Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Transforms / Scalar / CorrelatedValuePropagation.cpp
1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Correlated Value Propagation pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/LazyValueInfo.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 using namespace llvm;
29
30 #define DEBUG_TYPE "correlated-value-propagation"
31
32 STATISTIC(NumPhis,      "Number of phis propagated");
33 STATISTIC(NumSelects,   "Number of selects propagated");
34 STATISTIC(NumMemAccess, "Number of memory access targets propagated");
35 STATISTIC(NumCmps,      "Number of comparisons propagated");
36 STATISTIC(NumReturns,   "Number of return values propagated");
37 STATISTIC(NumDeadCases, "Number of switch cases removed");
38
39 namespace {
40   class CorrelatedValuePropagation : public FunctionPass {
41     LazyValueInfo *LVI;
42
43     bool processSelect(SelectInst *SI);
44     bool processPHI(PHINode *P);
45     bool processMemAccess(Instruction *I);
46     bool processCmp(CmpInst *C);
47     bool processSwitch(SwitchInst *SI);
48     bool processCallSite(CallSite CS);
49
50     /// Return a constant value for V usable at At and everything it
51     /// dominates.  If no such Constant can be found, return nullptr.
52     Constant *getConstantAt(Value *V, Instruction *At);
53
54   public:
55     static char ID;
56     CorrelatedValuePropagation(): FunctionPass(ID) {
57      initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
58     }
59
60     bool runOnFunction(Function &F) override;
61
62     void getAnalysisUsage(AnalysisUsage &AU) const override {
63       AU.addRequired<LazyValueInfo>();
64       AU.addPreserved<GlobalsAAWrapperPass>();
65     }
66   };
67 }
68
69 char CorrelatedValuePropagation::ID = 0;
70 INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
71                 "Value Propagation", false, false)
72 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
73 INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
74                 "Value Propagation", false, false)
75
76 // Public interface to the Value Propagation pass
77 Pass *llvm::createCorrelatedValuePropagationPass() {
78   return new CorrelatedValuePropagation();
79 }
80
81 bool CorrelatedValuePropagation::processSelect(SelectInst *S) {
82   if (S->getType()->isVectorTy()) return false;
83   if (isa<Constant>(S->getOperand(0))) return false;
84
85   Constant *C = LVI->getConstant(S->getOperand(0), S->getParent(), S);
86   if (!C) return false;
87
88   ConstantInt *CI = dyn_cast<ConstantInt>(C);
89   if (!CI) return false;
90
91   Value *ReplaceWith = S->getOperand(1);
92   Value *Other = S->getOperand(2);
93   if (!CI->isOne()) std::swap(ReplaceWith, Other);
94   if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());
95
96   S->replaceAllUsesWith(ReplaceWith);
97   S->eraseFromParent();
98
99   ++NumSelects;
100
101   return true;
102 }
103
104 bool CorrelatedValuePropagation::processPHI(PHINode *P) {
105   bool Changed = false;
106
107   BasicBlock *BB = P->getParent();
108   for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
109     Value *Incoming = P->getIncomingValue(i);
110     if (isa<Constant>(Incoming)) continue;
111
112     Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
113
114     // Look if the incoming value is a select with a scalar condition for which
115     // LVI can tells us the value. In that case replace the incoming value with
116     // the appropriate value of the select. This often allows us to remove the
117     // select later.
118     if (!V) {
119       SelectInst *SI = dyn_cast<SelectInst>(Incoming);
120       if (!SI) continue;
121
122       Value *Condition = SI->getCondition();
123       if (!Condition->getType()->isVectorTy()) {
124         if (Constant *C = LVI->getConstantOnEdge(
125                 Condition, P->getIncomingBlock(i), BB, P)) {
126           if (C->isOneValue()) {
127             V = SI->getTrueValue();
128           } else if (C->isZeroValue()) {
129             V = SI->getFalseValue();
130           }
131           // Once LVI learns to handle vector types, we could also add support
132           // for vector type constants that are not all zeroes or all ones.
133         }
134       }
135
136       // Look if the select has a constant but LVI tells us that the incoming
137       // value can never be that constant. In that case replace the incoming
138       // value with the other value of the select. This often allows us to
139       // remove the select later.
140       if (!V) {
141         Constant *C = dyn_cast<Constant>(SI->getFalseValue());
142         if (!C) continue;
143
144         if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
145               P->getIncomingBlock(i), BB, P) !=
146             LazyValueInfo::False)
147           continue;
148         V = SI->getTrueValue();
149       }
150
151       DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
152     }
153
154     P->setIncomingValue(i, V);
155     Changed = true;
156   }
157
158   // FIXME: Provide TLI, DT, AT to SimplifyInstruction.
159   const DataLayout &DL = BB->getModule()->getDataLayout();
160   if (Value *V = SimplifyInstruction(P, DL)) {
161     P->replaceAllUsesWith(V);
162     P->eraseFromParent();
163     Changed = true;
164   }
165
166   if (Changed)
167     ++NumPhis;
168
169   return Changed;
170 }
171
172 bool CorrelatedValuePropagation::processMemAccess(Instruction *I) {
173   Value *Pointer = nullptr;
174   if (LoadInst *L = dyn_cast<LoadInst>(I))
175     Pointer = L->getPointerOperand();
176   else
177     Pointer = cast<StoreInst>(I)->getPointerOperand();
178
179   if (isa<Constant>(Pointer)) return false;
180
181   Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
182   if (!C) return false;
183
184   ++NumMemAccess;
185   I->replaceUsesOfWith(Pointer, C);
186   return true;
187 }
188
189 /// processCmp - See if LazyValueInfo's ability to exploit edge conditions,
190 /// or range information is sufficient to prove this comparison.  Even for
191 /// local conditions, this can sometimes prove conditions instcombine can't by
192 /// exploiting range information.
193 bool CorrelatedValuePropagation::processCmp(CmpInst *C) {
194   Value *Op0 = C->getOperand(0);
195   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
196   if (!Op1) return false;
197
198   // As a policy choice, we choose not to waste compile time on anything where
199   // the comparison is testing local values.  While LVI can sometimes reason
200   // about such cases, it's not its primary purpose.  We do make sure to do
201   // the block local query for uses from terminator instructions, but that's
202   // handled in the code for each terminator.
203   auto *I = dyn_cast<Instruction>(Op0);
204   if (I && I->getParent() == C->getParent())
205     return false;
206
207   LazyValueInfo::Tristate Result =
208     LVI->getPredicateAt(C->getPredicate(), Op0, Op1, C);
209   if (Result == LazyValueInfo::Unknown) return false;
210
211   ++NumCmps;
212   if (Result == LazyValueInfo::True)
213     C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext()));
214   else
215     C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext()));
216   C->eraseFromParent();
217
218   return true;
219 }
220
221 /// processSwitch - Simplify a switch instruction by removing cases which can
222 /// never fire.  If the uselessness of a case could be determined locally then
223 /// constant propagation would already have figured it out.  Instead, walk the
224 /// predecessors and statically evaluate cases based on information available
225 /// on that edge.  Cases that cannot fire no matter what the incoming edge can
226 /// safely be removed.  If a case fires on every incoming edge then the entire
227 /// switch can be removed and replaced with a branch to the case destination.
228 bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) {
229   Value *Cond = SI->getCondition();
230   BasicBlock *BB = SI->getParent();
231
232   // If the condition was defined in same block as the switch then LazyValueInfo
233   // currently won't say anything useful about it, though in theory it could.
234   if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
235     return false;
236
237   // If the switch is unreachable then trying to improve it is a waste of time.
238   pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
239   if (PB == PE) return false;
240
241   // Analyse each switch case in turn.  This is done in reverse order so that
242   // removing a case doesn't cause trouble for the iteration.
243   bool Changed = false;
244   for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE;
245        ) {
246     ConstantInt *Case = CI.getCaseValue();
247
248     // Check to see if the switch condition is equal to/not equal to the case
249     // value on every incoming edge, equal/not equal being the same each time.
250     LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
251     for (pred_iterator PI = PB; PI != PE; ++PI) {
252       // Is the switch condition equal to the case value?
253       LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
254                                                               Cond, Case, *PI,
255                                                               BB, SI);
256       // Give up on this case if nothing is known.
257       if (Value == LazyValueInfo::Unknown) {
258         State = LazyValueInfo::Unknown;
259         break;
260       }
261
262       // If this was the first edge to be visited, record that all other edges
263       // need to give the same result.
264       if (PI == PB) {
265         State = Value;
266         continue;
267       }
268
269       // If this case is known to fire for some edges and known not to fire for
270       // others then there is nothing we can do - give up.
271       if (Value != State) {
272         State = LazyValueInfo::Unknown;
273         break;
274       }
275     }
276
277     if (State == LazyValueInfo::False) {
278       // This case never fires - remove it.
279       CI.getCaseSuccessor()->removePredecessor(BB);
280       SI->removeCase(CI); // Does not invalidate the iterator.
281
282       // The condition can be modified by removePredecessor's PHI simplification
283       // logic.
284       Cond = SI->getCondition();
285
286       ++NumDeadCases;
287       Changed = true;
288     } else if (State == LazyValueInfo::True) {
289       // This case always fires.  Arrange for the switch to be turned into an
290       // unconditional branch by replacing the switch condition with the case
291       // value.
292       SI->setCondition(Case);
293       NumDeadCases += SI->getNumCases();
294       Changed = true;
295       break;
296     }
297   }
298
299   if (Changed)
300     // If the switch has been simplified to the point where it can be replaced
301     // by a branch then do so now.
302     ConstantFoldTerminator(BB);
303
304   return Changed;
305 }
306
307 /// processCallSite - Infer nonnull attributes for the arguments at the
308 /// specified callsite.
309 bool CorrelatedValuePropagation::processCallSite(CallSite CS) {
310   SmallVector<unsigned, 4> Indices;
311   unsigned ArgNo = 0;
312
313   for (Value *V : CS.args()) {
314     PointerType *Type = dyn_cast<PointerType>(V->getType());
315
316     if (Type && !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) &&
317         LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
318                             ConstantPointerNull::get(Type),
319                             CS.getInstruction()) == LazyValueInfo::False)
320       Indices.push_back(ArgNo + 1);
321     ArgNo++;
322   }
323
324   assert(ArgNo == CS.arg_size() && "sanity check");
325
326   if (Indices.empty())
327     return false;
328
329   AttributeSet AS = CS.getAttributes();
330   LLVMContext &Ctx = CS.getInstruction()->getContext();
331   AS = AS.addAttribute(Ctx, Indices, Attribute::get(Ctx, Attribute::NonNull));
332   CS.setAttributes(AS);
333
334   return true;
335 }
336
337 Constant *CorrelatedValuePropagation::getConstantAt(Value *V, Instruction *At) {
338   if (Constant *C = LVI->getConstant(V, At->getParent(), At))
339     return C;
340
341   // TODO: The following really should be sunk inside LVI's core algorithm, or
342   // at least the outer shims around such.
343   auto *C = dyn_cast<CmpInst>(V);
344   if (!C) return nullptr;
345
346   Value *Op0 = C->getOperand(0);
347   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
348   if (!Op1) return nullptr;
349   
350   LazyValueInfo::Tristate Result =
351     LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
352   if (Result == LazyValueInfo::Unknown)
353     return nullptr;
354   
355   return (Result == LazyValueInfo::True) ?
356     ConstantInt::getTrue(C->getContext()) :
357     ConstantInt::getFalse(C->getContext());
358 }
359
360 bool CorrelatedValuePropagation::runOnFunction(Function &F) {
361   if (skipOptnoneFunction(F))
362     return false;
363
364   LVI = &getAnalysis<LazyValueInfo>();
365
366   bool FnChanged = false;
367
368   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
369     bool BBChanged = false;
370     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) {
371       Instruction *II = &*BI++;
372       switch (II->getOpcode()) {
373       case Instruction::Select:
374         BBChanged |= processSelect(cast<SelectInst>(II));
375         break;
376       case Instruction::PHI:
377         BBChanged |= processPHI(cast<PHINode>(II));
378         break;
379       case Instruction::ICmp:
380       case Instruction::FCmp:
381         BBChanged |= processCmp(cast<CmpInst>(II));
382         break;
383       case Instruction::Load:
384       case Instruction::Store:
385         BBChanged |= processMemAccess(II);
386         break;
387       case Instruction::Call:
388       case Instruction::Invoke:
389         BBChanged |= processCallSite(CallSite(II));
390         break;
391       }
392     }
393
394     Instruction *Term = FI->getTerminator();
395     switch (Term->getOpcode()) {
396     case Instruction::Switch:
397       BBChanged |= processSwitch(cast<SwitchInst>(Term));
398       break;
399     case Instruction::Ret: {
400       auto *RI = cast<ReturnInst>(Term);
401       // Try to determine the return value if we can.  This is mainly here to
402       // simplify the writing of unit tests, but also helps to enable IPO by
403       // constant folding the return values of callees.
404       auto *RetVal = RI->getReturnValue();
405       if (!RetVal) break; // handle "ret void"
406       if (isa<Constant>(RetVal)) break; // nothing to do
407       if (auto *C = getConstantAt(RetVal, RI)) {
408         ++NumReturns;
409         RI->replaceUsesOfWith(RetVal, C);
410         BBChanged = true;        
411       }
412     }
413     };
414
415     FnChanged |= BBChanged;
416   }
417
418   return FnChanged;
419 }