Make some DataLayout pointers const.
[oota-llvm.git] / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 //   - Insert calls to run-time library before every memory access.
17 //      - Optimizations may apply to avoid instrumenting some of the accesses.
18 //   - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21
22 #define DEBUG_TYPE "tsan"
23
24 #include "llvm/Transforms/Instrumentation.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45 #include "llvm/Transforms/Utils/SpecialCaseList.h"
46
47 using namespace llvm;
48
49 static cl::opt<std::string>  ClBlacklistFile("tsan-blacklist",
50        cl::desc("Blacklist file"), cl::Hidden);
51 static cl::opt<bool>  ClInstrumentMemoryAccesses(
52     "tsan-instrument-memory-accesses", cl::init(true),
53     cl::desc("Instrument memory accesses"), cl::Hidden);
54 static cl::opt<bool>  ClInstrumentFuncEntryExit(
55     "tsan-instrument-func-entry-exit", cl::init(true),
56     cl::desc("Instrument function entry and exit"), cl::Hidden);
57 static cl::opt<bool>  ClInstrumentAtomics(
58     "tsan-instrument-atomics", cl::init(true),
59     cl::desc("Instrument atomics"), cl::Hidden);
60 static cl::opt<bool>  ClInstrumentMemIntrinsics(
61     "tsan-instrument-memintrinsics", cl::init(true),
62     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
63
64 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
65 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
66 STATISTIC(NumOmittedReadsBeforeWrite,
67           "Number of reads ignored due to following writes");
68 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
69 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
70 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
71 STATISTIC(NumOmittedReadsFromConstantGlobals,
72           "Number of reads from constant globals");
73 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
74
75 namespace {
76
77 /// ThreadSanitizer: instrument the code in module to find races.
78 struct ThreadSanitizer : public FunctionPass {
79   ThreadSanitizer(StringRef BlacklistFile = StringRef())
80       : FunctionPass(ID),
81         DL(0),
82         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
83                                             : BlacklistFile) { }
84   const char *getPassName() const;
85   bool runOnFunction(Function &F);
86   bool doInitialization(Module &M);
87   static char ID;  // Pass identification, replacement for typeid.
88
89  private:
90   void initializeCallbacks(Module &M);
91   bool instrumentLoadOrStore(Instruction *I);
92   bool instrumentAtomic(Instruction *I);
93   bool instrumentMemIntrinsic(Instruction *I);
94   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
95                                       SmallVectorImpl<Instruction*> &All);
96   bool addrPointsToConstantData(Value *Addr);
97   int getMemoryAccessFuncIndex(Value *Addr);
98
99   const DataLayout *DL;
100   Type *IntptrTy;
101   SmallString<64> BlacklistFile;
102   OwningPtr<SpecialCaseList> BL;
103   IntegerType *OrdTy;
104   // Callbacks to run-time library are computed in doInitialization.
105   Function *TsanFuncEntry;
106   Function *TsanFuncExit;
107   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
108   static const size_t kNumberOfAccessSizes = 5;
109   Function *TsanRead[kNumberOfAccessSizes];
110   Function *TsanWrite[kNumberOfAccessSizes];
111   Function *TsanAtomicLoad[kNumberOfAccessSizes];
112   Function *TsanAtomicStore[kNumberOfAccessSizes];
113   Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
114   Function *TsanAtomicCAS[kNumberOfAccessSizes];
115   Function *TsanAtomicThreadFence;
116   Function *TsanAtomicSignalFence;
117   Function *TsanVptrUpdate;
118   Function *TsanVptrLoad;
119   Function *MemmoveFn, *MemcpyFn, *MemsetFn;
120 };
121 }  // namespace
122
123 char ThreadSanitizer::ID = 0;
124 INITIALIZE_PASS(ThreadSanitizer, "tsan",
125     "ThreadSanitizer: detects data races.",
126     false, false)
127
128 const char *ThreadSanitizer::getPassName() const {
129   return "ThreadSanitizer";
130 }
131
132 FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) {
133   return new ThreadSanitizer(BlacklistFile);
134 }
135
136 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
137   if (Function *F = dyn_cast<Function>(FuncOrBitcast))
138      return F;
139   FuncOrBitcast->dump();
140   report_fatal_error("ThreadSanitizer interface function redefined");
141 }
142
143 void ThreadSanitizer::initializeCallbacks(Module &M) {
144   IRBuilder<> IRB(M.getContext());
145   // Initialize the callbacks.
146   TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
147       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
148   TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
149       "__tsan_func_exit", IRB.getVoidTy(), NULL));
150   OrdTy = IRB.getInt32Ty();
151   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
152     const size_t ByteSize = 1 << i;
153     const size_t BitSize = ByteSize * 8;
154     SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
155     TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
156         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
157
158     SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
159     TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
160         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
161
162     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
163     Type *PtrTy = Ty->getPointerTo();
164     SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
165                                    "_load");
166     TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
167         AtomicLoadName, Ty, PtrTy, OrdTy, NULL));
168
169     SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
170                                     "_store");
171     TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
172         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
173         NULL));
174
175     for (int op = AtomicRMWInst::FIRST_BINOP;
176         op <= AtomicRMWInst::LAST_BINOP; ++op) {
177       TsanAtomicRMW[op][i] = NULL;
178       const char *NamePart = NULL;
179       if (op == AtomicRMWInst::Xchg)
180         NamePart = "_exchange";
181       else if (op == AtomicRMWInst::Add)
182         NamePart = "_fetch_add";
183       else if (op == AtomicRMWInst::Sub)
184         NamePart = "_fetch_sub";
185       else if (op == AtomicRMWInst::And)
186         NamePart = "_fetch_and";
187       else if (op == AtomicRMWInst::Or)
188         NamePart = "_fetch_or";
189       else if (op == AtomicRMWInst::Xor)
190         NamePart = "_fetch_xor";
191       else if (op == AtomicRMWInst::Nand)
192         NamePart = "_fetch_nand";
193       else
194         continue;
195       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
196       TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction(
197           RMWName, Ty, PtrTy, Ty, OrdTy, NULL));
198     }
199
200     SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
201                                   "_compare_exchange_val");
202     TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
203         AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL));
204   }
205   TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
206       "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
207       IRB.getInt8PtrTy(), NULL));
208   TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
209       "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
210   TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
211       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
212   TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
213       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
214
215   MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
216     "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
217     IRB.getInt8PtrTy(), IntptrTy, NULL));
218   MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
219     "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
220     IntptrTy, NULL));
221   MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
222     "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
223     IntptrTy, NULL));
224 }
225
226 bool ThreadSanitizer::doInitialization(Module &M) {
227   DL = getAnalysisIfAvailable<DataLayout>();
228   if (!DL)
229     return false;
230   BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
231
232   // Always insert a call to __tsan_init into the module's CTORs.
233   IRBuilder<> IRB(M.getContext());
234   IntptrTy = IRB.getIntPtrTy(DL);
235   Value *TsanInit = M.getOrInsertFunction("__tsan_init",
236                                           IRB.getVoidTy(), NULL);
237   appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
238
239   return true;
240 }
241
242 static bool isVtableAccess(Instruction *I) {
243   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
244     return Tag->isTBAAVtableAccess();
245   return false;
246 }
247
248 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
249   // If this is a GEP, just analyze its pointer operand.
250   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
251     Addr = GEP->getPointerOperand();
252
253   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
254     if (GV->isConstant()) {
255       // Reads from constant globals can not race with any writes.
256       NumOmittedReadsFromConstantGlobals++;
257       return true;
258     }
259   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
260     if (isVtableAccess(L)) {
261       // Reads from a vtable pointer can not race with any writes.
262       NumOmittedReadsFromVtable++;
263       return true;
264     }
265   }
266   return false;
267 }
268
269 // Instrumenting some of the accesses may be proven redundant.
270 // Currently handled:
271 //  - read-before-write (within same BB, no calls between)
272 //
273 // We do not handle some of the patterns that should not survive
274 // after the classic compiler optimizations.
275 // E.g. two reads from the same temp should be eliminated by CSE,
276 // two writes should be eliminated by DSE, etc.
277 //
278 // 'Local' is a vector of insns within the same BB (no calls between).
279 // 'All' is a vector of insns that will be instrumented.
280 void ThreadSanitizer::chooseInstructionsToInstrument(
281     SmallVectorImpl<Instruction*> &Local,
282     SmallVectorImpl<Instruction*> &All) {
283   SmallSet<Value*, 8> WriteTargets;
284   // Iterate from the end.
285   for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
286        E = Local.rend(); It != E; ++It) {
287     Instruction *I = *It;
288     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
289       WriteTargets.insert(Store->getPointerOperand());
290     } else {
291       LoadInst *Load = cast<LoadInst>(I);
292       Value *Addr = Load->getPointerOperand();
293       if (WriteTargets.count(Addr)) {
294         // We will write to this temp, so no reason to analyze the read.
295         NumOmittedReadsBeforeWrite++;
296         continue;
297       }
298       if (addrPointsToConstantData(Addr)) {
299         // Addr points to some constant data -- it can not race with any writes.
300         continue;
301       }
302     }
303     All.push_back(I);
304   }
305   Local.clear();
306 }
307
308 static bool isAtomic(Instruction *I) {
309   if (LoadInst *LI = dyn_cast<LoadInst>(I))
310     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
311   if (StoreInst *SI = dyn_cast<StoreInst>(I))
312     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
313   if (isa<AtomicRMWInst>(I))
314     return true;
315   if (isa<AtomicCmpXchgInst>(I))
316     return true;
317   if (isa<FenceInst>(I))
318     return true;
319   return false;
320 }
321
322 bool ThreadSanitizer::runOnFunction(Function &F) {
323   if (!DL) return false;
324   if (BL->isIn(F)) return false;
325   initializeCallbacks(*F.getParent());
326   SmallVector<Instruction*, 8> RetVec;
327   SmallVector<Instruction*, 8> AllLoadsAndStores;
328   SmallVector<Instruction*, 8> LocalLoadsAndStores;
329   SmallVector<Instruction*, 8> AtomicAccesses;
330   SmallVector<Instruction*, 8> MemIntrinCalls;
331   bool Res = false;
332   bool HasCalls = false;
333
334   // Traverse all instructions, collect loads/stores/returns, check for calls.
335   for (Function::iterator FI = F.begin(), FE = F.end();
336        FI != FE; ++FI) {
337     BasicBlock &BB = *FI;
338     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
339          BI != BE; ++BI) {
340       if (isAtomic(BI))
341         AtomicAccesses.push_back(BI);
342       else if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
343         LocalLoadsAndStores.push_back(BI);
344       else if (isa<ReturnInst>(BI))
345         RetVec.push_back(BI);
346       else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
347         if (isa<MemIntrinsic>(BI))
348           MemIntrinCalls.push_back(BI);
349         HasCalls = true;
350         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
351       }
352     }
353     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
354   }
355
356   // We have collected all loads and stores.
357   // FIXME: many of these accesses do not need to be checked for races
358   // (e.g. variables that do not escape, etc).
359
360   // Instrument memory accesses.
361   if (ClInstrumentMemoryAccesses && F.hasFnAttribute(Attribute::SanitizeThread))
362     for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
363       Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
364     }
365
366   // Instrument atomic memory accesses.
367   if (ClInstrumentAtomics)
368     for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
369       Res |= instrumentAtomic(AtomicAccesses[i]);
370     }
371
372   if (ClInstrumentMemIntrinsics)
373     for (size_t i = 0, n = MemIntrinCalls.size(); i < n; ++i) {
374       Res |= instrumentMemIntrinsic(MemIntrinCalls[i]);
375     }
376
377   // Instrument function entry/exit points if there were instrumented accesses.
378   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
379     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
380     Value *ReturnAddress = IRB.CreateCall(
381         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
382         IRB.getInt32(0));
383     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
384     for (size_t i = 0, n = RetVec.size(); i < n; ++i) {
385       IRBuilder<> IRBRet(RetVec[i]);
386       IRBRet.CreateCall(TsanFuncExit);
387     }
388     Res = true;
389   }
390   return Res;
391 }
392
393 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
394   IRBuilder<> IRB(I);
395   bool IsWrite = isa<StoreInst>(*I);
396   Value *Addr = IsWrite
397       ? cast<StoreInst>(I)->getPointerOperand()
398       : cast<LoadInst>(I)->getPointerOperand();
399   int Idx = getMemoryAccessFuncIndex(Addr);
400   if (Idx < 0)
401     return false;
402   if (IsWrite && isVtableAccess(I)) {
403     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
404     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
405     // StoredValue may be a vector type if we are storing several vptrs at once.
406     // In this case, just take the first element of the vector since this is
407     // enough to find vptr races.
408     if (isa<VectorType>(StoredValue->getType()))
409       StoredValue = IRB.CreateExtractElement(
410           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
411     if (StoredValue->getType()->isIntegerTy())
412       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
413     // Call TsanVptrUpdate.
414     IRB.CreateCall2(TsanVptrUpdate,
415                     IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
416                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
417     NumInstrumentedVtableWrites++;
418     return true;
419   }
420   if (!IsWrite && isVtableAccess(I)) {
421     IRB.CreateCall(TsanVptrLoad,
422                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
423     NumInstrumentedVtableReads++;
424     return true;
425   }
426   Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
427   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
428   if (IsWrite) NumInstrumentedWrites++;
429   else         NumInstrumentedReads++;
430   return true;
431 }
432
433 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
434   uint32_t v = 0;
435   switch (ord) {
436     case NotAtomic:              assert(false);
437     case Unordered:              // Fall-through.
438     case Monotonic:              v = 0; break;
439     // case Consume:                v = 1; break;  // Not specified yet.
440     case Acquire:                v = 2; break;
441     case Release:                v = 3; break;
442     case AcquireRelease:         v = 4; break;
443     case SequentiallyConsistent: v = 5; break;
444   }
445   return IRB->getInt32(v);
446 }
447
448 static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
449   uint32_t v = 0;
450   switch (ord) {
451     case NotAtomic:              assert(false);
452     case Unordered:              // Fall-through.
453     case Monotonic:              v = 0; break;
454     // case Consume:                v = 1; break;  // Not specified yet.
455     case Acquire:                v = 2; break;
456     case Release:                v = 0; break;
457     case AcquireRelease:         v = 2; break;
458     case SequentiallyConsistent: v = 5; break;
459   }
460   return IRB->getInt32(v);
461 }
462
463 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
464 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
465 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
466 // instead we simply replace them with regular function calls, which are then
467 // intercepted by the run-time.
468 // Since tsan is running after everyone else, the calls should not be
469 // replaced back with intrinsics. If that becomes wrong at some point,
470 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
471 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
472   IRBuilder<> IRB(I);
473   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
474     IRB.CreateCall3(MemsetFn,
475       IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
476       IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
477       IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
478     I->eraseFromParent();
479   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
480     IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
481       IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
482       IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
483       IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
484     I->eraseFromParent();
485   }
486   return false;
487 }
488
489 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
490 // standards.  For background see C++11 standard.  A slightly older, publicly
491 // available draft of the standard (not entirely up-to-date, but close enough
492 // for casual browsing) is available here:
493 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
494 // The following page contains more background information:
495 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
496
497 bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
498   IRBuilder<> IRB(I);
499   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
500     Value *Addr = LI->getPointerOperand();
501     int Idx = getMemoryAccessFuncIndex(Addr);
502     if (Idx < 0)
503       return false;
504     const size_t ByteSize = 1 << Idx;
505     const size_t BitSize = ByteSize * 8;
506     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
507     Type *PtrTy = Ty->getPointerTo();
508     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
509                      createOrdering(&IRB, LI->getOrdering())};
510     CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
511                                    ArrayRef<Value*>(Args));
512     ReplaceInstWithInst(I, C);
513
514   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
515     Value *Addr = SI->getPointerOperand();
516     int Idx = getMemoryAccessFuncIndex(Addr);
517     if (Idx < 0)
518       return false;
519     const size_t ByteSize = 1 << Idx;
520     const size_t BitSize = ByteSize * 8;
521     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
522     Type *PtrTy = Ty->getPointerTo();
523     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
524                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
525                      createOrdering(&IRB, SI->getOrdering())};
526     CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
527                                    ArrayRef<Value*>(Args));
528     ReplaceInstWithInst(I, C);
529   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
530     Value *Addr = RMWI->getPointerOperand();
531     int Idx = getMemoryAccessFuncIndex(Addr);
532     if (Idx < 0)
533       return false;
534     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
535     if (F == NULL)
536       return false;
537     const size_t ByteSize = 1 << Idx;
538     const size_t BitSize = ByteSize * 8;
539     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
540     Type *PtrTy = Ty->getPointerTo();
541     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
542                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
543                      createOrdering(&IRB, RMWI->getOrdering())};
544     CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
545     ReplaceInstWithInst(I, C);
546   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
547     Value *Addr = CASI->getPointerOperand();
548     int Idx = getMemoryAccessFuncIndex(Addr);
549     if (Idx < 0)
550       return false;
551     const size_t ByteSize = 1 << Idx;
552     const size_t BitSize = ByteSize * 8;
553     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
554     Type *PtrTy = Ty->getPointerTo();
555     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
556                      IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
557                      IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
558                      createOrdering(&IRB, CASI->getOrdering()),
559                      createFailOrdering(&IRB, CASI->getOrdering())};
560     CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args));
561     ReplaceInstWithInst(I, C);
562   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
563     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
564     Function *F = FI->getSynchScope() == SingleThread ?
565         TsanAtomicSignalFence : TsanAtomicThreadFence;
566     CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
567     ReplaceInstWithInst(I, C);
568   }
569   return true;
570 }
571
572 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
573   Type *OrigPtrTy = Addr->getType();
574   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
575   assert(OrigTy->isSized());
576   uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
577   if (TypeSize != 8  && TypeSize != 16 &&
578       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
579     NumAccessesWithBadSize++;
580     // Ignore all unusual sizes.
581     return -1;
582   }
583   size_t Idx = countTrailingZeros(TypeSize / 8);
584   assert(Idx < kNumberOfAccessSizes);
585   return Idx;
586 }