Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Transforms / Scalar / GVN.cpp
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions.  It also performs simple dead load elimination.
12 //
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/CFG.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
36 #include "llvm/Analysis/PHITransAddr.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/SSAUpdater.h"
54 #include <vector>
55 using namespace llvm;
56 using namespace PatternMatch;
57
58 #define DEBUG_TYPE "gvn"
59
60 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
61 STATISTIC(NumGVNLoad,   "Number of loads deleted");
62 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
63 STATISTIC(NumGVNBlocks, "Number of blocks merged");
64 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
65 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
66 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
67
68 static cl::opt<bool> EnablePRE("enable-pre",
69                                cl::init(true), cl::Hidden);
70 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
71
72 // Maximum allowed recursion depth.
73 static cl::opt<uint32_t>
74 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
75                 cl::desc("Max recurse depth (default = 1000)"));
76
77 //===----------------------------------------------------------------------===//
78 //                         ValueTable Class
79 //===----------------------------------------------------------------------===//
80
81 /// This class holds the mapping between values and value numbers.  It is used
82 /// as an efficient mechanism to determine the expression-wise equivalence of
83 /// two values.
84 namespace {
85   struct Expression {
86     uint32_t opcode;
87     Type *type;
88     SmallVector<uint32_t, 4> varargs;
89
90     Expression(uint32_t o = ~2U) : opcode(o) { }
91
92     bool operator==(const Expression &other) const {
93       if (opcode != other.opcode)
94         return false;
95       if (opcode == ~0U || opcode == ~1U)
96         return true;
97       if (type != other.type)
98         return false;
99       if (varargs != other.varargs)
100         return false;
101       return true;
102     }
103
104     friend hash_code hash_value(const Expression &Value) {
105       return hash_combine(Value.opcode, Value.type,
106                           hash_combine_range(Value.varargs.begin(),
107                                              Value.varargs.end()));
108     }
109   };
110
111   class ValueTable {
112     DenseMap<Value*, uint32_t> valueNumbering;
113     DenseMap<Expression, uint32_t> expressionNumbering;
114     AliasAnalysis *AA;
115     MemoryDependenceAnalysis *MD;
116     DominatorTree *DT;
117
118     uint32_t nextValueNumber;
119
120     Expression create_expression(Instruction* I);
121     Expression create_cmp_expression(unsigned Opcode,
122                                      CmpInst::Predicate Predicate,
123                                      Value *LHS, Value *RHS);
124     Expression create_extractvalue_expression(ExtractValueInst* EI);
125     uint32_t lookup_or_add_call(CallInst* C);
126   public:
127     ValueTable() : nextValueNumber(1) { }
128     uint32_t lookup_or_add(Value *V);
129     uint32_t lookup(Value *V) const;
130     uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
131                                Value *LHS, Value *RHS);
132     bool exists(Value *V) const;
133     void add(Value *V, uint32_t num);
134     void clear();
135     void erase(Value *v);
136     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
137     AliasAnalysis *getAliasAnalysis() const { return AA; }
138     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
139     void setDomTree(DominatorTree* D) { DT = D; }
140     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
141     void verifyRemoved(const Value *) const;
142   };
143 }
144
145 namespace llvm {
146 template <> struct DenseMapInfo<Expression> {
147   static inline Expression getEmptyKey() {
148     return ~0U;
149   }
150
151   static inline Expression getTombstoneKey() {
152     return ~1U;
153   }
154
155   static unsigned getHashValue(const Expression e) {
156     using llvm::hash_value;
157     return static_cast<unsigned>(hash_value(e));
158   }
159   static bool isEqual(const Expression &LHS, const Expression &RHS) {
160     return LHS == RHS;
161   }
162 };
163
164 }
165
166 //===----------------------------------------------------------------------===//
167 //                     ValueTable Internal Functions
168 //===----------------------------------------------------------------------===//
169
170 Expression ValueTable::create_expression(Instruction *I) {
171   Expression e;
172   e.type = I->getType();
173   e.opcode = I->getOpcode();
174   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
175        OI != OE; ++OI)
176     e.varargs.push_back(lookup_or_add(*OI));
177   if (I->isCommutative()) {
178     // Ensure that commutative instructions that only differ by a permutation
179     // of their operands get the same value number by sorting the operand value
180     // numbers.  Since all commutative instructions have two operands it is more
181     // efficient to sort by hand rather than using, say, std::sort.
182     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
183     if (e.varargs[0] > e.varargs[1])
184       std::swap(e.varargs[0], e.varargs[1]);
185   }
186
187   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
188     // Sort the operand value numbers so x<y and y>x get the same value number.
189     CmpInst::Predicate Predicate = C->getPredicate();
190     if (e.varargs[0] > e.varargs[1]) {
191       std::swap(e.varargs[0], e.varargs[1]);
192       Predicate = CmpInst::getSwappedPredicate(Predicate);
193     }
194     e.opcode = (C->getOpcode() << 8) | Predicate;
195   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
196     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
197          II != IE; ++II)
198       e.varargs.push_back(*II);
199   }
200
201   return e;
202 }
203
204 Expression ValueTable::create_cmp_expression(unsigned Opcode,
205                                              CmpInst::Predicate Predicate,
206                                              Value *LHS, Value *RHS) {
207   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
208          "Not a comparison!");
209   Expression e;
210   e.type = CmpInst::makeCmpResultType(LHS->getType());
211   e.varargs.push_back(lookup_or_add(LHS));
212   e.varargs.push_back(lookup_or_add(RHS));
213
214   // Sort the operand value numbers so x<y and y>x get the same value number.
215   if (e.varargs[0] > e.varargs[1]) {
216     std::swap(e.varargs[0], e.varargs[1]);
217     Predicate = CmpInst::getSwappedPredicate(Predicate);
218   }
219   e.opcode = (Opcode << 8) | Predicate;
220   return e;
221 }
222
223 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
224   assert(EI && "Not an ExtractValueInst?");
225   Expression e;
226   e.type = EI->getType();
227   e.opcode = 0;
228
229   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
230   if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
231     // EI might be an extract from one of our recognised intrinsics. If it
232     // is we'll synthesize a semantically equivalent expression instead on
233     // an extract value expression.
234     switch (I->getIntrinsicID()) {
235       case Intrinsic::sadd_with_overflow:
236       case Intrinsic::uadd_with_overflow:
237         e.opcode = Instruction::Add;
238         break;
239       case Intrinsic::ssub_with_overflow:
240       case Intrinsic::usub_with_overflow:
241         e.opcode = Instruction::Sub;
242         break;
243       case Intrinsic::smul_with_overflow:
244       case Intrinsic::umul_with_overflow:
245         e.opcode = Instruction::Mul;
246         break;
247       default:
248         break;
249     }
250
251     if (e.opcode != 0) {
252       // Intrinsic recognized. Grab its args to finish building the expression.
253       assert(I->getNumArgOperands() == 2 &&
254              "Expect two args for recognised intrinsics.");
255       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
256       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
257       return e;
258     }
259   }
260
261   // Not a recognised intrinsic. Fall back to producing an extract value
262   // expression.
263   e.opcode = EI->getOpcode();
264   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
265        OI != OE; ++OI)
266     e.varargs.push_back(lookup_or_add(*OI));
267
268   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
269          II != IE; ++II)
270     e.varargs.push_back(*II);
271
272   return e;
273 }
274
275 //===----------------------------------------------------------------------===//
276 //                     ValueTable External Functions
277 //===----------------------------------------------------------------------===//
278
279 /// add - Insert a value into the table with a specified value number.
280 void ValueTable::add(Value *V, uint32_t num) {
281   valueNumbering.insert(std::make_pair(V, num));
282 }
283
284 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
285   if (AA->doesNotAccessMemory(C)) {
286     Expression exp = create_expression(C);
287     uint32_t &e = expressionNumbering[exp];
288     if (!e) e = nextValueNumber++;
289     valueNumbering[C] = e;
290     return e;
291   } else if (AA->onlyReadsMemory(C)) {
292     Expression exp = create_expression(C);
293     uint32_t &e = expressionNumbering[exp];
294     if (!e) {
295       e = nextValueNumber++;
296       valueNumbering[C] = e;
297       return e;
298     }
299     if (!MD) {
300       e = nextValueNumber++;
301       valueNumbering[C] = e;
302       return e;
303     }
304
305     MemDepResult local_dep = MD->getDependency(C);
306
307     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
308       valueNumbering[C] =  nextValueNumber;
309       return nextValueNumber++;
310     }
311
312     if (local_dep.isDef()) {
313       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
314
315       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
316         valueNumbering[C] = nextValueNumber;
317         return nextValueNumber++;
318       }
319
320       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
321         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
322         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
323         if (c_vn != cd_vn) {
324           valueNumbering[C] = nextValueNumber;
325           return nextValueNumber++;
326         }
327       }
328
329       uint32_t v = lookup_or_add(local_cdep);
330       valueNumbering[C] = v;
331       return v;
332     }
333
334     // Non-local case.
335     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
336       MD->getNonLocalCallDependency(CallSite(C));
337     // FIXME: Move the checking logic to MemDep!
338     CallInst* cdep = nullptr;
339
340     // Check to see if we have a single dominating call instruction that is
341     // identical to C.
342     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
343       const NonLocalDepEntry *I = &deps[i];
344       if (I->getResult().isNonLocal())
345         continue;
346
347       // We don't handle non-definitions.  If we already have a call, reject
348       // instruction dependencies.
349       if (!I->getResult().isDef() || cdep != nullptr) {
350         cdep = nullptr;
351         break;
352       }
353
354       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
355       // FIXME: All duplicated with non-local case.
356       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
357         cdep = NonLocalDepCall;
358         continue;
359       }
360
361       cdep = nullptr;
362       break;
363     }
364
365     if (!cdep) {
366       valueNumbering[C] = nextValueNumber;
367       return nextValueNumber++;
368     }
369
370     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
371       valueNumbering[C] = nextValueNumber;
372       return nextValueNumber++;
373     }
374     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
375       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
376       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
377       if (c_vn != cd_vn) {
378         valueNumbering[C] = nextValueNumber;
379         return nextValueNumber++;
380       }
381     }
382
383     uint32_t v = lookup_or_add(cdep);
384     valueNumbering[C] = v;
385     return v;
386
387   } else {
388     valueNumbering[C] = nextValueNumber;
389     return nextValueNumber++;
390   }
391 }
392
393 /// Returns true if a value number exists for the specified value.
394 bool ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
395
396 /// lookup_or_add - Returns the value number for the specified value, assigning
397 /// it a new number if it did not have one before.
398 uint32_t ValueTable::lookup_or_add(Value *V) {
399   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
400   if (VI != valueNumbering.end())
401     return VI->second;
402
403   if (!isa<Instruction>(V)) {
404     valueNumbering[V] = nextValueNumber;
405     return nextValueNumber++;
406   }
407
408   Instruction* I = cast<Instruction>(V);
409   Expression exp;
410   switch (I->getOpcode()) {
411     case Instruction::Call:
412       return lookup_or_add_call(cast<CallInst>(I));
413     case Instruction::Add:
414     case Instruction::FAdd:
415     case Instruction::Sub:
416     case Instruction::FSub:
417     case Instruction::Mul:
418     case Instruction::FMul:
419     case Instruction::UDiv:
420     case Instruction::SDiv:
421     case Instruction::FDiv:
422     case Instruction::URem:
423     case Instruction::SRem:
424     case Instruction::FRem:
425     case Instruction::Shl:
426     case Instruction::LShr:
427     case Instruction::AShr:
428     case Instruction::And:
429     case Instruction::Or:
430     case Instruction::Xor:
431     case Instruction::ICmp:
432     case Instruction::FCmp:
433     case Instruction::Trunc:
434     case Instruction::ZExt:
435     case Instruction::SExt:
436     case Instruction::FPToUI:
437     case Instruction::FPToSI:
438     case Instruction::UIToFP:
439     case Instruction::SIToFP:
440     case Instruction::FPTrunc:
441     case Instruction::FPExt:
442     case Instruction::PtrToInt:
443     case Instruction::IntToPtr:
444     case Instruction::BitCast:
445     case Instruction::Select:
446     case Instruction::ExtractElement:
447     case Instruction::InsertElement:
448     case Instruction::ShuffleVector:
449     case Instruction::InsertValue:
450     case Instruction::GetElementPtr:
451       exp = create_expression(I);
452       break;
453     case Instruction::ExtractValue:
454       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
455       break;
456     default:
457       valueNumbering[V] = nextValueNumber;
458       return nextValueNumber++;
459   }
460
461   uint32_t& e = expressionNumbering[exp];
462   if (!e) e = nextValueNumber++;
463   valueNumbering[V] = e;
464   return e;
465 }
466
467 /// Returns the value number of the specified value. Fails if
468 /// the value has not yet been numbered.
469 uint32_t ValueTable::lookup(Value *V) const {
470   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
471   assert(VI != valueNumbering.end() && "Value not numbered?");
472   return VI->second;
473 }
474
475 /// Returns the value number of the given comparison,
476 /// assigning it a new number if it did not have one before.  Useful when
477 /// we deduced the result of a comparison, but don't immediately have an
478 /// instruction realizing that comparison to hand.
479 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
480                                        CmpInst::Predicate Predicate,
481                                        Value *LHS, Value *RHS) {
482   Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
483   uint32_t& e = expressionNumbering[exp];
484   if (!e) e = nextValueNumber++;
485   return e;
486 }
487
488 /// Remove all entries from the ValueTable.
489 void ValueTable::clear() {
490   valueNumbering.clear();
491   expressionNumbering.clear();
492   nextValueNumber = 1;
493 }
494
495 /// Remove a value from the value numbering.
496 void ValueTable::erase(Value *V) {
497   valueNumbering.erase(V);
498 }
499
500 /// verifyRemoved - Verify that the value is removed from all internal data
501 /// structures.
502 void ValueTable::verifyRemoved(const Value *V) const {
503   for (DenseMap<Value*, uint32_t>::const_iterator
504          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
505     assert(I->first != V && "Inst still occurs in value numbering map!");
506   }
507 }
508
509 //===----------------------------------------------------------------------===//
510 //                                GVN Pass
511 //===----------------------------------------------------------------------===//
512
513 namespace {
514   class GVN;
515   struct AvailableValueInBlock {
516     /// BB - The basic block in question.
517     BasicBlock *BB;
518     enum ValType {
519       SimpleVal,  // A simple offsetted value that is accessed.
520       LoadVal,    // A value produced by a load.
521       MemIntrin,  // A memory intrinsic which is loaded from.
522       UndefVal    // A UndefValue representing a value from dead block (which
523                   // is not yet physically removed from the CFG). 
524     };
525   
526     /// V - The value that is live out of the block.
527     PointerIntPair<Value *, 2, ValType> Val;
528   
529     /// Offset - The byte offset in Val that is interesting for the load query.
530     unsigned Offset;
531   
532     static AvailableValueInBlock get(BasicBlock *BB, Value *V,
533                                      unsigned Offset = 0) {
534       AvailableValueInBlock Res;
535       Res.BB = BB;
536       Res.Val.setPointer(V);
537       Res.Val.setInt(SimpleVal);
538       Res.Offset = Offset;
539       return Res;
540     }
541   
542     static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
543                                        unsigned Offset = 0) {
544       AvailableValueInBlock Res;
545       Res.BB = BB;
546       Res.Val.setPointer(MI);
547       Res.Val.setInt(MemIntrin);
548       Res.Offset = Offset;
549       return Res;
550     }
551   
552     static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
553                                          unsigned Offset = 0) {
554       AvailableValueInBlock Res;
555       Res.BB = BB;
556       Res.Val.setPointer(LI);
557       Res.Val.setInt(LoadVal);
558       Res.Offset = Offset;
559       return Res;
560     }
561
562     static AvailableValueInBlock getUndef(BasicBlock *BB) {
563       AvailableValueInBlock Res;
564       Res.BB = BB;
565       Res.Val.setPointer(nullptr);
566       Res.Val.setInt(UndefVal);
567       Res.Offset = 0;
568       return Res;
569     }
570
571     bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
572     bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
573     bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
574     bool isUndefValue() const { return Val.getInt() == UndefVal; }
575   
576     Value *getSimpleValue() const {
577       assert(isSimpleValue() && "Wrong accessor");
578       return Val.getPointer();
579     }
580   
581     LoadInst *getCoercedLoadValue() const {
582       assert(isCoercedLoadValue() && "Wrong accessor");
583       return cast<LoadInst>(Val.getPointer());
584     }
585   
586     MemIntrinsic *getMemIntrinValue() const {
587       assert(isMemIntrinValue() && "Wrong accessor");
588       return cast<MemIntrinsic>(Val.getPointer());
589     }
590   
591     /// Emit code into this block to adjust the value defined here to the
592     /// specified type. This handles various coercion cases.
593     Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const;
594   };
595
596   class GVN : public FunctionPass {
597     bool NoLoads;
598     MemoryDependenceAnalysis *MD;
599     DominatorTree *DT;
600     const TargetLibraryInfo *TLI;
601     AssumptionCache *AC;
602     SetVector<BasicBlock *> DeadBlocks;
603
604     ValueTable VN;
605
606     /// A mapping from value numbers to lists of Value*'s that
607     /// have that value number.  Use findLeader to query it.
608     struct LeaderTableEntry {
609       Value *Val;
610       const BasicBlock *BB;
611       LeaderTableEntry *Next;
612     };
613     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
614     BumpPtrAllocator TableAllocator;
615
616     // Block-local map of equivalent values to their leader, does not
617     // propagate to any successors. Entries added mid-block are applied
618     // to the remaining instructions in the block.
619     SmallMapVector<llvm::Value *, llvm::Constant *, 4> ReplaceWithConstMap;
620     SmallVector<Instruction*, 8> InstrsToErase;
621
622     typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
623     typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
624     typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
625
626   public:
627     static char ID; // Pass identification, replacement for typeid
628     explicit GVN(bool noloads = false)
629         : FunctionPass(ID), NoLoads(noloads), MD(nullptr) {
630       initializeGVNPass(*PassRegistry::getPassRegistry());
631     }
632
633     bool runOnFunction(Function &F) override;
634
635     /// This removes the specified instruction from
636     /// our various maps and marks it for deletion.
637     void markInstructionForDeletion(Instruction *I) {
638       VN.erase(I);
639       InstrsToErase.push_back(I);
640     }
641
642     DominatorTree &getDominatorTree() const { return *DT; }
643     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
644     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
645   private:
646     /// Push a new Value to the LeaderTable onto the list for its value number.
647     void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
648       LeaderTableEntry &Curr = LeaderTable[N];
649       if (!Curr.Val) {
650         Curr.Val = V;
651         Curr.BB = BB;
652         return;
653       }
654
655       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
656       Node->Val = V;
657       Node->BB = BB;
658       Node->Next = Curr.Next;
659       Curr.Next = Node;
660     }
661
662     /// Scan the list of values corresponding to a given
663     /// value number, and remove the given instruction if encountered.
664     void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
665       LeaderTableEntry* Prev = nullptr;
666       LeaderTableEntry* Curr = &LeaderTable[N];
667
668       while (Curr && (Curr->Val != I || Curr->BB != BB)) {
669         Prev = Curr;
670         Curr = Curr->Next;
671       }
672
673       if (!Curr)
674         return;
675
676       if (Prev) {
677         Prev->Next = Curr->Next;
678       } else {
679         if (!Curr->Next) {
680           Curr->Val = nullptr;
681           Curr->BB = nullptr;
682         } else {
683           LeaderTableEntry* Next = Curr->Next;
684           Curr->Val = Next->Val;
685           Curr->BB = Next->BB;
686           Curr->Next = Next->Next;
687         }
688       }
689     }
690
691     // List of critical edges to be split between iterations.
692     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
693
694     // This transformation requires dominator postdominator info
695     void getAnalysisUsage(AnalysisUsage &AU) const override {
696       AU.addRequired<AssumptionCacheTracker>();
697       AU.addRequired<DominatorTreeWrapperPass>();
698       AU.addRequired<TargetLibraryInfoWrapperPass>();
699       if (!NoLoads)
700         AU.addRequired<MemoryDependenceAnalysis>();
701       AU.addRequired<AAResultsWrapperPass>();
702
703       AU.addPreserved<DominatorTreeWrapperPass>();
704       AU.addPreserved<GlobalsAAWrapperPass>();
705     }
706
707
708     // Helper functions of redundant load elimination 
709     bool processLoad(LoadInst *L);
710     bool processNonLocalLoad(LoadInst *L);
711     bool processAssumeIntrinsic(IntrinsicInst *II);
712     void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 
713                                  AvailValInBlkVect &ValuesPerBlock,
714                                  UnavailBlkVect &UnavailableBlocks);
715     bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 
716                         UnavailBlkVect &UnavailableBlocks);
717
718     // Other helper routines
719     bool processInstruction(Instruction *I);
720     bool processBlock(BasicBlock *BB);
721     void dump(DenseMap<uint32_t, Value*> &d);
722     bool iterateOnFunction(Function &F);
723     bool performPRE(Function &F);
724     bool performScalarPRE(Instruction *I);
725     bool performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
726                                    unsigned int ValNo);
727     Value *findLeader(const BasicBlock *BB, uint32_t num);
728     void cleanupGlobalSets();
729     void verifyRemoved(const Instruction *I) const;
730     bool splitCriticalEdges();
731     BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
732     bool replaceOperandsWithConsts(Instruction *I) const;
733     bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
734                            bool DominatesByEdge);
735     bool processFoldableCondBr(BranchInst *BI);
736     void addDeadBlock(BasicBlock *BB);
737     void assignValNumForDeadCode();
738   };
739
740   char GVN::ID = 0;
741 }
742
743 // The public interface to this file...
744 FunctionPass *llvm::createGVNPass(bool NoLoads) {
745   return new GVN(NoLoads);
746 }
747
748 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
749 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
750 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
751 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
752 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
753 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
754 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
755 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
756
757 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
758 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
759   errs() << "{\n";
760   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
761        E = d.end(); I != E; ++I) {
762       errs() << I->first << "\n";
763       I->second->dump();
764   }
765   errs() << "}\n";
766 }
767 #endif
768
769 /// Return true if we can prove that the value
770 /// we're analyzing is fully available in the specified block.  As we go, keep
771 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
772 /// map is actually a tri-state map with the following values:
773 ///   0) we know the block *is not* fully available.
774 ///   1) we know the block *is* fully available.
775 ///   2) we do not know whether the block is fully available or not, but we are
776 ///      currently speculating that it will be.
777 ///   3) we are speculating for this block and have used that to speculate for
778 ///      other blocks.
779 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
780                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
781                             uint32_t RecurseDepth) {
782   if (RecurseDepth > MaxRecurseDepth)
783     return false;
784
785   // Optimistically assume that the block is fully available and check to see
786   // if we already know about this block in one lookup.
787   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
788     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
789
790   // If the entry already existed for this block, return the precomputed value.
791   if (!IV.second) {
792     // If this is a speculative "available" value, mark it as being used for
793     // speculation of other blocks.
794     if (IV.first->second == 2)
795       IV.first->second = 3;
796     return IV.first->second != 0;
797   }
798
799   // Otherwise, see if it is fully available in all predecessors.
800   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
801
802   // If this block has no predecessors, it isn't live-in here.
803   if (PI == PE)
804     goto SpeculationFailure;
805
806   for (; PI != PE; ++PI)
807     // If the value isn't fully available in one of our predecessors, then it
808     // isn't fully available in this block either.  Undo our previous
809     // optimistic assumption and bail out.
810     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
811       goto SpeculationFailure;
812
813   return true;
814
815 // If we get here, we found out that this is not, after
816 // all, a fully-available block.  We have a problem if we speculated on this and
817 // used the speculation to mark other blocks as available.
818 SpeculationFailure:
819   char &BBVal = FullyAvailableBlocks[BB];
820
821   // If we didn't speculate on this, just return with it set to false.
822   if (BBVal == 2) {
823     BBVal = 0;
824     return false;
825   }
826
827   // If we did speculate on this value, we could have blocks set to 1 that are
828   // incorrect.  Walk the (transitive) successors of this block and mark them as
829   // 0 if set to one.
830   SmallVector<BasicBlock*, 32> BBWorklist;
831   BBWorklist.push_back(BB);
832
833   do {
834     BasicBlock *Entry = BBWorklist.pop_back_val();
835     // Note that this sets blocks to 0 (unavailable) if they happen to not
836     // already be in FullyAvailableBlocks.  This is safe.
837     char &EntryVal = FullyAvailableBlocks[Entry];
838     if (EntryVal == 0) continue;  // Already unavailable.
839
840     // Mark as unavailable.
841     EntryVal = 0;
842
843     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
844   } while (!BBWorklist.empty());
845
846   return false;
847 }
848
849
850 /// Return true if CoerceAvailableValueToLoadType will succeed.
851 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
852                                             Type *LoadTy,
853                                             const DataLayout &DL) {
854   // If the loaded or stored value is an first class array or struct, don't try
855   // to transform them.  We need to be able to bitcast to integer.
856   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
857       StoredVal->getType()->isStructTy() ||
858       StoredVal->getType()->isArrayTy())
859     return false;
860
861   // The store has to be at least as big as the load.
862   if (DL.getTypeSizeInBits(StoredVal->getType()) <
863         DL.getTypeSizeInBits(LoadTy))
864     return false;
865
866   return true;
867 }
868
869 /// If we saw a store of a value to memory, and
870 /// then a load from a must-aliased pointer of a different type, try to coerce
871 /// the stored value.  LoadedTy is the type of the load we want to replace.
872 /// IRB is IRBuilder used to insert new instructions.
873 ///
874 /// If we can't do it, return null.
875 static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
876                                              IRBuilder<> &IRB,
877                                              const DataLayout &DL) {
878   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
879     return nullptr;
880
881   // If this is already the right type, just return it.
882   Type *StoredValTy = StoredVal->getType();
883
884   uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
885   uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
886
887   // If the store and reload are the same size, we can always reuse it.
888   if (StoreSize == LoadSize) {
889     // Pointer to Pointer -> use bitcast.
890     if (StoredValTy->getScalarType()->isPointerTy() &&
891         LoadedTy->getScalarType()->isPointerTy())
892       return IRB.CreateBitCast(StoredVal, LoadedTy);
893
894     // Convert source pointers to integers, which can be bitcast.
895     if (StoredValTy->getScalarType()->isPointerTy()) {
896       StoredValTy = DL.getIntPtrType(StoredValTy);
897       StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
898     }
899
900     Type *TypeToCastTo = LoadedTy;
901     if (TypeToCastTo->getScalarType()->isPointerTy())
902       TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
903
904     if (StoredValTy != TypeToCastTo)
905       StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo);
906
907     // Cast to pointer if the load needs a pointer type.
908     if (LoadedTy->getScalarType()->isPointerTy())
909       StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy);
910
911     return StoredVal;
912   }
913
914   // If the loaded value is smaller than the available value, then we can
915   // extract out a piece from it.  If the available value is too small, then we
916   // can't do anything.
917   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
918
919   // Convert source pointers to integers, which can be manipulated.
920   if (StoredValTy->getScalarType()->isPointerTy()) {
921     StoredValTy = DL.getIntPtrType(StoredValTy);
922     StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
923   }
924
925   // Convert vectors and fp to integer, which can be manipulated.
926   if (!StoredValTy->isIntegerTy()) {
927     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
928     StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy);
929   }
930
931   // If this is a big-endian system, we need to shift the value down to the low
932   // bits so that a truncate will work.
933   if (DL.isBigEndian()) {
934     StoredVal = IRB.CreateLShr(StoredVal, StoreSize - LoadSize, "tmp");
935   }
936
937   // Truncate the integer to the right size now.
938   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
939   StoredVal  = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc");
940
941   if (LoadedTy == NewIntTy)
942     return StoredVal;
943
944   // If the result is a pointer, inttoptr.
945   if (LoadedTy->getScalarType()->isPointerTy())
946     return IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr");
947
948   // Otherwise, bitcast.
949   return IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast");
950 }
951
952 /// This function is called when we have a
953 /// memdep query of a load that ends up being a clobbering memory write (store,
954 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
955 /// by the load but we can't be sure because the pointers don't mustalias.
956 ///
957 /// Check this case to see if there is anything more we can do before we give
958 /// up.  This returns -1 if we have to give up, or a byte number in the stored
959 /// value of the piece that feeds the load.
960 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
961                                           Value *WritePtr,
962                                           uint64_t WriteSizeInBits,
963                                           const DataLayout &DL) {
964   // If the loaded or stored value is a first class array or struct, don't try
965   // to transform them.  We need to be able to bitcast to integer.
966   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
967     return -1;
968
969   int64_t StoreOffset = 0, LoadOffset = 0;
970   Value *StoreBase =
971       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
972   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
973   if (StoreBase != LoadBase)
974     return -1;
975
976   // If the load and store are to the exact same address, they should have been
977   // a must alias.  AA must have gotten confused.
978   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
979   // to a load from the base of the memset.
980 #if 0
981   if (LoadOffset == StoreOffset) {
982     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
983     << "Base       = " << *StoreBase << "\n"
984     << "Store Ptr  = " << *WritePtr << "\n"
985     << "Store Offs = " << StoreOffset << "\n"
986     << "Load Ptr   = " << *LoadPtr << "\n";
987     abort();
988   }
989 #endif
990
991   // If the load and store don't overlap at all, the store doesn't provide
992   // anything to the load.  In this case, they really don't alias at all, AA
993   // must have gotten confused.
994   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
995
996   if ((WriteSizeInBits & 7) | (LoadSize & 7))
997     return -1;
998   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
999   LoadSize >>= 3;
1000
1001
1002   bool isAAFailure = false;
1003   if (StoreOffset < LoadOffset)
1004     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1005   else
1006     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1007
1008   if (isAAFailure) {
1009 #if 0
1010     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1011     << "Base       = " << *StoreBase << "\n"
1012     << "Store Ptr  = " << *WritePtr << "\n"
1013     << "Store Offs = " << StoreOffset << "\n"
1014     << "Load Ptr   = " << *LoadPtr << "\n";
1015     abort();
1016 #endif
1017     return -1;
1018   }
1019
1020   // If the Load isn't completely contained within the stored bits, we don't
1021   // have all the bits to feed it.  We could do something crazy in the future
1022   // (issue a smaller load then merge the bits in) but this seems unlikely to be
1023   // valuable.
1024   if (StoreOffset > LoadOffset ||
1025       StoreOffset+StoreSize < LoadOffset+LoadSize)
1026     return -1;
1027
1028   // Okay, we can do this transformation.  Return the number of bytes into the
1029   // store that the load is.
1030   return LoadOffset-StoreOffset;
1031 }
1032
1033 /// This function is called when we have a
1034 /// memdep query of a load that ends up being a clobbering store.
1035 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
1036                                           StoreInst *DepSI) {
1037   // Cannot handle reading from store of first-class aggregate yet.
1038   if (DepSI->getValueOperand()->getType()->isStructTy() ||
1039       DepSI->getValueOperand()->getType()->isArrayTy())
1040     return -1;
1041
1042   const DataLayout &DL = DepSI->getModule()->getDataLayout();
1043   Value *StorePtr = DepSI->getPointerOperand();
1044   uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1045   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1046                                         StorePtr, StoreSize, DL);
1047 }
1048
1049 /// This function is called when we have a
1050 /// memdep query of a load that ends up being clobbered by another load.  See if
1051 /// the other load can feed into the second load.
1052 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
1053                                          LoadInst *DepLI, const DataLayout &DL){
1054   // Cannot handle reading from store of first-class aggregate yet.
1055   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
1056     return -1;
1057
1058   Value *DepPtr = DepLI->getPointerOperand();
1059   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
1060   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
1061   if (R != -1) return R;
1062
1063   // If we have a load/load clobber an DepLI can be widened to cover this load,
1064   // then we should widen it!
1065   int64_t LoadOffs = 0;
1066   const Value *LoadBase =
1067       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
1068   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
1069
1070   unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
1071       LoadBase, LoadOffs, LoadSize, DepLI);
1072   if (Size == 0) return -1;
1073
1074   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
1075 }
1076
1077
1078
1079 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
1080                                             MemIntrinsic *MI,
1081                                             const DataLayout &DL) {
1082   // If the mem operation is a non-constant size, we can't handle it.
1083   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1084   if (!SizeCst) return -1;
1085   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1086
1087   // If this is memset, we just need to see if the offset is valid in the size
1088   // of the memset..
1089   if (MI->getIntrinsicID() == Intrinsic::memset)
1090     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1091                                           MemSizeInBits, DL);
1092
1093   // If we have a memcpy/memmove, the only case we can handle is if this is a
1094   // copy from constant memory.  In that case, we can read directly from the
1095   // constant memory.
1096   MemTransferInst *MTI = cast<MemTransferInst>(MI);
1097
1098   Constant *Src = dyn_cast<Constant>(MTI->getSource());
1099   if (!Src) return -1;
1100
1101   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
1102   if (!GV || !GV->isConstant()) return -1;
1103
1104   // See if the access is within the bounds of the transfer.
1105   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1106                                               MI->getDest(), MemSizeInBits, DL);
1107   if (Offset == -1)
1108     return Offset;
1109
1110   unsigned AS = Src->getType()->getPointerAddressSpace();
1111   // Otherwise, see if we can constant fold a load from the constant with the
1112   // offset applied as appropriate.
1113   Src = ConstantExpr::getBitCast(Src,
1114                                  Type::getInt8PtrTy(Src->getContext(), AS));
1115   Constant *OffsetCst =
1116     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1117   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
1118                                        OffsetCst);
1119   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1120   if (ConstantFoldLoadFromConstPtr(Src, DL))
1121     return Offset;
1122   return -1;
1123 }
1124
1125
1126 /// This function is called when we have a
1127 /// memdep query of a load that ends up being a clobbering store.  This means
1128 /// that the store provides bits used by the load but we the pointers don't
1129 /// mustalias.  Check this case to see if there is anything more we can do
1130 /// before we give up.
1131 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1132                                    Type *LoadTy,
1133                                    Instruction *InsertPt, const DataLayout &DL){
1134   LLVMContext &Ctx = SrcVal->getType()->getContext();
1135
1136   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1137   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
1138
1139   IRBuilder<> Builder(InsertPt);
1140
1141   // Compute which bits of the stored value are being used by the load.  Convert
1142   // to an integer type to start with.
1143   if (SrcVal->getType()->getScalarType()->isPointerTy())
1144     SrcVal = Builder.CreatePtrToInt(SrcVal,
1145         DL.getIntPtrType(SrcVal->getType()));
1146   if (!SrcVal->getType()->isIntegerTy())
1147     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1148
1149   // Shift the bits to the least significant depending on endianness.
1150   unsigned ShiftAmt;
1151   if (DL.isLittleEndian())
1152     ShiftAmt = Offset*8;
1153   else
1154     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1155
1156   if (ShiftAmt)
1157     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1158
1159   if (LoadSize != StoreSize)
1160     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1161
1162   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
1163 }
1164
1165 /// This function is called when we have a
1166 /// memdep query of a load that ends up being a clobbering load.  This means
1167 /// that the load *may* provide bits used by the load but we can't be sure
1168 /// because the pointers don't mustalias.  Check this case to see if there is
1169 /// anything more we can do before we give up.
1170 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1171                                   Type *LoadTy, Instruction *InsertPt,
1172                                   GVN &gvn) {
1173   const DataLayout &DL = SrcVal->getModule()->getDataLayout();
1174   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1175   // widen SrcVal out to a larger load.
1176   unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
1177   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
1178   if (Offset+LoadSize > SrcValSize) {
1179     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1180     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1181     // If we have a load/load clobber an DepLI can be widened to cover this
1182     // load, then we should widen it to the next power of 2 size big enough!
1183     unsigned NewLoadSize = Offset+LoadSize;
1184     if (!isPowerOf2_32(NewLoadSize))
1185       NewLoadSize = NextPowerOf2(NewLoadSize);
1186
1187     Value *PtrVal = SrcVal->getPointerOperand();
1188
1189     // Insert the new load after the old load.  This ensures that subsequent
1190     // memdep queries will find the new load.  We can't easily remove the old
1191     // load completely because it is already in the value numbering table.
1192     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1193     Type *DestPTy =
1194       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1195     DestPTy = PointerType::get(DestPTy,
1196                                PtrVal->getType()->getPointerAddressSpace());
1197     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1198     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1199     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1200     NewLoad->takeName(SrcVal);
1201     NewLoad->setAlignment(SrcVal->getAlignment());
1202
1203     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1204     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1205
1206     // Replace uses of the original load with the wider load.  On a big endian
1207     // system, we need to shift down to get the relevant bits.
1208     Value *RV = NewLoad;
1209     if (DL.isBigEndian())
1210       RV = Builder.CreateLShr(RV,
1211                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1212     RV = Builder.CreateTrunc(RV, SrcVal->getType());
1213     SrcVal->replaceAllUsesWith(RV);
1214
1215     // We would like to use gvn.markInstructionForDeletion here, but we can't
1216     // because the load is already memoized into the leader map table that GVN
1217     // tracks.  It is potentially possible to remove the load from the table,
1218     // but then there all of the operations based on it would need to be
1219     // rehashed.  Just leave the dead load around.
1220     gvn.getMemDep().removeInstruction(SrcVal);
1221     SrcVal = NewLoad;
1222   }
1223
1224   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
1225 }
1226
1227
1228 /// This function is called when we have a
1229 /// memdep query of a load that ends up being a clobbering mem intrinsic.
1230 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1231                                      Type *LoadTy, Instruction *InsertPt,
1232                                      const DataLayout &DL){
1233   LLVMContext &Ctx = LoadTy->getContext();
1234   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
1235
1236   IRBuilder<> Builder(InsertPt);
1237
1238   // We know that this method is only called when the mem transfer fully
1239   // provides the bits for the load.
1240   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1241     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1242     // independently of what the offset is.
1243     Value *Val = MSI->getValue();
1244     if (LoadSize != 1)
1245       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1246
1247     Value *OneElt = Val;
1248
1249     // Splat the value out to the right number of bits.
1250     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1251       // If we can double the number of bytes set, do it.
1252       if (NumBytesSet*2 <= LoadSize) {
1253         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1254         Val = Builder.CreateOr(Val, ShVal);
1255         NumBytesSet <<= 1;
1256         continue;
1257       }
1258
1259       // Otherwise insert one byte at a time.
1260       Value *ShVal = Builder.CreateShl(Val, 1*8);
1261       Val = Builder.CreateOr(OneElt, ShVal);
1262       ++NumBytesSet;
1263     }
1264
1265     return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
1266   }
1267
1268   // Otherwise, this is a memcpy/memmove from a constant global.
1269   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1270   Constant *Src = cast<Constant>(MTI->getSource());
1271   unsigned AS = Src->getType()->getPointerAddressSpace();
1272
1273   // Otherwise, see if we can constant fold a load from the constant with the
1274   // offset applied as appropriate.
1275   Src = ConstantExpr::getBitCast(Src,
1276                                  Type::getInt8PtrTy(Src->getContext(), AS));
1277   Constant *OffsetCst =
1278     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1279   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
1280                                        OffsetCst);
1281   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1282   return ConstantFoldLoadFromConstPtr(Src, DL);
1283 }
1284
1285
1286 /// Given a set of loads specified by ValuesPerBlock,
1287 /// construct SSA form, allowing us to eliminate LI.  This returns the value
1288 /// that should be used at LI's definition site.
1289 static Value *ConstructSSAForLoadSet(LoadInst *LI,
1290                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1291                                      GVN &gvn) {
1292   // Check for the fully redundant, dominating load case.  In this case, we can
1293   // just use the dominating value directly.
1294   if (ValuesPerBlock.size() == 1 &&
1295       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1296                                                LI->getParent())) {
1297     assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
1298     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
1299   }
1300
1301   // Otherwise, we have to construct SSA form.
1302   SmallVector<PHINode*, 8> NewPHIs;
1303   SSAUpdater SSAUpdate(&NewPHIs);
1304   SSAUpdate.Initialize(LI->getType(), LI->getName());
1305
1306   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
1307     BasicBlock *BB = AV.BB;
1308
1309     if (SSAUpdate.HasValueForBlock(BB))
1310       continue;
1311
1312     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
1313   }
1314
1315   // Perform PHI construction.
1316   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1317 }
1318
1319 Value *AvailableValueInBlock::MaterializeAdjustedValue(LoadInst *LI,
1320                                                        GVN &gvn) const {
1321   Value *Res;
1322   Type *LoadTy = LI->getType();
1323   const DataLayout &DL = LI->getModule()->getDataLayout();
1324   if (isSimpleValue()) {
1325     Res = getSimpleValue();
1326     if (Res->getType() != LoadTy) {
1327       Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), DL);
1328
1329       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1330                    << *getSimpleValue() << '\n'
1331                    << *Res << '\n' << "\n\n\n");
1332     }
1333   } else if (isCoercedLoadValue()) {
1334     LoadInst *Load = getCoercedLoadValue();
1335     if (Load->getType() == LoadTy && Offset == 0) {
1336       Res = Load;
1337     } else {
1338       Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1339                                 gvn);
1340   
1341       DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1342                    << *getCoercedLoadValue() << '\n'
1343                    << *Res << '\n' << "\n\n\n");
1344     }
1345   } else if (isMemIntrinValue()) {
1346     Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
1347                                  BB->getTerminator(), DL);
1348     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1349                  << "  " << *getMemIntrinValue() << '\n'
1350                  << *Res << '\n' << "\n\n\n");
1351   } else {
1352     assert(isUndefValue() && "Should be UndefVal");
1353     DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
1354     return UndefValue::get(LoadTy);
1355   }
1356   return Res;
1357 }
1358
1359 static bool isLifetimeStart(const Instruction *Inst) {
1360   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1361     return II->getIntrinsicID() == Intrinsic::lifetime_start;
1362   return false;
1363 }
1364
1365 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 
1366                                   AvailValInBlkVect &ValuesPerBlock,
1367                                   UnavailBlkVect &UnavailableBlocks) {
1368
1369   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1370   // where we have a value available in repl, also keep track of whether we see
1371   // dependencies that produce an unknown value for the load (such as a call
1372   // that could potentially clobber the load).
1373   unsigned NumDeps = Deps.size();
1374   const DataLayout &DL = LI->getModule()->getDataLayout();
1375   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1376     BasicBlock *DepBB = Deps[i].getBB();
1377     MemDepResult DepInfo = Deps[i].getResult();
1378
1379     if (DeadBlocks.count(DepBB)) {
1380       // Dead dependent mem-op disguise as a load evaluating the same value
1381       // as the load in question.
1382       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1383       continue;
1384     }
1385
1386     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1387       UnavailableBlocks.push_back(DepBB);
1388       continue;
1389     }
1390
1391     if (DepInfo.isClobber()) {
1392       // The address being loaded in this non-local block may not be the same as
1393       // the pointer operand of the load if PHI translation occurs.  Make sure
1394       // to consider the right address.
1395       Value *Address = Deps[i].getAddress();
1396
1397       // If the dependence is to a store that writes to a superset of the bits
1398       // read by the load, we can extract the bits we need for the load from the
1399       // stored value.
1400       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1401         if (Address) {
1402           int Offset =
1403               AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
1404           if (Offset != -1) {
1405             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1406                                                        DepSI->getValueOperand(),
1407                                                                 Offset));
1408             continue;
1409           }
1410         }
1411       }
1412
1413       // Check to see if we have something like this:
1414       //    load i32* P
1415       //    load i8* (P+1)
1416       // if we have this, replace the later with an extraction from the former.
1417       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1418         // If this is a clobber and L is the first instruction in its block, then
1419         // we have the first instruction in the entry block.
1420         if (DepLI != LI && Address) {
1421           int Offset =
1422               AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
1423
1424           if (Offset != -1) {
1425             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1426                                                                     Offset));
1427             continue;
1428           }
1429         }
1430       }
1431
1432       // If the clobbering value is a memset/memcpy/memmove, see if we can
1433       // forward a value on from it.
1434       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1435         if (Address) {
1436           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1437                                                         DepMI, DL);
1438           if (Offset != -1) {
1439             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1440                                                                   Offset));
1441             continue;
1442           }
1443         }
1444       }
1445
1446       UnavailableBlocks.push_back(DepBB);
1447       continue;
1448     }
1449
1450     // DepInfo.isDef() here
1451
1452     Instruction *DepInst = DepInfo.getInst();
1453
1454     // Loading the allocation -> undef.
1455     if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1456         // Loading immediately after lifetime begin -> undef.
1457         isLifetimeStart(DepInst)) {
1458       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1459                                              UndefValue::get(LI->getType())));
1460       continue;
1461     }
1462
1463     // Loading from calloc (which zero initializes memory) -> zero
1464     if (isCallocLikeFn(DepInst, TLI)) {
1465       ValuesPerBlock.push_back(AvailableValueInBlock::get(
1466           DepBB, Constant::getNullValue(LI->getType())));
1467       continue;
1468     }
1469
1470     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1471       // Reject loads and stores that are to the same address but are of
1472       // different types if we have to.
1473       if (S->getValueOperand()->getType() != LI->getType()) {
1474         // If the stored value is larger or equal to the loaded value, we can
1475         // reuse it.
1476         if (!CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1477                                              LI->getType(), DL)) {
1478           UnavailableBlocks.push_back(DepBB);
1479           continue;
1480         }
1481       }
1482
1483       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1484                                                          S->getValueOperand()));
1485       continue;
1486     }
1487
1488     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1489       // If the types mismatch and we can't handle it, reject reuse of the load.
1490       if (LD->getType() != LI->getType()) {
1491         // If the stored value is larger or equal to the loaded value, we can
1492         // reuse it.
1493         if (!CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) {
1494           UnavailableBlocks.push_back(DepBB);
1495           continue;
1496         }
1497       }
1498       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1499       continue;
1500     }
1501
1502     UnavailableBlocks.push_back(DepBB);
1503   }
1504 }
1505
1506 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 
1507                          UnavailBlkVect &UnavailableBlocks) {
1508   // Okay, we have *some* definitions of the value.  This means that the value
1509   // is available in some of our (transitive) predecessors.  Lets think about
1510   // doing PRE of this load.  This will involve inserting a new load into the
1511   // predecessor when it's not available.  We could do this in general, but
1512   // prefer to not increase code size.  As such, we only do this when we know
1513   // that we only have to insert *one* load (which means we're basically moving
1514   // the load, not inserting a new one).
1515
1516   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1517                                         UnavailableBlocks.end());
1518
1519   // Let's find the first basic block with more than one predecessor.  Walk
1520   // backwards through predecessors if needed.
1521   BasicBlock *LoadBB = LI->getParent();
1522   BasicBlock *TmpBB = LoadBB;
1523
1524   while (TmpBB->getSinglePredecessor()) {
1525     TmpBB = TmpBB->getSinglePredecessor();
1526     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1527       return false;
1528     if (Blockers.count(TmpBB))
1529       return false;
1530
1531     // If any of these blocks has more than one successor (i.e. if the edge we
1532     // just traversed was critical), then there are other paths through this
1533     // block along which the load may not be anticipated.  Hoisting the load
1534     // above this block would be adding the load to execution paths along
1535     // which it was not previously executed.
1536     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1537       return false;
1538   }
1539
1540   assert(TmpBB);
1541   LoadBB = TmpBB;
1542
1543   // Check to see how many predecessors have the loaded value fully
1544   // available.
1545   MapVector<BasicBlock *, Value *> PredLoads;
1546   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1547   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1548     FullyAvailableBlocks[AV.BB] = true;
1549   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1550     FullyAvailableBlocks[UnavailableBB] = false;
1551
1552   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1553   for (BasicBlock *Pred : predecessors(LoadBB)) {
1554     // If any predecessor block is an EH pad that does not allow non-PHI
1555     // instructions before the terminator, we can't PRE the load.
1556     if (Pred->getTerminator()->isEHPad()) {
1557       DEBUG(dbgs()
1558             << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1559             << Pred->getName() << "': " << *LI << '\n');
1560       return false;
1561     }
1562
1563     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1564       continue;
1565     }
1566
1567     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1568       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1569         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1570               << Pred->getName() << "': " << *LI << '\n');
1571         return false;
1572       }
1573
1574       if (LoadBB->isEHPad()) {
1575         DEBUG(dbgs()
1576               << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1577               << Pred->getName() << "': " << *LI << '\n');
1578         return false;
1579       }
1580
1581       CriticalEdgePred.push_back(Pred);
1582     } else {
1583       // Only add the predecessors that will not be split for now.
1584       PredLoads[Pred] = nullptr;
1585     }
1586   }
1587
1588   // Decide whether PRE is profitable for this load.
1589   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1590   assert(NumUnavailablePreds != 0 &&
1591          "Fully available value should already be eliminated!");
1592
1593   // If this load is unavailable in multiple predecessors, reject it.
1594   // FIXME: If we could restructure the CFG, we could make a common pred with
1595   // all the preds that don't have an available LI and insert a new load into
1596   // that one block.
1597   if (NumUnavailablePreds != 1)
1598       return false;
1599
1600   // Split critical edges, and update the unavailable predecessors accordingly.
1601   for (BasicBlock *OrigPred : CriticalEdgePred) {
1602     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1603     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1604     PredLoads[NewPred] = nullptr;
1605     DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1606                  << LoadBB->getName() << '\n');
1607   }
1608
1609   // Check if the load can safely be moved to all the unavailable predecessors.
1610   bool CanDoPRE = true;
1611   const DataLayout &DL = LI->getModule()->getDataLayout();
1612   SmallVector<Instruction*, 8> NewInsts;
1613   for (auto &PredLoad : PredLoads) {
1614     BasicBlock *UnavailablePred = PredLoad.first;
1615
1616     // Do PHI translation to get its value in the predecessor if necessary.  The
1617     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1618
1619     // If all preds have a single successor, then we know it is safe to insert
1620     // the load on the pred (?!?), so we can insert code to materialize the
1621     // pointer if it is not available.
1622     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1623     Value *LoadPtr = nullptr;
1624     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1625                                                 *DT, NewInsts);
1626
1627     // If we couldn't find or insert a computation of this phi translated value,
1628     // we fail PRE.
1629     if (!LoadPtr) {
1630       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1631             << *LI->getPointerOperand() << "\n");
1632       CanDoPRE = false;
1633       break;
1634     }
1635
1636     PredLoad.second = LoadPtr;
1637   }
1638
1639   if (!CanDoPRE) {
1640     while (!NewInsts.empty()) {
1641       Instruction *I = NewInsts.pop_back_val();
1642       if (MD) MD->removeInstruction(I);
1643       I->eraseFromParent();
1644     }
1645     // HINT: Don't revert the edge-splitting as following transformation may
1646     // also need to split these critical edges.
1647     return !CriticalEdgePred.empty();
1648   }
1649
1650   // Okay, we can eliminate this load by inserting a reload in the predecessor
1651   // and using PHI construction to get the value in the other predecessors, do
1652   // it.
1653   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1654   DEBUG(if (!NewInsts.empty())
1655           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1656                  << *NewInsts.back() << '\n');
1657
1658   // Assign value numbers to the new instructions.
1659   for (Instruction *I : NewInsts) {
1660     // FIXME: We really _ought_ to insert these value numbers into their
1661     // parent's availability map.  However, in doing so, we risk getting into
1662     // ordering issues.  If a block hasn't been processed yet, we would be
1663     // marking a value as AVAIL-IN, which isn't what we intend.
1664     VN.lookup_or_add(I);
1665   }
1666
1667   for (const auto &PredLoad : PredLoads) {
1668     BasicBlock *UnavailablePred = PredLoad.first;
1669     Value *LoadPtr = PredLoad.second;
1670
1671     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1672                                         LI->getAlignment(),
1673                                         UnavailablePred->getTerminator());
1674
1675     // Transfer the old load's AA tags to the new load.
1676     AAMDNodes Tags;
1677     LI->getAAMetadata(Tags);
1678     if (Tags)
1679       NewLoad->setAAMetadata(Tags);
1680
1681     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1682       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1683     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1684       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1685
1686     // Transfer DebugLoc.
1687     NewLoad->setDebugLoc(LI->getDebugLoc());
1688
1689     // Add the newly created load.
1690     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1691                                                         NewLoad));
1692     MD->invalidateCachedPointerInfo(LoadPtr);
1693     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1694   }
1695
1696   // Perform PHI construction.
1697   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1698   LI->replaceAllUsesWith(V);
1699   if (isa<PHINode>(V))
1700     V->takeName(LI);
1701   if (Instruction *I = dyn_cast<Instruction>(V))
1702     I->setDebugLoc(LI->getDebugLoc());
1703   if (V->getType()->getScalarType()->isPointerTy())
1704     MD->invalidateCachedPointerInfo(V);
1705   markInstructionForDeletion(LI);
1706   ++NumPRELoad;
1707   return true;
1708 }
1709
1710 /// Attempt to eliminate a load whose dependencies are
1711 /// non-local by performing PHI construction.
1712 bool GVN::processNonLocalLoad(LoadInst *LI) {
1713   // non-local speculations are not allowed under asan.
1714   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeAddress))
1715     return false;
1716
1717   // Step 1: Find the non-local dependencies of the load.
1718   LoadDepVect Deps;
1719   MD->getNonLocalPointerDependency(LI, Deps);
1720
1721   // If we had to process more than one hundred blocks to find the
1722   // dependencies, this load isn't worth worrying about.  Optimizing
1723   // it will be too expensive.
1724   unsigned NumDeps = Deps.size();
1725   if (NumDeps > 100)
1726     return false;
1727
1728   // If we had a phi translation failure, we'll have a single entry which is a
1729   // clobber in the current block.  Reject this early.
1730   if (NumDeps == 1 &&
1731       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1732     DEBUG(
1733       dbgs() << "GVN: non-local load ";
1734       LI->printAsOperand(dbgs());
1735       dbgs() << " has unknown dependencies\n";
1736     );
1737     return false;
1738   }
1739
1740   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1741   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1742     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1743                                         OE = GEP->idx_end();
1744          OI != OE; ++OI)
1745       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1746         performScalarPRE(I);
1747   }
1748
1749   // Step 2: Analyze the availability of the load
1750   AvailValInBlkVect ValuesPerBlock;
1751   UnavailBlkVect UnavailableBlocks;
1752   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1753
1754   // If we have no predecessors that produce a known value for this load, exit
1755   // early.
1756   if (ValuesPerBlock.empty())
1757     return false;
1758
1759   // Step 3: Eliminate fully redundancy.
1760   //
1761   // If all of the instructions we depend on produce a known value for this
1762   // load, then it is fully redundant and we can use PHI insertion to compute
1763   // its value.  Insert PHIs and remove the fully redundant value now.
1764   if (UnavailableBlocks.empty()) {
1765     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1766
1767     // Perform PHI construction.
1768     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1769     LI->replaceAllUsesWith(V);
1770
1771     if (isa<PHINode>(V))
1772       V->takeName(LI);
1773     if (Instruction *I = dyn_cast<Instruction>(V))
1774       if (LI->getDebugLoc())
1775         I->setDebugLoc(LI->getDebugLoc());
1776     if (V->getType()->getScalarType()->isPointerTy())
1777       MD->invalidateCachedPointerInfo(V);
1778     markInstructionForDeletion(LI);
1779     ++NumGVNLoad;
1780     return true;
1781   }
1782
1783   // Step 4: Eliminate partial redundancy.
1784   if (!EnablePRE || !EnableLoadPRE)
1785     return false;
1786
1787   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1788 }
1789
1790 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1791   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1792          "This function can only be called with llvm.assume intrinsic");
1793   Value *V = IntrinsicI->getArgOperand(0);
1794
1795   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1796     if (Cond->isZero()) {
1797       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1798       // Insert a new store to null instruction before the load to indicate that
1799       // this code is not reachable.  FIXME: We could insert unreachable
1800       // instruction directly because we can modify the CFG.
1801       new StoreInst(UndefValue::get(Int8Ty),
1802                     Constant::getNullValue(Int8Ty->getPointerTo()),
1803                     IntrinsicI);
1804     }
1805     markInstructionForDeletion(IntrinsicI);
1806     return false;
1807   }
1808
1809   Constant *True = ConstantInt::getTrue(V->getContext());
1810   bool Changed = false;
1811
1812   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1813     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1814
1815     // This property is only true in dominated successors, propagateEquality
1816     // will check dominance for us.
1817     Changed |= propagateEquality(V, True, Edge, false);
1818   }
1819
1820   // We can replace assume value with true, which covers cases like this:
1821   // call void @llvm.assume(i1 %cmp)
1822   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1823   ReplaceWithConstMap[V] = True;
1824
1825   // If one of *cmp *eq operand is const, adding it to map will cover this:
1826   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1827   // call void @llvm.assume(i1 %cmp)
1828   // ret float %0 ; will change it to ret float 3.000000e+00
1829   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1830     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1831         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1832         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1833          CmpI->getFastMathFlags().noNaNs())) {
1834       Value *CmpLHS = CmpI->getOperand(0);
1835       Value *CmpRHS = CmpI->getOperand(1);
1836       if (isa<Constant>(CmpLHS))
1837         std::swap(CmpLHS, CmpRHS);
1838       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
1839
1840       // If only one operand is constant.
1841       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
1842         ReplaceWithConstMap[CmpLHS] = RHSConst;
1843     }
1844   }
1845   return Changed;
1846 }
1847
1848 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1849   // Patch the replacement so that it is not more restrictive than the value
1850   // being replaced.
1851   BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1852   BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1853   if (Op && ReplOp)
1854     ReplOp->andIRFlags(Op);
1855
1856   if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1857     // FIXME: If both the original and replacement value are part of the
1858     // same control-flow region (meaning that the execution of one
1859     // guarantees the execution of the other), then we can combine the
1860     // noalias scopes here and do better than the general conservative
1861     // answer used in combineMetadata().
1862
1863     // In general, GVN unifies expressions over different control-flow
1864     // regions, and so we need a conservative combination of the noalias
1865     // scopes.
1866     static const unsigned KnownIDs[] = {
1867         LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
1868         LLVMContext::MD_noalias,        LLVMContext::MD_range,
1869         LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
1870         LLVMContext::MD_invariant_group};
1871     combineMetadata(ReplInst, I, KnownIDs);
1872   }
1873 }
1874
1875 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1876   patchReplacementInstruction(I, Repl);
1877   I->replaceAllUsesWith(Repl);
1878 }
1879
1880 /// Attempt to eliminate a load, first by eliminating it
1881 /// locally, and then attempting non-local elimination if that fails.
1882 bool GVN::processLoad(LoadInst *L) {
1883   if (!MD)
1884     return false;
1885
1886   if (!L->isSimple())
1887     return false;
1888
1889   if (L->use_empty()) {
1890     markInstructionForDeletion(L);
1891     return true;
1892   }
1893
1894   // ... to a pointer that has been loaded from before...
1895   MemDepResult Dep = MD->getDependency(L);
1896   const DataLayout &DL = L->getModule()->getDataLayout();
1897
1898   // If we have a clobber and target data is around, see if this is a clobber
1899   // that we can fix up through code synthesis.
1900   if (Dep.isClobber()) {
1901     // Check to see if we have something like this:
1902     //   store i32 123, i32* %P
1903     //   %A = bitcast i32* %P to i8*
1904     //   %B = gep i8* %A, i32 1
1905     //   %C = load i8* %B
1906     //
1907     // We could do that by recognizing if the clobber instructions are obviously
1908     // a common base + constant offset, and if the previous store (or memset)
1909     // completely covers this load.  This sort of thing can happen in bitfield
1910     // access code.
1911     Value *AvailVal = nullptr;
1912     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1913       int Offset = AnalyzeLoadFromClobberingStore(
1914           L->getType(), L->getPointerOperand(), DepSI);
1915       if (Offset != -1)
1916         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1917                                         L->getType(), L, DL);
1918     }
1919
1920     // Check to see if we have something like this:
1921     //    load i32* P
1922     //    load i8* (P+1)
1923     // if we have this, replace the later with an extraction from the former.
1924     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1925       // If this is a clobber and L is the first instruction in its block, then
1926       // we have the first instruction in the entry block.
1927       if (DepLI == L)
1928         return false;
1929
1930       int Offset = AnalyzeLoadFromClobberingLoad(
1931           L->getType(), L->getPointerOperand(), DepLI, DL);
1932       if (Offset != -1)
1933         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1934     }
1935
1936     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1937     // a value on from it.
1938     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1939       int Offset = AnalyzeLoadFromClobberingMemInst(
1940           L->getType(), L->getPointerOperand(), DepMI, DL);
1941       if (Offset != -1)
1942         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, DL);
1943     }
1944
1945     if (AvailVal) {
1946       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1947             << *AvailVal << '\n' << *L << "\n\n\n");
1948
1949       // Replace the load!
1950       L->replaceAllUsesWith(AvailVal);
1951       if (AvailVal->getType()->getScalarType()->isPointerTy())
1952         MD->invalidateCachedPointerInfo(AvailVal);
1953       markInstructionForDeletion(L);
1954       ++NumGVNLoad;
1955       return true;
1956     }
1957
1958     // If the value isn't available, don't do anything!
1959     DEBUG(
1960       // fast print dep, using operator<< on instruction is too slow.
1961       dbgs() << "GVN: load ";
1962       L->printAsOperand(dbgs());
1963       Instruction *I = Dep.getInst();
1964       dbgs() << " is clobbered by " << *I << '\n';
1965     );
1966     return false;
1967   }
1968
1969   // If it is defined in another block, try harder.
1970   if (Dep.isNonLocal())
1971     return processNonLocalLoad(L);
1972
1973   if (!Dep.isDef()) {
1974     DEBUG(
1975       // fast print dep, using operator<< on instruction is too slow.
1976       dbgs() << "GVN: load ";
1977       L->printAsOperand(dbgs());
1978       dbgs() << " has unknown dependence\n";
1979     );
1980     return false;
1981   }
1982
1983   Instruction *DepInst = Dep.getInst();
1984   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1985     Value *StoredVal = DepSI->getValueOperand();
1986
1987     // The store and load are to a must-aliased pointer, but they may not
1988     // actually have the same type.  See if we know how to reuse the stored
1989     // value (depending on its type).
1990     if (StoredVal->getType() != L->getType()) {
1991       IRBuilder<> Builder(L);
1992       StoredVal =
1993           CoerceAvailableValueToLoadType(StoredVal, L->getType(), Builder, DL);
1994       if (!StoredVal)
1995         return false;
1996
1997       DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1998                    << '\n' << *L << "\n\n\n");
1999     }
2000
2001     // Remove it!
2002     L->replaceAllUsesWith(StoredVal);
2003     if (StoredVal->getType()->getScalarType()->isPointerTy())
2004       MD->invalidateCachedPointerInfo(StoredVal);
2005     markInstructionForDeletion(L);
2006     ++NumGVNLoad;
2007     return true;
2008   }
2009
2010   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
2011     Value *AvailableVal = DepLI;
2012
2013     // The loads are of a must-aliased pointer, but they may not actually have
2014     // the same type.  See if we know how to reuse the previously loaded value
2015     // (depending on its type).
2016     if (DepLI->getType() != L->getType()) {
2017       IRBuilder<> Builder(L);
2018       AvailableVal =
2019           CoerceAvailableValueToLoadType(DepLI, L->getType(), Builder, DL);
2020       if (!AvailableVal)
2021         return false;
2022
2023       DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
2024                    << "\n" << *L << "\n\n\n");
2025     }
2026
2027     // Remove it!
2028     patchAndReplaceAllUsesWith(L, AvailableVal);
2029     if (DepLI->getType()->getScalarType()->isPointerTy())
2030       MD->invalidateCachedPointerInfo(DepLI);
2031     markInstructionForDeletion(L);
2032     ++NumGVNLoad;
2033     return true;
2034   }
2035
2036   // If this load really doesn't depend on anything, then we must be loading an
2037   // undef value.  This can happen when loading for a fresh allocation with no
2038   // intervening stores, for example.
2039   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
2040     L->replaceAllUsesWith(UndefValue::get(L->getType()));
2041     markInstructionForDeletion(L);
2042     ++NumGVNLoad;
2043     return true;
2044   }
2045
2046   // If this load occurs either right after a lifetime begin,
2047   // then the loaded value is undefined.
2048   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
2049     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
2050       L->replaceAllUsesWith(UndefValue::get(L->getType()));
2051       markInstructionForDeletion(L);
2052       ++NumGVNLoad;
2053       return true;
2054     }
2055   }
2056
2057   // If this load follows a calloc (which zero initializes memory),
2058   // then the loaded value is zero
2059   if (isCallocLikeFn(DepInst, TLI)) {
2060     L->replaceAllUsesWith(Constant::getNullValue(L->getType()));
2061     markInstructionForDeletion(L);
2062     ++NumGVNLoad;
2063     return true;
2064   }
2065
2066   return false;
2067 }
2068
2069 // In order to find a leader for a given value number at a
2070 // specific basic block, we first obtain the list of all Values for that number,
2071 // and then scan the list to find one whose block dominates the block in
2072 // question.  This is fast because dominator tree queries consist of only
2073 // a few comparisons of DFS numbers.
2074 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2075   LeaderTableEntry Vals = LeaderTable[num];
2076   if (!Vals.Val) return nullptr;
2077
2078   Value *Val = nullptr;
2079   if (DT->dominates(Vals.BB, BB)) {
2080     Val = Vals.Val;
2081     if (isa<Constant>(Val)) return Val;
2082   }
2083
2084   LeaderTableEntry* Next = Vals.Next;
2085   while (Next) {
2086     if (DT->dominates(Next->BB, BB)) {
2087       if (isa<Constant>(Next->Val)) return Next->Val;
2088       if (!Val) Val = Next->Val;
2089     }
2090
2091     Next = Next->Next;
2092   }
2093
2094   return Val;
2095 }
2096
2097 /// There is an edge from 'Src' to 'Dst'.  Return
2098 /// true if every path from the entry block to 'Dst' passes via this edge.  In
2099 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2100 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2101                                        DominatorTree *DT) {
2102   // While in theory it is interesting to consider the case in which Dst has
2103   // more than one predecessor, because Dst might be part of a loop which is
2104   // only reachable from Src, in practice it is pointless since at the time
2105   // GVN runs all such loops have preheaders, which means that Dst will have
2106   // been changed to have only one predecessor, namely Src.
2107   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2108   const BasicBlock *Src = E.getStart();
2109   assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2110   (void)Src;
2111   return Pred != nullptr;
2112 }
2113
2114 // Tries to replace instruction with const, using information from
2115 // ReplaceWithConstMap.
2116 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
2117   bool Changed = false;
2118   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
2119     Value *Operand = Instr->getOperand(OpNum);
2120     auto it = ReplaceWithConstMap.find(Operand);
2121     if (it != ReplaceWithConstMap.end()) {
2122       assert(!isa<Constant>(Operand) &&
2123              "Replacing constants with constants is invalid");
2124       DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second
2125                    << " in instruction " << *Instr << '\n');
2126       Instr->setOperand(OpNum, it->second);
2127       Changed = true;
2128     }
2129   }
2130   return Changed;
2131 }
2132
2133 /// The given values are known to be equal in every block
2134 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2135 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
2136 /// If DominatesByEdge is false, then it means that it is dominated by Root.End.
2137 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
2138                             bool DominatesByEdge) {
2139   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2140   Worklist.push_back(std::make_pair(LHS, RHS));
2141   bool Changed = false;
2142   // For speed, compute a conservative fast approximation to
2143   // DT->dominates(Root, Root.getEnd());
2144   bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2145
2146   while (!Worklist.empty()) {
2147     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2148     LHS = Item.first; RHS = Item.second;
2149
2150     if (LHS == RHS)
2151       continue;
2152     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2153
2154     // Don't try to propagate equalities between constants.
2155     if (isa<Constant>(LHS) && isa<Constant>(RHS))
2156       continue;
2157
2158     // Prefer a constant on the right-hand side, or an Argument if no constants.
2159     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2160       std::swap(LHS, RHS);
2161     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2162
2163     // If there is no obvious reason to prefer the left-hand side over the
2164     // right-hand side, ensure the longest lived term is on the right-hand side,
2165     // so the shortest lived term will be replaced by the longest lived.
2166     // This tends to expose more simplifications.
2167     uint32_t LVN = VN.lookup_or_add(LHS);
2168     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2169         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2170       // Move the 'oldest' value to the right-hand side, using the value number
2171       // as a proxy for age.
2172       uint32_t RVN = VN.lookup_or_add(RHS);
2173       if (LVN < RVN) {
2174         std::swap(LHS, RHS);
2175         LVN = RVN;
2176       }
2177     }
2178
2179     // If value numbering later sees that an instruction in the scope is equal
2180     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2181     // the invariant that instructions only occur in the leader table for their
2182     // own value number (this is used by removeFromLeaderTable), do not do this
2183     // if RHS is an instruction (if an instruction in the scope is morphed into
2184     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2185     // using the leader table is about compiling faster, not optimizing better).
2186     // The leader table only tracks basic blocks, not edges. Only add to if we
2187     // have the simple case where the edge dominates the end.
2188     if (RootDominatesEnd && !isa<Instruction>(RHS))
2189       addToLeaderTable(LVN, RHS, Root.getEnd());
2190
2191     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2192     // LHS always has at least one use that is not dominated by Root, this will
2193     // never do anything if LHS has only one use.
2194     if (!LHS->hasOneUse()) {
2195       unsigned NumReplacements =
2196           DominatesByEdge
2197               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
2198               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getEnd());
2199
2200       Changed |= NumReplacements > 0;
2201       NumGVNEqProp += NumReplacements;
2202     }
2203
2204     // Now try to deduce additional equalities from this one. For example, if
2205     // the known equality was "(A != B)" == "false" then it follows that A and B
2206     // are equal in the scope. Only boolean equalities with an explicit true or
2207     // false RHS are currently supported.
2208     if (!RHS->getType()->isIntegerTy(1))
2209       // Not a boolean equality - bail out.
2210       continue;
2211     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2212     if (!CI)
2213       // RHS neither 'true' nor 'false' - bail out.
2214       continue;
2215     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2216     bool isKnownTrue = CI->isAllOnesValue();
2217     bool isKnownFalse = !isKnownTrue;
2218
2219     // If "A && B" is known true then both A and B are known true.  If "A || B"
2220     // is known false then both A and B are known false.
2221     Value *A, *B;
2222     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2223         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2224       Worklist.push_back(std::make_pair(A, RHS));
2225       Worklist.push_back(std::make_pair(B, RHS));
2226       continue;
2227     }
2228
2229     // If we are propagating an equality like "(A == B)" == "true" then also
2230     // propagate the equality A == B.  When propagating a comparison such as
2231     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2232     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2233       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2234
2235       // If "A == B" is known true, or "A != B" is known false, then replace
2236       // A with B everywhere in the scope.
2237       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2238           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2239         Worklist.push_back(std::make_pair(Op0, Op1));
2240
2241       // Handle the floating point versions of equality comparisons too.
2242       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
2243           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
2244
2245         // Floating point -0.0 and 0.0 compare equal, so we can only
2246         // propagate values if we know that we have a constant and that
2247         // its value is non-zero.
2248         
2249         // FIXME: We should do this optimization if 'no signed zeros' is
2250         // applicable via an instruction-level fast-math-flag or some other
2251         // indicator that relaxed FP semantics are being used.
2252
2253         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
2254           Worklist.push_back(std::make_pair(Op0, Op1));
2255       }
2256  
2257       // If "A >= B" is known true, replace "A < B" with false everywhere.
2258       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2259       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2260       // Since we don't have the instruction "A < B" immediately to hand, work
2261       // out the value number that it would have and use that to find an
2262       // appropriate instruction (if any).
2263       uint32_t NextNum = VN.getNextUnusedValueNumber();
2264       uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2265       // If the number we were assigned was brand new then there is no point in
2266       // looking for an instruction realizing it: there cannot be one!
2267       if (Num < NextNum) {
2268         Value *NotCmp = findLeader(Root.getEnd(), Num);
2269         if (NotCmp && isa<Instruction>(NotCmp)) {
2270           unsigned NumReplacements =
2271               DominatesByEdge
2272                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2273                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2274                                              Root.getEnd());
2275           Changed |= NumReplacements > 0;
2276           NumGVNEqProp += NumReplacements;
2277         }
2278       }
2279       // Ensure that any instruction in scope that gets the "A < B" value number
2280       // is replaced with false.
2281       // The leader table only tracks basic blocks, not edges. Only add to if we
2282       // have the simple case where the edge dominates the end.
2283       if (RootDominatesEnd)
2284         addToLeaderTable(Num, NotVal, Root.getEnd());
2285
2286       continue;
2287     }
2288   }
2289
2290   return Changed;
2291 }
2292
2293 /// When calculating availability, handle an instruction
2294 /// by inserting it into the appropriate sets
2295 bool GVN::processInstruction(Instruction *I) {
2296   // Ignore dbg info intrinsics.
2297   if (isa<DbgInfoIntrinsic>(I))
2298     return false;
2299
2300   // If the instruction can be easily simplified then do so now in preference
2301   // to value numbering it.  Value numbering often exposes redundancies, for
2302   // example if it determines that %y is equal to %x then the instruction
2303   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2304   const DataLayout &DL = I->getModule()->getDataLayout();
2305   if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
2306     I->replaceAllUsesWith(V);
2307     if (MD && V->getType()->getScalarType()->isPointerTy())
2308       MD->invalidateCachedPointerInfo(V);
2309     markInstructionForDeletion(I);
2310     ++NumGVNSimpl;
2311     return true;
2312   }
2313
2314   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
2315     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
2316       return processAssumeIntrinsic(IntrinsicI);
2317
2318   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2319     if (processLoad(LI))
2320       return true;
2321
2322     unsigned Num = VN.lookup_or_add(LI);
2323     addToLeaderTable(Num, LI, LI->getParent());
2324     return false;
2325   }
2326
2327   // For conditional branches, we can perform simple conditional propagation on
2328   // the condition value itself.
2329   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2330     if (!BI->isConditional())
2331       return false;
2332
2333     if (isa<Constant>(BI->getCondition()))
2334       return processFoldableCondBr(BI);
2335
2336     Value *BranchCond = BI->getCondition();
2337     BasicBlock *TrueSucc = BI->getSuccessor(0);
2338     BasicBlock *FalseSucc = BI->getSuccessor(1);
2339     // Avoid multiple edges early.
2340     if (TrueSucc == FalseSucc)
2341       return false;
2342
2343     BasicBlock *Parent = BI->getParent();
2344     bool Changed = false;
2345
2346     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2347     BasicBlockEdge TrueE(Parent, TrueSucc);
2348     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2349
2350     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2351     BasicBlockEdge FalseE(Parent, FalseSucc);
2352     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2353
2354     return Changed;
2355   }
2356
2357   // For switches, propagate the case values into the case destinations.
2358   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2359     Value *SwitchCond = SI->getCondition();
2360     BasicBlock *Parent = SI->getParent();
2361     bool Changed = false;
2362
2363     // Remember how many outgoing edges there are to every successor.
2364     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2365     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2366       ++SwitchEdges[SI->getSuccessor(i)];
2367
2368     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2369          i != e; ++i) {
2370       BasicBlock *Dst = i.getCaseSuccessor();
2371       // If there is only a single edge, propagate the case value into it.
2372       if (SwitchEdges.lookup(Dst) == 1) {
2373         BasicBlockEdge E(Parent, Dst);
2374         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E, true);
2375       }
2376     }
2377     return Changed;
2378   }
2379
2380   // Instructions with void type don't return a value, so there's
2381   // no point in trying to find redundancies in them.
2382   if (I->getType()->isVoidTy())
2383     return false;
2384
2385   uint32_t NextNum = VN.getNextUnusedValueNumber();
2386   unsigned Num = VN.lookup_or_add(I);
2387
2388   // Allocations are always uniquely numbered, so we can save time and memory
2389   // by fast failing them.
2390   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2391     addToLeaderTable(Num, I, I->getParent());
2392     return false;
2393   }
2394
2395   // If the number we were assigned was a brand new VN, then we don't
2396   // need to do a lookup to see if the number already exists
2397   // somewhere in the domtree: it can't!
2398   if (Num >= NextNum) {
2399     addToLeaderTable(Num, I, I->getParent());
2400     return false;
2401   }
2402
2403   // Perform fast-path value-number based elimination of values inherited from
2404   // dominators.
2405   Value *Repl = findLeader(I->getParent(), Num);
2406   if (!Repl) {
2407     // Failure, just remember this instance for future use.
2408     addToLeaderTable(Num, I, I->getParent());
2409     return false;
2410   } else if (Repl == I) {
2411     // If I was the result of a shortcut PRE, it might already be in the table
2412     // and the best replacement for itself. Nothing to do.
2413     return false;
2414   }
2415
2416   // Remove it!
2417   patchAndReplaceAllUsesWith(I, Repl);
2418   if (MD && Repl->getType()->getScalarType()->isPointerTy())
2419     MD->invalidateCachedPointerInfo(Repl);
2420   markInstructionForDeletion(I);
2421   return true;
2422 }
2423
2424 /// runOnFunction - This is the main transformation entry point for a function.
2425 bool GVN::runOnFunction(Function& F) {
2426   if (skipOptnoneFunction(F))
2427     return false;
2428
2429   if (!NoLoads)
2430     MD = &getAnalysis<MemoryDependenceAnalysis>();
2431   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2432   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2433   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2434   VN.setAliasAnalysis(&getAnalysis<AAResultsWrapperPass>().getAAResults());
2435   VN.setMemDep(MD);
2436   VN.setDomTree(DT);
2437
2438   bool Changed = false;
2439   bool ShouldContinue = true;
2440
2441   // Merge unconditional branches, allowing PRE to catch more
2442   // optimization opportunities.
2443   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2444     BasicBlock *BB = &*FI++;
2445
2446     bool removedBlock =
2447         MergeBlockIntoPredecessor(BB, DT, /* LoopInfo */ nullptr, MD);
2448     if (removedBlock) ++NumGVNBlocks;
2449
2450     Changed |= removedBlock;
2451   }
2452
2453   unsigned Iteration = 0;
2454   while (ShouldContinue) {
2455     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2456     ShouldContinue = iterateOnFunction(F);
2457     Changed |= ShouldContinue;
2458     ++Iteration;
2459   }
2460
2461   if (EnablePRE) {
2462     // Fabricate val-num for dead-code in order to suppress assertion in
2463     // performPRE().
2464     assignValNumForDeadCode();
2465     bool PREChanged = true;
2466     while (PREChanged) {
2467       PREChanged = performPRE(F);
2468       Changed |= PREChanged;
2469     }
2470   }
2471
2472   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2473   // computations into blocks where they become fully redundant.  Note that
2474   // we can't do this until PRE's critical edge splitting updates memdep.
2475   // Actually, when this happens, we should just fully integrate PRE into GVN.
2476
2477   cleanupGlobalSets();
2478   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2479   // iteration. 
2480   DeadBlocks.clear();
2481
2482   return Changed;
2483 }
2484
2485 bool GVN::processBlock(BasicBlock *BB) {
2486   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2487   // (and incrementing BI before processing an instruction).
2488   assert(InstrsToErase.empty() &&
2489          "We expect InstrsToErase to be empty across iterations");
2490   if (DeadBlocks.count(BB))
2491     return false;
2492
2493   // Clearing map before every BB because it can be used only for single BB.
2494   ReplaceWithConstMap.clear();
2495   bool ChangedFunction = false;
2496
2497   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2498        BI != BE;) {
2499     if (!ReplaceWithConstMap.empty())
2500       ChangedFunction |= replaceOperandsWithConsts(&*BI);
2501     ChangedFunction |= processInstruction(&*BI);
2502
2503     if (InstrsToErase.empty()) {
2504       ++BI;
2505       continue;
2506     }
2507
2508     // If we need some instructions deleted, do it now.
2509     NumGVNInstr += InstrsToErase.size();
2510
2511     // Avoid iterator invalidation.
2512     bool AtStart = BI == BB->begin();
2513     if (!AtStart)
2514       --BI;
2515
2516     for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
2517          E = InstrsToErase.end(); I != E; ++I) {
2518       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2519       if (MD) MD->removeInstruction(*I);
2520       DEBUG(verifyRemoved(*I));
2521       (*I)->eraseFromParent();
2522     }
2523     InstrsToErase.clear();
2524
2525     if (AtStart)
2526       BI = BB->begin();
2527     else
2528       ++BI;
2529   }
2530
2531   return ChangedFunction;
2532 }
2533
2534 // Instantiate an expression in a predecessor that lacked it.
2535 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2536                                     unsigned int ValNo) {
2537   // Because we are going top-down through the block, all value numbers
2538   // will be available in the predecessor by the time we need them.  Any
2539   // that weren't originally present will have been instantiated earlier
2540   // in this loop.
2541   bool success = true;
2542   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2543     Value *Op = Instr->getOperand(i);
2544     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2545       continue;
2546     // This could be a newly inserted instruction, in which case, we won't
2547     // find a value number, and should give up before we hurt ourselves.
2548     // FIXME: Rewrite the infrastructure to let it easier to value number
2549     // and process newly inserted instructions.
2550     if (!VN.exists(Op)) {
2551       success = false;
2552       break;
2553     }
2554     if (Value *V = findLeader(Pred, VN.lookup(Op))) {
2555       Instr->setOperand(i, V);
2556     } else {
2557       success = false;
2558       break;
2559     }
2560   }
2561
2562   // Fail out if we encounter an operand that is not available in
2563   // the PRE predecessor.  This is typically because of loads which
2564   // are not value numbered precisely.
2565   if (!success)
2566     return false;
2567
2568   Instr->insertBefore(Pred->getTerminator());
2569   Instr->setName(Instr->getName() + ".pre");
2570   Instr->setDebugLoc(Instr->getDebugLoc());
2571   VN.add(Instr, ValNo);
2572
2573   // Update the availability map to include the new instruction.
2574   addToLeaderTable(ValNo, Instr, Pred);
2575   return true;
2576 }
2577
2578 bool GVN::performScalarPRE(Instruction *CurInst) {
2579   SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
2580
2581   if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
2582       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2583       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2584       isa<DbgInfoIntrinsic>(CurInst))
2585     return false;
2586
2587   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2588   // sinking the compare again, and it would force the code generator to
2589   // move the i1 from processor flags or predicate registers into a general
2590   // purpose register.
2591   if (isa<CmpInst>(CurInst))
2592     return false;
2593
2594   // We don't currently value number ANY inline asm calls.
2595   if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2596     if (CallI->isInlineAsm())
2597       return false;
2598
2599   uint32_t ValNo = VN.lookup(CurInst);
2600
2601   // Look for the predecessors for PRE opportunities.  We're
2602   // only trying to solve the basic diamond case, where
2603   // a value is computed in the successor and one predecessor,
2604   // but not the other.  We also explicitly disallow cases
2605   // where the successor is its own predecessor, because they're
2606   // more complicated to get right.
2607   unsigned NumWith = 0;
2608   unsigned NumWithout = 0;
2609   BasicBlock *PREPred = nullptr;
2610   BasicBlock *CurrentBlock = CurInst->getParent();
2611   predMap.clear();
2612
2613   for (BasicBlock *P : predecessors(CurrentBlock)) {
2614     // We're not interested in PRE where the block is its
2615     // own predecessor, or in blocks with predecessors
2616     // that are not reachable.
2617     if (P == CurrentBlock) {
2618       NumWithout = 2;
2619       break;
2620     } else if (!DT->isReachableFromEntry(P)) {
2621       NumWithout = 2;
2622       break;
2623     }
2624
2625     Value *predV = findLeader(P, ValNo);
2626     if (!predV) {
2627       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2628       PREPred = P;
2629       ++NumWithout;
2630     } else if (predV == CurInst) {
2631       /* CurInst dominates this predecessor. */
2632       NumWithout = 2;
2633       break;
2634     } else {
2635       predMap.push_back(std::make_pair(predV, P));
2636       ++NumWith;
2637     }
2638   }
2639
2640   // Don't do PRE when it might increase code size, i.e. when
2641   // we would need to insert instructions in more than one pred.
2642   if (NumWithout > 1 || NumWith == 0)
2643     return false;
2644
2645   // We may have a case where all predecessors have the instruction,
2646   // and we just need to insert a phi node. Otherwise, perform
2647   // insertion.
2648   Instruction *PREInstr = nullptr;
2649
2650   if (NumWithout != 0) {
2651     // Don't do PRE across indirect branch.
2652     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2653       return false;
2654
2655     // We can't do PRE safely on a critical edge, so instead we schedule
2656     // the edge to be split and perform the PRE the next time we iterate
2657     // on the function.
2658     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2659     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2660       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2661       return false;
2662     }
2663     // We need to insert somewhere, so let's give it a shot
2664     PREInstr = CurInst->clone();
2665     if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) {
2666       // If we failed insertion, make sure we remove the instruction.
2667       DEBUG(verifyRemoved(PREInstr));
2668       delete PREInstr;
2669       return false;
2670     }
2671   }
2672
2673   // Either we should have filled in the PRE instruction, or we should
2674   // not have needed insertions.
2675   assert (PREInstr != nullptr || NumWithout == 0);
2676
2677   ++NumGVNPRE;
2678
2679   // Create a PHI to make the value available in this block.
2680   PHINode *Phi =
2681       PHINode::Create(CurInst->getType(), predMap.size(),
2682                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2683   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2684     if (Value *V = predMap[i].first)
2685       Phi->addIncoming(V, predMap[i].second);
2686     else
2687       Phi->addIncoming(PREInstr, PREPred);
2688   }
2689
2690   VN.add(Phi, ValNo);
2691   addToLeaderTable(ValNo, Phi, CurrentBlock);
2692   Phi->setDebugLoc(CurInst->getDebugLoc());
2693   CurInst->replaceAllUsesWith(Phi);
2694   if (MD && Phi->getType()->getScalarType()->isPointerTy())
2695     MD->invalidateCachedPointerInfo(Phi);
2696   VN.erase(CurInst);
2697   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2698
2699   DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2700   if (MD)
2701     MD->removeInstruction(CurInst);
2702   DEBUG(verifyRemoved(CurInst));
2703   CurInst->eraseFromParent();
2704   ++NumGVNInstr;
2705   
2706   return true;
2707 }
2708
2709 /// Perform a purely local form of PRE that looks for diamond
2710 /// control flow patterns and attempts to perform simple PRE at the join point.
2711 bool GVN::performPRE(Function &F) {
2712   bool Changed = false;
2713   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2714     // Nothing to PRE in the entry block.
2715     if (CurrentBlock == &F.getEntryBlock())
2716       continue;
2717
2718     // Don't perform PRE on an EH pad.
2719     if (CurrentBlock->isEHPad())
2720       continue;
2721
2722     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2723                               BE = CurrentBlock->end();
2724          BI != BE;) {
2725       Instruction *CurInst = &*BI++;
2726       Changed |= performScalarPRE(CurInst);
2727     }
2728   }
2729
2730   if (splitCriticalEdges())
2731     Changed = true;
2732
2733   return Changed;
2734 }
2735
2736 /// Split the critical edge connecting the given two blocks, and return
2737 /// the block inserted to the critical edge.
2738 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2739   BasicBlock *BB =
2740       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
2741   if (MD)
2742     MD->invalidateCachedPredecessors();
2743   return BB;
2744 }
2745
2746 /// Split critical edges found during the previous
2747 /// iteration that may enable further optimization.
2748 bool GVN::splitCriticalEdges() {
2749   if (toSplit.empty())
2750     return false;
2751   do {
2752     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2753     SplitCriticalEdge(Edge.first, Edge.second,
2754                       CriticalEdgeSplittingOptions(DT));
2755   } while (!toSplit.empty());
2756   if (MD) MD->invalidateCachedPredecessors();
2757   return true;
2758 }
2759
2760 /// Executes one iteration of GVN
2761 bool GVN::iterateOnFunction(Function &F) {
2762   cleanupGlobalSets();
2763
2764   // Top-down walk of the dominator tree
2765   bool Changed = false;
2766   // Save the blocks this function have before transformation begins. GVN may
2767   // split critical edge, and hence may invalidate the RPO/DT iterator.
2768   //
2769   std::vector<BasicBlock *> BBVect;
2770   BBVect.reserve(256);
2771   // Needed for value numbering with phi construction to work.
2772   ReversePostOrderTraversal<Function *> RPOT(&F);
2773   for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
2774                                                            RE = RPOT.end();
2775        RI != RE; ++RI)
2776     BBVect.push_back(*RI);
2777
2778   for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
2779        I != E; I++)
2780     Changed |= processBlock(*I);
2781
2782   return Changed;
2783 }
2784
2785 void GVN::cleanupGlobalSets() {
2786   VN.clear();
2787   LeaderTable.clear();
2788   TableAllocator.Reset();
2789 }
2790
2791 /// Verify that the specified instruction does not occur in our
2792 /// internal data structures.
2793 void GVN::verifyRemoved(const Instruction *Inst) const {
2794   VN.verifyRemoved(Inst);
2795
2796   // Walk through the value number scope to make sure the instruction isn't
2797   // ferreted away in it.
2798   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2799        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2800     const LeaderTableEntry *Node = &I->second;
2801     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2802
2803     while (Node->Next) {
2804       Node = Node->Next;
2805       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2806     }
2807   }
2808 }
2809
2810 /// BB is declared dead, which implied other blocks become dead as well. This
2811 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2812 /// live successors, update their phi nodes by replacing the operands
2813 /// corresponding to dead blocks with UndefVal.
2814 void GVN::addDeadBlock(BasicBlock *BB) {
2815   SmallVector<BasicBlock *, 4> NewDead;
2816   SmallSetVector<BasicBlock *, 4> DF;
2817
2818   NewDead.push_back(BB);
2819   while (!NewDead.empty()) {
2820     BasicBlock *D = NewDead.pop_back_val();
2821     if (DeadBlocks.count(D))
2822       continue;
2823
2824     // All blocks dominated by D are dead.
2825     SmallVector<BasicBlock *, 8> Dom;
2826     DT->getDescendants(D, Dom);
2827     DeadBlocks.insert(Dom.begin(), Dom.end());
2828     
2829     // Figure out the dominance-frontier(D).
2830     for (BasicBlock *B : Dom) {
2831       for (BasicBlock *S : successors(B)) {
2832         if (DeadBlocks.count(S))
2833           continue;
2834
2835         bool AllPredDead = true;
2836         for (BasicBlock *P : predecessors(S))
2837           if (!DeadBlocks.count(P)) {
2838             AllPredDead = false;
2839             break;
2840           }
2841
2842         if (!AllPredDead) {
2843           // S could be proved dead later on. That is why we don't update phi
2844           // operands at this moment.
2845           DF.insert(S);
2846         } else {
2847           // While S is not dominated by D, it is dead by now. This could take
2848           // place if S already have a dead predecessor before D is declared
2849           // dead.
2850           NewDead.push_back(S);
2851         }
2852       }
2853     }
2854   }
2855
2856   // For the dead blocks' live successors, update their phi nodes by replacing
2857   // the operands corresponding to dead blocks with UndefVal.
2858   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2859         I != E; I++) {
2860     BasicBlock *B = *I;
2861     if (DeadBlocks.count(B))
2862       continue;
2863
2864     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2865     for (BasicBlock *P : Preds) {
2866       if (!DeadBlocks.count(P))
2867         continue;
2868
2869       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2870         if (BasicBlock *S = splitCriticalEdges(P, B))
2871           DeadBlocks.insert(P = S);
2872       }
2873
2874       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2875         PHINode &Phi = cast<PHINode>(*II);
2876         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2877                              UndefValue::get(Phi.getType()));
2878       }
2879     }
2880   }
2881 }
2882
2883 // If the given branch is recognized as a foldable branch (i.e. conditional
2884 // branch with constant condition), it will perform following analyses and
2885 // transformation.
2886 //  1) If the dead out-coming edge is a critical-edge, split it. Let 
2887 //     R be the target of the dead out-coming edge.
2888 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2889 //     edge. The result of this step will be {X| X is dominated by R}
2890 //  2) Identify those blocks which haves at least one dead predecessor. The
2891 //     result of this step will be dominance-frontier(R).
2892 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to 
2893 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2894 //
2895 // Return true iff *NEW* dead code are found.
2896 bool GVN::processFoldableCondBr(BranchInst *BI) {
2897   if (!BI || BI->isUnconditional())
2898     return false;
2899
2900   // If a branch has two identical successors, we cannot declare either dead.
2901   if (BI->getSuccessor(0) == BI->getSuccessor(1))
2902     return false;
2903
2904   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2905   if (!Cond)
2906     return false;
2907
2908   BasicBlock *DeadRoot = Cond->getZExtValue() ? 
2909                          BI->getSuccessor(1) : BI->getSuccessor(0);
2910   if (DeadBlocks.count(DeadRoot))
2911     return false;
2912
2913   if (!DeadRoot->getSinglePredecessor())
2914     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2915
2916   addDeadBlock(DeadRoot);
2917   return true;
2918 }
2919
2920 // performPRE() will trigger assert if it comes across an instruction without
2921 // associated val-num. As it normally has far more live instructions than dead
2922 // instructions, it makes more sense just to "fabricate" a val-number for the
2923 // dead code than checking if instruction involved is dead or not.
2924 void GVN::assignValNumForDeadCode() {
2925   for (BasicBlock *BB : DeadBlocks) {
2926     for (Instruction &Inst : *BB) {
2927       unsigned ValNum = VN.lookup_or_add(&Inst);
2928       addToLeaderTable(ValNum, &Inst, BB);
2929     }
2930   }
2931 }