Clean whitespaces.
[oota-llvm.git] / lib / Transforms / Scalar / LoopDeletion.cpp
1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "loop-delete"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/SmallVector.h"
24 using namespace llvm;
25
26 STATISTIC(NumDeleted, "Number of loops deleted");
27
28 namespace {
29   class LoopDeletion : public LoopPass {
30   public:
31     static char ID; // Pass ID, replacement for typeid
32     LoopDeletion() : LoopPass(ID) {
33       initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
34     }
35
36     // Possibly eliminate loop L if it is dead.
37     bool runOnLoop(Loop* L, LPPassManager& LPM);
38
39     bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
40                     SmallVector<BasicBlock*, 4>& exitBlocks,
41                     bool &Changed, BasicBlock *Preheader);
42
43     virtual void getAnalysisUsage(AnalysisUsage& AU) const {
44       AU.addRequired<DominatorTree>();
45       AU.addRequired<LoopInfo>();
46       AU.addRequired<ScalarEvolution>();
47       AU.addRequiredID(LoopSimplifyID);
48       AU.addRequiredID(LCSSAID);
49
50       AU.addPreserved<ScalarEvolution>();
51       AU.addPreserved<DominatorTree>();
52       AU.addPreserved<LoopInfo>();
53       AU.addPreservedID(LoopSimplifyID);
54       AU.addPreservedID(LCSSAID);
55     }
56   };
57 }
58
59 char LoopDeletion::ID = 0;
60 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
61                 "Delete dead loops", false, false)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
63 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
64 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
65 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
66 INITIALIZE_PASS_DEPENDENCY(LCSSA)
67 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
68                 "Delete dead loops", false, false)
69
70 Pass* llvm::createLoopDeletionPass() {
71   return new LoopDeletion();
72 }
73
74 /// IsLoopDead - Determined if a loop is dead.  This assumes that we've already
75 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
76 /// form.
77 bool LoopDeletion::IsLoopDead(Loop* L,
78                               SmallVector<BasicBlock*, 4>& exitingBlocks,
79                               SmallVector<BasicBlock*, 4>& exitBlocks,
80                               bool &Changed, BasicBlock *Preheader) {
81   BasicBlock* exitBlock = exitBlocks[0];
82
83   // Make sure that all PHI entries coming from the loop are loop invariant.
84   // Because the code is in LCSSA form, any values used outside of the loop
85   // must pass through a PHI in the exit block, meaning that this check is
86   // sufficient to guarantee that no loop-variant values are used outside
87   // of the loop.
88   BasicBlock::iterator BI = exitBlock->begin();
89   while (PHINode* P = dyn_cast<PHINode>(BI)) {
90     Value* incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
91
92     // Make sure all exiting blocks produce the same incoming value for the exit
93     // block.  If there are different incoming values for different exiting
94     // blocks, then it is impossible to statically determine which value should
95     // be used.
96     for (unsigned i = 1; i < exitingBlocks.size(); ++i) {
97       if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
98         return false;
99     }
100
101     if (Instruction* I = dyn_cast<Instruction>(incoming))
102       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
103         return false;
104
105     ++BI;
106   }
107
108   // Make sure that no instructions in the block have potential side-effects.
109   // This includes instructions that could write to memory, and loads that are
110   // marked volatile.  This could be made more aggressive by using aliasing
111   // information to identify readonly and readnone calls.
112   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
113        LI != LE; ++LI) {
114     for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
115          BI != BE; ++BI) {
116       if (BI->mayHaveSideEffects())
117         return false;
118     }
119   }
120
121   return true;
122 }
123
124 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
125 /// observable behavior of the program other than finite running time.  Note
126 /// we do ensure that this never remove a loop that might be infinite, as doing
127 /// so could change the halting/non-halting nature of a program.
128 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
129 /// in order to make various safety checks work.
130 bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
131   // We can only remove the loop if there is a preheader that we can
132   // branch from after removing it.
133   BasicBlock* preheader = L->getLoopPreheader();
134   if (!preheader)
135     return false;
136
137   // If LoopSimplify form is not available, stay out of trouble.
138   if (!L->hasDedicatedExits())
139     return false;
140
141   // We can't remove loops that contain subloops.  If the subloops were dead,
142   // they would already have been removed in earlier executions of this pass.
143   if (L->begin() != L->end())
144     return false;
145
146   SmallVector<BasicBlock*, 4> exitingBlocks;
147   L->getExitingBlocks(exitingBlocks);
148
149   SmallVector<BasicBlock*, 4> exitBlocks;
150   L->getUniqueExitBlocks(exitBlocks);
151
152   // We require that the loop only have a single exit block.  Otherwise, we'd
153   // be in the situation of needing to be able to solve statically which exit
154   // block will be branched to, or trying to preserve the branching logic in
155   // a loop invariant manner.
156   if (exitBlocks.size() != 1)
157     return false;
158
159   // Finally, we have to check that the loop really is dead.
160   bool Changed = false;
161   if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
162     return Changed;
163
164   // Don't remove loops for which we can't solve the trip count.
165   // They could be infinite, in which case we'd be changing program behavior.
166   ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
167   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
168   if (isa<SCEVCouldNotCompute>(S))
169     return Changed;
170
171   // Now that we know the removal is safe, remove the loop by changing the
172   // branch from the preheader to go to the single exit block.
173   BasicBlock* exitBlock = exitBlocks[0];
174
175   // Because we're deleting a large chunk of code at once, the sequence in which
176   // we remove things is very important to avoid invalidation issues.  Don't
177   // mess with this unless you have good reason and know what you're doing.
178
179   // Tell ScalarEvolution that the loop is deleted. Do this before
180   // deleting the loop so that ScalarEvolution can look at the loop
181   // to determine what it needs to clean up.
182   SE.forgetLoop(L);
183
184   // Connect the preheader directly to the exit block.
185   TerminatorInst* TI = preheader->getTerminator();
186   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
187
188   // Rewrite phis in the exit block to get their inputs from
189   // the preheader instead of the exiting block.
190   BasicBlock* exitingBlock = exitingBlocks[0];
191   BasicBlock::iterator BI = exitBlock->begin();
192   while (PHINode* P = dyn_cast<PHINode>(BI)) {
193     int j = P->getBasicBlockIndex(exitingBlock);
194     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
195     P->setIncomingBlock(j, preheader);
196     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
197       P->removeIncomingValue(exitingBlocks[i]);
198     ++BI;
199   }
200
201   // Update the dominator tree and remove the instructions and blocks that will
202   // be deleted from the reference counting scheme.
203   DominatorTree& DT = getAnalysis<DominatorTree>();
204   SmallVector<DomTreeNode*, 8> ChildNodes;
205   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
206        LI != LE; ++LI) {
207     // Move all of the block's children to be children of the preheader, which
208     // allows us to remove the domtree entry for the block.
209     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
210     for (SmallVector<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
211          DE = ChildNodes.end(); DI != DE; ++DI) {
212       DT.changeImmediateDominator(*DI, DT[preheader]);
213     }
214
215     ChildNodes.clear();
216     DT.eraseNode(*LI);
217
218     // Remove the block from the reference counting scheme, so that we can
219     // delete it freely later.
220     (*LI)->dropAllReferences();
221   }
222
223   // Erase the instructions and the blocks without having to worry
224   // about ordering because we already dropped the references.
225   // NOTE: This iteration is safe because erasing the block does not remove its
226   // entry from the loop's block list.  We do that in the next section.
227   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
228        LI != LE; ++LI)
229     (*LI)->eraseFromParent();
230
231   // Finally, the blocks from loopinfo.  This has to happen late because
232   // otherwise our loop iterators won't work.
233   LoopInfo& loopInfo = getAnalysis<LoopInfo>();
234   SmallPtrSet<BasicBlock*, 8> blocks;
235   blocks.insert(L->block_begin(), L->block_end());
236   for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
237        E = blocks.end(); I != E; ++I)
238     loopInfo.removeBlock(*I);
239
240   // The last step is to inform the loop pass manager that we've
241   // eliminated this loop.
242   LPM.deleteLoopFromQueue(L);
243   Changed = true;
244
245   ++NumDeleted;
246
247   return Changed;
248 }