';
148               Dep.push_back(Direction);
149             } else {
150               unsigned Dir = D->getDirection(II);
151               if (Dir == Dependence::DVEntry::LT ||
152                   Dir == Dependence::DVEntry::LE)
153                 Direction = '<';
154               else if (Dir == Dependence::DVEntry::GT ||
155                        Dir == Dependence::DVEntry::GE)
156                 Direction = '>';
157               else if (Dir == Dependence::DVEntry::EQ)
158                 Direction = '=';
159               else
160                 Direction = '*';
161               Dep.push_back(Direction);
162             }
163           }
164           while (Dep.size() != Level) {
165             Dep.push_back('I');
166           }
167
168           DepMatrix.push_back(Dep);
169           if (DepMatrix.size() > MaxMemInstrCount) {
170             DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
171                          << " dependencies inside loop\n");
172             return false;
173           }
174         }
175       }
176     }
177   }
178
179   // We don't have a DepMatrix to check legality return false.
180   if (DepMatrix.size() == 0)
181     return false;
182   return true;
183 }
184
185 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
186 // matrix by exchanging the two columns.
187 static void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx,
188                                    unsigned ToIndx) {
189   unsigned numRows = DepMatrix.size();
190   for (unsigned i = 0; i < numRows; ++i) {
191     char TmpVal = DepMatrix[i][ToIndx];
192     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
193     DepMatrix[i][FromIndx] = TmpVal;
194   }
195 }
196
197 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
198 // '>'
199 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
200                                    unsigned Column) {
201   for (unsigned i = 0; i <= Column; ++i) {
202     if (DepMatrix[Row][i] == '<')
203       return false;
204     if (DepMatrix[Row][i] == '>')
205       return true;
206   }
207   // All dependencies were '=','S' or 'I'
208   return false;
209 }
210
211 // Checks if no dependence exist in the dependency matrix in Row before Column.
212 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
213                                  unsigned Column) {
214   for (unsigned i = 0; i < Column; ++i) {
215     if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' ||
216         DepMatrix[Row][i] != 'I')
217       return false;
218   }
219   return true;
220 }
221
222 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
223                                 unsigned OuterLoopId, char InnerDep,
224                                 char OuterDep) {
225
226   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
227     return false;
228
229   if (InnerDep == OuterDep)
230     return true;
231
232   // It is legal to interchange if and only if after interchange no row has a
233   // '>' direction as the leftmost non-'='.
234
235   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
236     return true;
237
238   if (InnerDep == '<')
239     return true;
240
241   if (InnerDep == '>') {
242     // If OuterLoopId represents outermost loop then interchanging will make the
243     // 1st dependency as '>'
244     if (OuterLoopId == 0)
245       return false;
246
247     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
248     // interchanging will result in this row having an outermost non '='
249     // dependency of '>'
250     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
251       return true;
252   }
253
254   return false;
255 }
256
257 // Checks if it is legal to interchange 2 loops.
258 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
259 // if
260 // the direction matrix, after the same permutation is applied to its columns,
261 // has no ">" direction as the leftmost non-"=" direction in any row.
262 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
263                                       unsigned InnerLoopId,
264                                       unsigned OuterLoopId) {
265
266   unsigned NumRows = DepMatrix.size();
267   // For each row check if it is valid to interchange.
268   for (unsigned Row = 0; Row < NumRows; ++Row) {
269     char InnerDep = DepMatrix[Row][InnerLoopId];
270     char OuterDep = DepMatrix[Row][OuterLoopId];
271     if (InnerDep == '*' || OuterDep == '*')
272       return false;
273     else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep,
274                                   OuterDep))
275       return false;
276   }
277   return true;
278 }
279
280 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
281
282   DEBUG(dbgs() << "Calling populateWorklist called\n");
283   LoopVector LoopList;
284   Loop *CurrentLoop = &L;
285   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
286   while (!Vec->empty()) {
287     // The current loop has multiple subloops in it hence it is not tightly
288     // nested.
289     // Discard all loops above it added into Worklist.
290     if (Vec->size() != 1) {
291       LoopList.clear();
292       return;
293     }
294     LoopList.push_back(CurrentLoop);
295     CurrentLoop = Vec->front();
296     Vec = &CurrentLoop->getSubLoops();
297   }
298   LoopList.push_back(CurrentLoop);
299   V.push_back(std::move(LoopList));
300 }
301
302 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
303   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
304   if (InnerIndexVar)
305     return InnerIndexVar;
306   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
307     return nullptr;
308   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
309     PHINode *PhiVar = cast<PHINode>(I);
310     Type *PhiTy = PhiVar->getType();
311     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
312         !PhiTy->isPointerTy())
313       return nullptr;
314     const SCEVAddRecExpr *AddRec =
315         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
316     if (!AddRec || !AddRec->isAffine())
317       continue;
318     const SCEV *Step = AddRec->getStepRecurrence(*SE);
319     const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
320     if (!C)
321       continue;
322     // Found the induction variable.
323     // FIXME: Handle loops with more than one induction variable. Note that,
324     // currently, legality makes sure we have only one induction variable.
325     return PhiVar;
326   }
327   return nullptr;
328 }
329
330 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
331 class LoopInterchangeLegality {
332 public:
333   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
334                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA)
335       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
336         PreserveLCSSA(PreserveLCSSA), InnerLoopHasReduction(false) {}
337
338   /// Check if the loops can be interchanged.
339   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
340                            CharMatrix &DepMatrix);
341   /// Check if the loop structure is understood. We do not handle triangular
342   /// loops for now.
343   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
344
345   bool currentLimitations();
346
347   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
348
349 private:
350   bool tightlyNested(Loop *Outer, Loop *Inner);
351   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
352   bool areAllUsesReductions(Instruction *Ins, Loop *L);
353   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
354   bool findInductionAndReductions(Loop *L,
355                                   SmallVector<PHINode *, 8> &Inductions,
356                                   SmallVector<PHINode *, 8> &Reductions);
357   Loop *OuterLoop;
358   Loop *InnerLoop;
359
360   ScalarEvolution *SE;
361   LoopInfo *LI;
362   DominatorTree *DT;
363   bool PreserveLCSSA;
364
365   bool InnerLoopHasReduction;
366 };
367
368 /// LoopInterchangeProfitability checks if it is profitable to interchange the
369 /// loop.
370 class LoopInterchangeProfitability {
371 public:
372   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE)
373       : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {}
374
375   /// Check if the loop interchange is profitable.
376   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
377                     CharMatrix &DepMatrix);
378
379 private:
380   int getInstrOrderCost();
381
382   Loop *OuterLoop;
383   Loop *InnerLoop;
384
385   /// Scev analysis.
386   ScalarEvolution *SE;
387 };
388
389 /// LoopInterchangeTransform interchanges the loop.
390 class LoopInterchangeTransform {
391 public:
392   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
393                            LoopInfo *LI, DominatorTree *DT,
394                            BasicBlock *LoopNestExit,
395                            bool InnerLoopContainsReductions)
396       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
397         LoopExit(LoopNestExit),
398         InnerLoopHasReduction(InnerLoopContainsReductions) {}
399
400   /// Interchange OuterLoop and InnerLoop.
401   bool transform();
402   void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
403   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
404
405 private:
406   void splitInnerLoopLatch(Instruction *);
407   void splitOuterLoopLatch();
408   void splitInnerLoopHeader();
409   bool adjustLoopLinks();
410   void adjustLoopPreheaders();
411   void adjustOuterLoopPreheader();
412   void adjustInnerLoopPreheader();
413   bool adjustLoopBranches();
414   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
415                            BasicBlock *NewPred);
416
417   Loop *OuterLoop;
418   Loop *InnerLoop;
419
420   /// Scev analysis.
421   ScalarEvolution *SE;
422   LoopInfo *LI;
423   DominatorTree *DT;
424   BasicBlock *LoopExit;
425   bool InnerLoopHasReduction;
426 };
427
428 // Main LoopInterchange Pass.
429 struct LoopInterchange : public FunctionPass {
430   static char ID;
431   ScalarEvolution *SE;
432   LoopInfo *LI;
433   DependenceAnalysis *DA;
434   DominatorTree *DT;
435   bool PreserveLCSSA;
436   LoopInterchange()
437       : FunctionPass(ID), SE(nullptr), LI(nullptr), DA(nullptr), DT(nullptr) {
438     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
439   }
440
441   void getAnalysisUsage(AnalysisUsage &AU) const override {
442     AU.addRequired<ScalarEvolutionWrapperPass>();
443     AU.addRequired<AAResultsWrapperPass>();
444     AU.addRequired<DominatorTreeWrapperPass>();
445     AU.addRequired<LoopInfoWrapperPass>();
446     AU.addRequired<DependenceAnalysis>();
447     AU.addRequiredID(LoopSimplifyID);
448     AU.addRequiredID(LCSSAID);
449   }
450
451   bool runOnFunction(Function &F) override {
452     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
453     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
454     DA = &getAnalysis<DependenceAnalysis>();
455     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
456     DT = DTWP ? &DTWP->getDomTree() : nullptr;
457     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
458
459     // Build up a worklist of loop pairs to analyze.
460     SmallVector<LoopVector, 8> Worklist;
461
462     for (Loop *L : *LI)
463       populateWorklist(*L, Worklist);
464
465     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
466     bool Changed = true;
467     while (!Worklist.empty()) {
468       LoopVector LoopList = Worklist.pop_back_val();
469       Changed = processLoopList(LoopList, F);
470     }
471     return Changed;
472   }
473
474   bool isComputableLoopNest(LoopVector LoopList) {
475     for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) {
476       Loop *L = *I;
477       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
478       if (ExitCountOuter == SE->getCouldNotCompute()) {
479         DEBUG(dbgs() << "Couldn't compute Backedge count\n");
480         return false;
481       }
482       if (L->getNumBackEdges() != 1) {
483         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
484         return false;
485       }
486       if (!L->getExitingBlock()) {
487         DEBUG(dbgs() << "Loop Doesn't have unique exit block\n");
488         return false;
489       }
490     }
491     return true;
492   }
493
494   unsigned selectLoopForInterchange(LoopVector LoopList) {
495     // TODO: Add a better heuristic to select the loop to be interchanged based
496     // on the dependence matrix. Currently we select the innermost loop.
497     return LoopList.size() - 1;
498   }
499
500   bool processLoopList(LoopVector LoopList, Function &F) {
501
502     bool Changed = false;
503     CharMatrix DependencyMatrix;
504     if (LoopList.size() < 2) {
505       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
506       return false;
507     }
508     if (!isComputableLoopNest(LoopList)) {
509       DEBUG(dbgs() << "Not vaild loop candidate for interchange\n");
510       return false;
511     }
512     Loop *OuterMostLoop = *(LoopList.begin());
513
514     DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size()
515                  << "\n");
516
517     if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(),
518                                   OuterMostLoop, DA)) {
519       DEBUG(dbgs() << "Populating Dependency matrix failed\n");
520       return false;
521     }
522 #ifdef DUMP_DEP_MATRICIES
523     DEBUG(dbgs() << "Dependence before inter change \n");
524     printDepMatrix(DependencyMatrix);
525 #endif
526
527     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
528     BranchInst *OuterMostLoopLatchBI =
529         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
530     if (!OuterMostLoopLatchBI)
531       return false;
532
533     // Since we currently do not handle LCSSA PHI's any failure in loop
534     // condition will now branch to LoopNestExit.
535     // TODO: This should be removed once we handle LCSSA PHI nodes.
536
537     // Get the Outermost loop exit.
538     BasicBlock *LoopNestExit;
539     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
540       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
541     else
542       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
543
544     if (isa<PHINode>(LoopNestExit->begin())) {
545       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
546                       "since on failure all loops branch to loop nest exit.\n");
547       return false;
548     }
549
550     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
551     // Move the selected loop outwards to the best possible position.
552     for (unsigned i = SelecLoopId; i > 0; i--) {
553       bool Interchanged =
554           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
555       if (!Interchanged)
556         return Changed;
557       // Loops interchanged reflect the same in LoopList
558       std::swap(LoopList[i - 1], LoopList[i]);
559
560       // Update the DependencyMatrix
561       interChangeDepedencies(DependencyMatrix, i, i - 1);
562       DT->recalculate(F);
563 #ifdef DUMP_DEP_MATRICIES
564       DEBUG(dbgs() << "Dependence after inter change \n");
565       printDepMatrix(DependencyMatrix);
566 #endif
567       Changed |= Interchanged;
568     }
569     return Changed;
570   }
571
572   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
573                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
574                    std::vector<std::vector<char>> &DependencyMatrix) {
575
576     DEBUG(dbgs() << "Processing Innder Loop Id = " << InnerLoopId
577                  << " and OuterLoopId = " << OuterLoopId << "\n");
578     Loop *InnerLoop = LoopList[InnerLoopId];
579     Loop *OuterLoop = LoopList[OuterLoopId];
580
581     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
582                                 PreserveLCSSA);
583     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
584       DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
585       return false;
586     }
587     DEBUG(dbgs() << "Loops are legal to interchange\n");
588     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE);
589     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
590       DEBUG(dbgs() << "Interchanging Loops not profitable\n");
591       return false;
592     }
593
594     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
595                                  LoopNestExit, LIL.hasInnerLoopReduction());
596     LIT.transform();
597     DEBUG(dbgs() << "Loops interchanged\n");
598     return true;
599   }
600 };
601
602 } // end of namespace
603 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
604   return !std::any_of(Ins->user_begin(), Ins->user_end(), [=](User *U) -> bool {
605     PHINode *UserIns = dyn_cast<PHINode>(U);
606     RecurrenceDescriptor RD;
607     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
608   });
609 }
610
611 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
612     BasicBlock *BB) {
613   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
614     // Load corresponding to reduction PHI's are safe while concluding if
615     // tightly nested.
616     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
617       if (!areAllUsesReductions(L, InnerLoop))
618         return true;
619     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
620       return true;
621   }
622   return false;
623 }
624
625 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
626     BasicBlock *BB) {
627   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
628     // Stores corresponding to reductions are safe while concluding if tightly
629     // nested.
630     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
631       PHINode *PHI = dyn_cast<PHINode>(L->getOperand(0));
632       if (!PHI)
633         return true;
634     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
635       return true;
636   }
637   return false;
638 }
639
640 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
641   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
642   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
643   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
644
645   DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n");
646
647   // A perfectly nested loop will not have any branch in between the outer and
648   // inner block i.e. outer header will branch to either inner preheader and
649   // outerloop latch.
650   BranchInst *outerLoopHeaderBI =
651       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
652   if (!outerLoopHeaderBI)
653     return false;
654   unsigned num = outerLoopHeaderBI->getNumSuccessors();
655   for (unsigned i = 0; i < num; i++) {
656     if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader &&
657         outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch)
658       return false;
659   }
660
661   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n");
662   // We do not have any basic block in between now make sure the outer header
663   // and outer loop latch doesn't contain any unsafe instructions.
664   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
665       containsUnsafeInstructionsInLatch(OuterLoopLatch))
666     return false;
667
668   DEBUG(dbgs() << "Loops are perfectly nested \n");
669   // We have a perfect loop nest.
670   return true;
671 }
672
673
674 bool LoopInterchangeLegality::isLoopStructureUnderstood(
675     PHINode *InnerInduction) {
676
677   unsigned Num = InnerInduction->getNumOperands();
678   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
679   for (unsigned i = 0; i < Num; ++i) {
680     Value *Val = InnerInduction->getOperand(i);
681     if (isa<Constant>(Val))
682       continue;
683     Instruction *I = dyn_cast<Instruction>(Val);
684     if (!I)
685       return false;
686     // TODO: Handle triangular loops.
687     // e.g. for(int i=0;i<N;i++)
688     //        for(int j=i;j<N;j++)
689     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
690     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
691             InnerLoopPreheader &&
692         !OuterLoop->isLoopInvariant(I)) {
693       return false;
694     }
695   }
696   return true;
697 }
698
699 bool LoopInterchangeLegality::findInductionAndReductions(
700     Loop *L, SmallVector<PHINode *, 8> &Inductions,
701     SmallVector<PHINode *, 8> &Reductions) {
702   if (!L->getLoopLatch() || !L->getLoopPredecessor())
703     return false;
704   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
705     RecurrenceDescriptor RD;
706     InductionDescriptor ID;
707     PHINode *PHI = cast<PHINode>(I);
708     if (InductionDescriptor::isInductionPHI(PHI, SE, ID))
709       Inductions.push_back(PHI);
710     else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
711       Reductions.push_back(PHI);
712     else {
713       DEBUG(
714           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
715       return false;
716     }
717   }
718   return true;
719 }
720
721 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
722   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
723     PHINode *PHI = cast<PHINode>(I);
724     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
725     if (PHI->getNumIncomingValues() > 1)
726       return false;
727     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
728     if (!Ins)
729       return false;
730     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
731     // exits lcssa phi else it would not be tightly nested.
732     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
733       return false;
734   }
735   return true;
736 }
737
738 static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
739                                          BasicBlock *LoopHeader) {
740   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
741     unsigned Num = BI->getNumSuccessors();
742     assert(Num == 2);
743     for (unsigned i = 0; i < Num; ++i) {
744       if (BI->getSuccessor(i) == LoopHeader)
745         continue;
746       return BI->getSuccessor(i);
747     }
748   }
749   return nullptr;
750 }
751
752 // This function indicates the current limitations in the transform as a result
753 // of which we do not proceed.
754 bool LoopInterchangeLegality::currentLimitations() {
755
756   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
757   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
758   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
759   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
760   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
761
762   PHINode *InnerInductionVar;
763   SmallVector<PHINode *, 8> Inductions;
764   SmallVector<PHINode *, 8> Reductions;
765   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions))
766     return true;
767
768   // TODO: Currently we handle only loops with 1 induction variable.
769   if (Inductions.size() != 1) {
770     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
771                  << "Failed to interchange due to current limitation\n");
772     return true;
773   }
774   if (Reductions.size() > 0)
775     InnerLoopHasReduction = true;
776
777   InnerInductionVar = Inductions.pop_back_val();
778   Reductions.clear();
779   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions))
780     return true;
781
782   // Outer loop cannot have reduction because then loops will not be tightly
783   // nested.
784   if (!Reductions.empty())
785     return true;
786   // TODO: Currently we handle only loops with 1 induction variable.
787   if (Inductions.size() != 1)
788     return true;
789
790   // TODO: Triangular loops are not handled for now.
791   if (!isLoopStructureUnderstood(InnerInductionVar)) {
792     DEBUG(dbgs() << "Loop structure not understood by pass\n");
793     return true;
794   }
795
796   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
797   BasicBlock *LoopExitBlock =
798       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
799   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true))
800     return true;
801
802   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
803   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false))
804     return true;
805
806   // TODO: Current limitation: Since we split the inner loop latch at the point
807   // were induction variable is incremented (induction.next); We cannot have
808   // more than 1 user of induction.next since it would result in broken code
809   // after split.
810   // e.g.
811   // for(i=0;i<N;i++) {
812   //    for(j = 0;j<M;j++) {
813   //      A[j+1][i+2] = A[j][i]+k;
814   //  }
815   // }
816   bool FoundInduction = false;
817   Instruction *InnerIndexVarInc = nullptr;
818   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
819     InnerIndexVarInc =
820         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
821   else
822     InnerIndexVarInc =
823         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
824
825   if (!InnerIndexVarInc)
826     return true;
827
828   // Since we split the inner loop latch on this induction variable. Make sure
829   // we do not have any instruction between the induction variable and branch
830   // instruction.
831
832   for (auto I = InnerLoopLatch->rbegin(), E = InnerLoopLatch->rend();
833        I != E && !FoundInduction; ++I) {
834     if (isa<BranchInst>(*I) || isa<CmpInst>(*I) || isa<TruncInst>(*I))
835       continue;
836     const Instruction &Ins = *I;
837     // We found an instruction. If this is not induction variable then it is not
838     // safe to split this loop latch.
839     if (!Ins.isIdenticalTo(InnerIndexVarInc))
840       return true;
841     else
842       FoundInduction = true;
843   }
844   // The loop latch ended and we didn't find the induction variable return as
845   // current limitation.
846   if (!FoundInduction)
847     return true;
848
849   return false;
850 }
851
852 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
853                                                   unsigned OuterLoopId,
854                                                   CharMatrix &DepMatrix) {
855
856   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
857     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
858                  << "and OuterLoopId = " << OuterLoopId
859                  << "due to dependence\n");
860     return false;
861   }
862
863   // Create unique Preheaders if we already do not have one.
864   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
865   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
866
867   // Create  a unique outer preheader -
868   // 1) If OuterLoop preheader is not present.
869   // 2) If OuterLoop Preheader is same as OuterLoop Header
870   // 3) If OuterLoop Preheader is same as Header of the previous loop.
871   // 4) If OuterLoop Preheader is Entry node.
872   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
873       isa<PHINode>(OuterLoopPreHeader->begin()) ||
874       !OuterLoopPreHeader->getUniquePredecessor()) {
875     OuterLoopPreHeader =
876         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
877   }
878
879   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
880       InnerLoopPreHeader == OuterLoop->getHeader()) {
881     InnerLoopPreHeader =
882         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
883   }
884
885   // TODO: The loops could not be interchanged due to current limitations in the
886   // transform module.
887   if (currentLimitations()) {
888     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
889     return false;
890   }
891
892   // Check if the loops are tightly nested.
893   if (!tightlyNested(OuterLoop, InnerLoop)) {
894     DEBUG(dbgs() << "Loops not tightly nested\n");
895     return false;
896   }
897
898   return true;
899 }
900
901 int LoopInterchangeProfitability::getInstrOrderCost() {
902   unsigned GoodOrder, BadOrder;
903   BadOrder = GoodOrder = 0;
904   for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end();
905        BI != BE; ++BI) {
906     for (auto I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
907       const Instruction &Ins = *I;
908       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
909         unsigned NumOp = GEP->getNumOperands();
910         bool FoundInnerInduction = false;
911         bool FoundOuterInduction = false;
912         for (unsigned i = 0; i < NumOp; ++i) {
913           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
914           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
915           if (!AR)
916             continue;
917
918           // If we find the inner induction after an outer induction e.g.
919           // for(int i=0;i<N;i++)
920           //   for(int j=0;j<N;j++)
921           //     A[i][j] = A[i-1][j-1]+k;
922           // then it is a good order.
923           if (AR->getLoop() == InnerLoop) {
924             // We found an InnerLoop induction after OuterLoop induction. It is
925             // a good order.
926             FoundInnerInduction = true;
927             if (FoundOuterInduction) {
928               GoodOrder++;
929               break;
930             }
931           }
932           // If we find the outer induction after an inner induction e.g.
933           // for(int i=0;i<N;i++)
934           //   for(int j=0;j<N;j++)
935           //     A[j][i] = A[j-1][i-1]+k;
936           // then it is a bad order.
937           if (AR->getLoop() == OuterLoop) {
938             // We found an OuterLoop induction after InnerLoop induction. It is
939             // a bad order.
940             FoundOuterInduction = true;
941             if (FoundInnerInduction) {
942               BadOrder++;
943               break;
944             }
945           }
946         }
947       }
948     }
949   }
950   return GoodOrder - BadOrder;
951 }
952
953 static bool isProfitabileForVectorization(unsigned InnerLoopId,
954                                           unsigned OuterLoopId,
955                                           CharMatrix &DepMatrix) {
956   // TODO: Improve this heuristic to catch more cases.
957   // If the inner loop is loop independent or doesn't carry any dependency it is
958   // profitable to move this to outer position.
959   unsigned Row = DepMatrix.size();
960   for (unsigned i = 0; i < Row; ++i) {
961     if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I')
962       return false;
963     // TODO: We need to improve this heuristic.
964     if (DepMatrix[i][OuterLoopId] != '=')
965       return false;
966   }
967   // If outer loop has dependence and inner loop is loop independent then it is
968   // profitable to interchange to enable parallelism.
969   return true;
970 }
971
972 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
973                                                 unsigned OuterLoopId,
974                                                 CharMatrix &DepMatrix) {
975
976   // TODO: Add better profitability checks.
977   // e.g
978   // 1) Construct dependency matrix and move the one with no loop carried dep
979   //    inside to enable vectorization.
980
981   // This is rough cost estimation algorithm. It counts the good and bad order
982   // of induction variables in the instruction and allows reordering if number
983   // of bad orders is more than good.
984   int Cost = 0;
985   Cost += getInstrOrderCost();
986   DEBUG(dbgs() << "Cost = " << Cost << "\n");
987   if (Cost < 0)
988     return true;
989
990   // It is not profitable as per current cache profitability model. But check if
991   // we can move this loop outside to improve parallelism.
992   bool ImprovesPar =
993       isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
994   return ImprovesPar;
995 }
996
997 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
998                                                Loop *InnerLoop) {
999   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
1000        ++I) {
1001     if (*I == InnerLoop) {
1002       OuterLoop->removeChildLoop(I);
1003       return;
1004     }
1005   }
1006   llvm_unreachable("Couldn't find loop");
1007 }
1008
1009 void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
1010                                                 Loop *OuterLoop) {
1011   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1012   if (OuterLoopParent) {
1013     // Remove the loop from its parent loop.
1014     removeChildLoop(OuterLoopParent, OuterLoop);
1015     removeChildLoop(OuterLoop, InnerLoop);
1016     OuterLoopParent->addChildLoop(InnerLoop);
1017   } else {
1018     removeChildLoop(OuterLoop, InnerLoop);
1019     LI->changeTopLevelLoop(OuterLoop, InnerLoop);
1020   }
1021
1022   while (!InnerLoop->empty())
1023     OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
1024
1025   InnerLoop->addChildLoop(OuterLoop);
1026 }
1027
1028 bool LoopInterchangeTransform::transform() {
1029
1030   DEBUG(dbgs() << "transform\n");
1031   bool Transformed = false;
1032   Instruction *InnerIndexVar;
1033
1034   if (InnerLoop->getSubLoops().size() == 0) {
1035     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1036     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1037     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1038     if (!InductionPHI) {
1039       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1040       return false;
1041     }
1042
1043     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1044       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1045     else
1046       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1047
1048     //
1049     // Split at the place were the induction variable is
1050     // incremented/decremented.
1051     // TODO: This splitting logic may not work always. Fix this.
1052     splitInnerLoopLatch(InnerIndexVar);
1053     DEBUG(dbgs() << "splitInnerLoopLatch Done\n");
1054
1055     // Splits the inner loops phi nodes out into a separate basic block.
1056     splitInnerLoopHeader();
1057     DEBUG(dbgs() << "splitInnerLoopHeader Done\n");
1058   }
1059
1060   Transformed |= adjustLoopLinks();
1061   if (!Transformed) {
1062     DEBUG(dbgs() << "adjustLoopLinks Failed\n");
1063     return false;
1064   }
1065
1066   restructureLoops(InnerLoop, OuterLoop);
1067   return true;
1068 }
1069
1070 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1071   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1072   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1073   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1074 }
1075
1076 void LoopInterchangeTransform::splitOuterLoopLatch() {
1077   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1078   BasicBlock *OuterLatchLcssaPhiBlock = OuterLoopLatch;
1079   OuterLoopLatch = SplitBlock(OuterLatchLcssaPhiBlock,
1080                               OuterLoopLatch->getFirstNonPHI(), DT, LI);
1081 }
1082
1083 void LoopInterchangeTransform::splitInnerLoopHeader() {
1084
1085   // Split the inner loop header out. Here make sure that the reduction PHI's
1086   // stay in the innerloop body.
1087   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1088   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1089   if (InnerLoopHasReduction) {
1090     // FIXME: Check if the induction PHI will always be the first PHI.
1091     BasicBlock *New = InnerLoopHeader->splitBasicBlock(
1092         ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split");
1093     if (LI)
1094       if (Loop *L = LI->getLoopFor(InnerLoopHeader))
1095         L->addBasicBlockToLoop(New, *LI);
1096
1097     // Adjust Reduction PHI's in the block.
1098     SmallVector<PHINode *, 8> PHIVec;
1099     for (auto I = New->begin(); isa<PHINode>(I); ++I) {
1100       PHINode *PHI = dyn_cast<PHINode>(I);
1101       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1102       PHI->replaceAllUsesWith(V);
1103       PHIVec.push_back((PHI));
1104     }
1105     for (auto I = PHIVec.begin(), E = PHIVec.end(); I != E; ++I) {
1106       PHINode *P = *I;
1107       P->eraseFromParent();
1108     }
1109   } else {
1110     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1111   }
1112
1113   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1114                   "InnerLoopHeader \n");
1115 }
1116
1117 /// \brief Move all instructions except the terminator from FromBB right before
1118 /// InsertBefore
1119 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1120   auto &ToList = InsertBefore->getParent()->getInstList();
1121   auto &FromList = FromBB->getInstList();
1122
1123   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1124                 FromBB->getTerminator()->getIterator());
1125 }
1126
1127 void LoopInterchangeTransform::adjustOuterLoopPreheader() {
1128   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1129   BasicBlock *InnerPreHeader = InnerLoop->getLoopPreheader();
1130
1131   moveBBContents(OuterLoopPreHeader, InnerPreHeader->getTerminator());
1132 }
1133
1134 void LoopInterchangeTransform::adjustInnerLoopPreheader() {
1135   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1136   BasicBlock *OuterHeader = OuterLoop->getHeader();
1137
1138   moveBBContents(InnerLoopPreHeader, OuterHeader->getTerminator());
1139 }
1140
1141 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1142                                                    BasicBlock *OldPred,
1143                                                    BasicBlock *NewPred) {
1144   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
1145     PHINode *PHI = cast<PHINode>(I);
1146     unsigned Num = PHI->getNumIncomingValues();
1147     for (unsigned i = 0; i < Num; ++i) {
1148       if (PHI->getIncomingBlock(i) == OldPred)
1149         PHI->setIncomingBlock(i, NewPred);
1150     }
1151   }
1152 }
1153
1154 bool LoopInterchangeTransform::adjustLoopBranches() {
1155
1156   DEBUG(dbgs() << "adjustLoopBranches called\n");
1157   // Adjust the loop preheader
1158   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1159   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1160   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1161   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1162   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1163   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1164   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1165   BasicBlock *InnerLoopLatchPredecessor =
1166       InnerLoopLatch->getUniquePredecessor();
1167   BasicBlock *InnerLoopLatchSuccessor;
1168   BasicBlock *OuterLoopLatchSuccessor;
1169
1170   BranchInst *OuterLoopLatchBI =
1171       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1172   BranchInst *InnerLoopLatchBI =
1173       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1174   BranchInst *OuterLoopHeaderBI =
1175       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1176   BranchInst *InnerLoopHeaderBI =
1177       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1178
1179   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1180       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1181       !InnerLoopHeaderBI)
1182     return false;
1183
1184   BranchInst *InnerLoopLatchPredecessorBI =
1185       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1186   BranchInst *OuterLoopPredecessorBI =
1187       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1188
1189   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1190     return false;
1191   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1192   if (!InnerLoopHeaderSuccessor)
1193     return false;
1194
1195   // Adjust Loop Preheader and headers
1196
1197   unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
1198   for (unsigned i = 0; i < NumSucc; ++i) {
1199     if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
1200       OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
1201   }
1202
1203   NumSucc = OuterLoopHeaderBI->getNumSuccessors();
1204   for (unsigned i = 0; i < NumSucc; ++i) {
1205     if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
1206       OuterLoopHeaderBI->setSuccessor(i, LoopExit);
1207     else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
1208       OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSuccessor);
1209   }
1210
1211   // Adjust reduction PHI's now that the incoming block has changed.
1212   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1213                       OuterLoopHeader);
1214
1215   BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
1216   InnerLoopHeaderBI->eraseFromParent();
1217
1218   // -------------Adjust loop latches-----------
1219   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1220     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1221   else
1222     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1223
1224   NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
1225   for (unsigned i = 0; i < NumSucc; ++i) {
1226     if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
1227       InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
1228   }
1229
1230   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1231   // the value and remove this PHI node from inner loop.
1232   SmallVector<PHINode *, 8> LcssaVec;
1233   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
1234     PHINode *LcssaPhi = cast<PHINode>(I);
1235     LcssaVec.push_back(LcssaPhi);
1236   }
1237   for (auto I = LcssaVec.begin(), E = LcssaVec.end(); I != E; ++I) {
1238     PHINode *P = *I;
1239     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1240     P->replaceAllUsesWith(Incoming);
1241     P->eraseFromParent();
1242   }
1243
1244   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1245     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1246   else
1247     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1248
1249   if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
1250     InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
1251   else
1252     InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
1253
1254   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1255
1256   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
1257     OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
1258   } else {
1259     OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
1260   }
1261
1262   return true;
1263 }
1264 void LoopInterchangeTransform::adjustLoopPreheaders() {
1265
1266   // We have interchanged the preheaders so we need to interchange the data in
1267   // the preheader as well.
1268   // This is because the content of inner preheader was previously executed
1269   // inside the outer loop.
1270   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1271   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1272   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1273   BranchInst *InnerTermBI =
1274       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1275
1276   // These instructions should now be executed inside the loop.
1277   // Move instruction into a new block after outer header.
1278   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1279   // These instructions were not executed previously in the loop so move them to
1280   // the older inner loop preheader.
1281   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1282 }
1283
1284 bool LoopInterchangeTransform::adjustLoopLinks() {
1285
1286   // Adjust all branches in the inner and outer loop.
1287   bool Changed = adjustLoopBranches();
1288   if (Changed)
1289     adjustLoopPreheaders();
1290   return Changed;
1291 }
1292
1293 char LoopInterchange::ID = 0;
1294 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1295                       "Interchanges loops for cache reuse", false, false)
1296 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1297 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysis)
1298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1299 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1300 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1301 INITIALIZE_PASS_DEPENDENCY(LCSSA)
1302 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1303
1304 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1305                     "Interchanges loops for cache reuse", false, false)
1306
1307 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }