[PM/AA] Run clang-format over the ObjCARC Alias Analysis code to
[oota-llvm.git] / lib / Transforms / ObjCARC / ObjCARC.h
1 //===- ObjCARC.h - ObjC ARC Optimization --------------*- C++ -*-----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file defines common definitions/declarations used by the ObjC ARC
11 /// Optimizer. ARC stands for Automatic Reference Counting and is a system for
12 /// managing reference counts for objects in Objective C.
13 ///
14 /// WARNING: This file knows about certain library functions. It recognizes them
15 /// by name, and hardwires knowledge of their semantics.
16 ///
17 /// WARNING: This file knows about how certain Objective-C library functions are
18 /// used. Naive LLVM IR transformations which would otherwise be
19 /// behavior-preserving may break these assumptions.
20 ///
21 //===----------------------------------------------------------------------===//
22
23 #ifndef LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARC_H
24 #define LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARC_H
25
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/Passes.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Transforms/ObjCARC.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "ARCInstKind.h"
38
39 namespace llvm {
40 class raw_ostream;
41 }
42
43 namespace llvm {
44 namespace objcarc {
45
46 /// \brief A handy option to enable/disable all ARC Optimizations.
47 extern bool EnableARCOpts;
48
49 /// \brief Test if the given module looks interesting to run ARC optimization
50 /// on.
51 static inline bool ModuleHasARC(const Module &M) {
52   return
53     M.getNamedValue("objc_retain") ||
54     M.getNamedValue("objc_release") ||
55     M.getNamedValue("objc_autorelease") ||
56     M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
57     M.getNamedValue("objc_retainBlock") ||
58     M.getNamedValue("objc_autoreleaseReturnValue") ||
59     M.getNamedValue("objc_autoreleasePoolPush") ||
60     M.getNamedValue("objc_loadWeakRetained") ||
61     M.getNamedValue("objc_loadWeak") ||
62     M.getNamedValue("objc_destroyWeak") ||
63     M.getNamedValue("objc_storeWeak") ||
64     M.getNamedValue("objc_initWeak") ||
65     M.getNamedValue("objc_moveWeak") ||
66     M.getNamedValue("objc_copyWeak") ||
67     M.getNamedValue("objc_retainedObject") ||
68     M.getNamedValue("objc_unretainedObject") ||
69     M.getNamedValue("objc_unretainedPointer") ||
70     M.getNamedValue("clang.arc.use");
71 }
72
73 /// \brief This is a wrapper around getUnderlyingObject which also knows how to
74 /// look through objc_retain and objc_autorelease calls, which we know to return
75 /// their argument verbatim.
76 static inline const Value *GetUnderlyingObjCPtr(const Value *V,
77                                                 const DataLayout &DL) {
78   for (;;) {
79     V = GetUnderlyingObject(V, DL);
80     if (!IsForwarding(GetBasicARCInstKind(V)))
81       break;
82     V = cast<CallInst>(V)->getArgOperand(0);
83   }
84
85   return V;
86 }
87
88 /// The RCIdentity root of a value \p V is a dominating value U for which
89 /// retaining or releasing U is equivalent to retaining or releasing V. In other
90 /// words, ARC operations on \p V are equivalent to ARC operations on \p U.
91 ///
92 /// We use this in the ARC optimizer to make it easier to match up ARC
93 /// operations by always mapping ARC operations to RCIdentityRoots instead of
94 /// pointers themselves.
95 ///
96 /// The two ways that we see RCIdentical values in ObjC are via:
97 ///
98 ///   1. PointerCasts
99 ///   2. Forwarding Calls that return their argument verbatim.
100 ///
101 /// Thus this function strips off pointer casts and forwarding calls. *NOTE*
102 /// This implies that two RCIdentical values must alias.
103 static inline const Value *GetRCIdentityRoot(const Value *V) {
104   for (;;) {
105     V = V->stripPointerCasts();
106     if (!IsForwarding(GetBasicARCInstKind(V)))
107       break;
108     V = cast<CallInst>(V)->getArgOperand(0);
109   }
110   return V;
111 }
112
113 /// Helper which calls const Value *GetRCIdentityRoot(const Value *V) and just
114 /// casts away the const of the result. For documentation about what an
115 /// RCIdentityRoot (and by extension GetRCIdentityRoot is) look at that
116 /// function.
117 static inline Value *GetRCIdentityRoot(Value *V) {
118   return const_cast<Value *>(GetRCIdentityRoot((const Value *)V));
119 }
120
121 /// \brief Assuming the given instruction is one of the special calls such as
122 /// objc_retain or objc_release, return the RCIdentity root of the argument of
123 /// the call.
124 static inline Value *GetArgRCIdentityRoot(Value *Inst) {
125   return GetRCIdentityRoot(cast<CallInst>(Inst)->getArgOperand(0));
126 }
127
128 static inline bool IsNullOrUndef(const Value *V) {
129   return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
130 }
131
132 static inline bool IsNoopInstruction(const Instruction *I) {
133   return isa<BitCastInst>(I) ||
134     (isa<GetElementPtrInst>(I) &&
135      cast<GetElementPtrInst>(I)->hasAllZeroIndices());
136 }
137
138
139 /// \brief Erase the given instruction.
140 ///
141 /// Many ObjC calls return their argument verbatim,
142 /// so if it's such a call and the return value has users, replace them with the
143 /// argument value.
144 ///
145 static inline void EraseInstruction(Instruction *CI) {
146   Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
147
148   bool Unused = CI->use_empty();
149
150   if (!Unused) {
151     // Replace the return value with the argument.
152     assert((IsForwarding(GetBasicARCInstKind(CI)) ||
153             (IsNoopOnNull(GetBasicARCInstKind(CI)) &&
154              isa<ConstantPointerNull>(OldArg))) &&
155            "Can't delete non-forwarding instruction with users!");
156     CI->replaceAllUsesWith(OldArg);
157   }
158
159   CI->eraseFromParent();
160
161   if (Unused)
162     RecursivelyDeleteTriviallyDeadInstructions(OldArg);
163 }
164
165 /// \brief Test whether the given value is possible a retainable object pointer.
166 static inline bool IsPotentialRetainableObjPtr(const Value *Op) {
167   // Pointers to static or stack storage are not valid retainable object
168   // pointers.
169   if (isa<Constant>(Op) || isa<AllocaInst>(Op))
170     return false;
171   // Special arguments can not be a valid retainable object pointer.
172   if (const Argument *Arg = dyn_cast<Argument>(Op))
173     if (Arg->hasByValAttr() ||
174         Arg->hasInAllocaAttr() ||
175         Arg->hasNestAttr() ||
176         Arg->hasStructRetAttr())
177       return false;
178   // Only consider values with pointer types.
179   //
180   // It seemes intuitive to exclude function pointer types as well, since
181   // functions are never retainable object pointers, however clang occasionally
182   // bitcasts retainable object pointers to function-pointer type temporarily.
183   PointerType *Ty = dyn_cast<PointerType>(Op->getType());
184   if (!Ty)
185     return false;
186   // Conservatively assume anything else is a potential retainable object
187   // pointer.
188   return true;
189 }
190
191 static inline bool IsPotentialRetainableObjPtr(const Value *Op,
192                                                AliasAnalysis &AA) {
193   // First make the rudimentary check.
194   if (!IsPotentialRetainableObjPtr(Op))
195     return false;
196
197   // Objects in constant memory are not reference-counted.
198   if (AA.pointsToConstantMemory(Op))
199     return false;
200
201   // Pointers in constant memory are not pointing to reference-counted objects.
202   if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
203     if (AA.pointsToConstantMemory(LI->getPointerOperand()))
204       return false;
205
206   // Otherwise assume the worst.
207   return true;
208 }
209
210 /// \brief Helper for GetARCInstKind. Determines what kind of construct CS
211 /// is.
212 static inline ARCInstKind GetCallSiteClass(ImmutableCallSite CS) {
213   for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
214        I != E; ++I)
215     if (IsPotentialRetainableObjPtr(*I))
216       return CS.onlyReadsMemory() ? ARCInstKind::User : ARCInstKind::CallOrUser;
217
218   return CS.onlyReadsMemory() ? ARCInstKind::None : ARCInstKind::Call;
219 }
220
221 /// \brief Return true if this value refers to a distinct and identifiable
222 /// object.
223 ///
224 /// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses
225 /// special knowledge of ObjC conventions.
226 static inline bool IsObjCIdentifiedObject(const Value *V) {
227   // Assume that call results and arguments have their own "provenance".
228   // Constants (including GlobalVariables) and Allocas are never
229   // reference-counted.
230   if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
231       isa<Argument>(V) || isa<Constant>(V) ||
232       isa<AllocaInst>(V))
233     return true;
234
235   if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
236     const Value *Pointer =
237       GetRCIdentityRoot(LI->getPointerOperand());
238     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
239       // A constant pointer can't be pointing to an object on the heap. It may
240       // be reference-counted, but it won't be deleted.
241       if (GV->isConstant())
242         return true;
243       StringRef Name = GV->getName();
244       // These special variables are known to hold values which are not
245       // reference-counted pointers.
246       if (Name.startswith("\01l_objc_msgSend_fixup_"))
247         return true;
248
249       StringRef Section = GV->getSection();
250       if (Section.find("__message_refs") != StringRef::npos ||
251           Section.find("__objc_classrefs") != StringRef::npos ||
252           Section.find("__objc_superrefs") != StringRef::npos ||
253           Section.find("__objc_methname") != StringRef::npos ||
254           Section.find("__cstring") != StringRef::npos)
255         return true;
256     }
257   }
258
259   return false;
260 }
261
262 enum class ARCMDKindID {
263   ImpreciseRelease,
264   CopyOnEscape,
265   NoObjCARCExceptions,
266 };
267
268 /// A cache of MDKinds used by various ARC optimizations.
269 class ARCMDKindCache {
270   Module *M;
271
272   /// The Metadata Kind for clang.imprecise_release metadata.
273   llvm::Optional<unsigned> ImpreciseReleaseMDKind;
274
275   /// The Metadata Kind for clang.arc.copy_on_escape metadata.
276   llvm::Optional<unsigned> CopyOnEscapeMDKind;
277
278   /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata.
279   llvm::Optional<unsigned> NoObjCARCExceptionsMDKind;
280
281 public:
282   void init(Module *Mod) {
283     M = Mod;
284     ImpreciseReleaseMDKind = NoneType::None;
285     CopyOnEscapeMDKind = NoneType::None;
286     NoObjCARCExceptionsMDKind = NoneType::None;
287   }
288
289   unsigned get(ARCMDKindID ID) {
290     switch (ID) {
291     case ARCMDKindID::ImpreciseRelease:
292       if (!ImpreciseReleaseMDKind)
293         ImpreciseReleaseMDKind =
294             M->getContext().getMDKindID("clang.imprecise_release");
295       return *ImpreciseReleaseMDKind;
296     case ARCMDKindID::CopyOnEscape:
297       if (!CopyOnEscapeMDKind)
298         CopyOnEscapeMDKind =
299             M->getContext().getMDKindID("clang.arc.copy_on_escape");
300       return *CopyOnEscapeMDKind;
301     case ARCMDKindID::NoObjCARCExceptions:
302       if (!NoObjCARCExceptionsMDKind)
303         NoObjCARCExceptionsMDKind =
304             M->getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
305       return *NoObjCARCExceptionsMDKind;
306     }
307     llvm_unreachable("Covered switch isn't covered?!");
308   }
309 };
310
311 } // end namespace objcarc
312 } // end namespace llvm
313
314 #endif