Replace Count{Leading,Trailing}Zeros_{32,64} with count{Leading,Trailing}Zeros.
[oota-llvm.git] / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 //   - Insert calls to run-time library before every memory access.
17 //      - Optimizations may apply to avoid instrumenting some of the accesses.
18 //   - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21
22 #define DEBUG_TYPE "tsan"
23
24 #include "llvm/Transforms/Instrumentation.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/BlackList.h"
45 #include "llvm/Transforms/Utils/ModuleUtils.h"
46
47 using namespace llvm;
48
49 static cl::opt<std::string>  ClBlacklistFile("tsan-blacklist",
50        cl::desc("Blacklist file"), cl::Hidden);
51 static cl::opt<bool>  ClInstrumentMemoryAccesses(
52     "tsan-instrument-memory-accesses", cl::init(true),
53     cl::desc("Instrument memory accesses"), cl::Hidden);
54 static cl::opt<bool>  ClInstrumentFuncEntryExit(
55     "tsan-instrument-func-entry-exit", cl::init(true),
56     cl::desc("Instrument function entry and exit"), cl::Hidden);
57 static cl::opt<bool>  ClInstrumentAtomics(
58     "tsan-instrument-atomics", cl::init(true),
59     cl::desc("Instrument atomics"), cl::Hidden);
60 static cl::opt<bool>  ClInstrumentMemIntrinsics(
61     "tsan-instrument-memintrinsics", cl::init(true),
62     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
63
64 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
65 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
66 STATISTIC(NumOmittedReadsBeforeWrite,
67           "Number of reads ignored due to following writes");
68 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
69 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
70 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
71 STATISTIC(NumOmittedReadsFromConstantGlobals,
72           "Number of reads from constant globals");
73 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
74
75 namespace {
76
77 /// ThreadSanitizer: instrument the code in module to find races.
78 struct ThreadSanitizer : public FunctionPass {
79   ThreadSanitizer(StringRef BlacklistFile = StringRef())
80       : FunctionPass(ID),
81         TD(0),
82         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
83                                             : BlacklistFile) { }
84   const char *getPassName() const;
85   bool runOnFunction(Function &F);
86   bool doInitialization(Module &M);
87   static char ID;  // Pass identification, replacement for typeid.
88
89  private:
90   void initializeCallbacks(Module &M);
91   bool instrumentLoadOrStore(Instruction *I);
92   bool instrumentAtomic(Instruction *I);
93   bool instrumentMemIntrinsic(Instruction *I);
94   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
95                                       SmallVectorImpl<Instruction*> &All);
96   bool addrPointsToConstantData(Value *Addr);
97   int getMemoryAccessFuncIndex(Value *Addr);
98
99   DataLayout *TD;
100   Type *IntptrTy;
101   SmallString<64> BlacklistFile;
102   OwningPtr<BlackList> BL;
103   IntegerType *OrdTy;
104   // Callbacks to run-time library are computed in doInitialization.
105   Function *TsanFuncEntry;
106   Function *TsanFuncExit;
107   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
108   static const size_t kNumberOfAccessSizes = 5;
109   Function *TsanRead[kNumberOfAccessSizes];
110   Function *TsanWrite[kNumberOfAccessSizes];
111   Function *TsanAtomicLoad[kNumberOfAccessSizes];
112   Function *TsanAtomicStore[kNumberOfAccessSizes];
113   Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
114   Function *TsanAtomicCAS[kNumberOfAccessSizes];
115   Function *TsanAtomicThreadFence;
116   Function *TsanAtomicSignalFence;
117   Function *TsanVptrUpdate;
118   Function *TsanVptrLoad;
119   Function *MemmoveFn, *MemcpyFn, *MemsetFn;
120 };
121 }  // namespace
122
123 char ThreadSanitizer::ID = 0;
124 INITIALIZE_PASS(ThreadSanitizer, "tsan",
125     "ThreadSanitizer: detects data races.",
126     false, false)
127
128 const char *ThreadSanitizer::getPassName() const {
129   return "ThreadSanitizer";
130 }
131
132 FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) {
133   return new ThreadSanitizer(BlacklistFile);
134 }
135
136 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
137   if (Function *F = dyn_cast<Function>(FuncOrBitcast))
138      return F;
139   FuncOrBitcast->dump();
140   report_fatal_error("ThreadSanitizer interface function redefined");
141 }
142
143 void ThreadSanitizer::initializeCallbacks(Module &M) {
144   IRBuilder<> IRB(M.getContext());
145   // Initialize the callbacks.
146   TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
147       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
148   TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
149       "__tsan_func_exit", IRB.getVoidTy(), NULL));
150   OrdTy = IRB.getInt32Ty();
151   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
152     const size_t ByteSize = 1 << i;
153     const size_t BitSize = ByteSize * 8;
154     SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
155     TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
156         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
157
158     SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
159     TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
160         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
161
162     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
163     Type *PtrTy = Ty->getPointerTo();
164     SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
165                                    "_load");
166     TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
167         AtomicLoadName, Ty, PtrTy, OrdTy, NULL));
168
169     SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
170                                     "_store");
171     TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
172         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
173         NULL));
174
175     for (int op = AtomicRMWInst::FIRST_BINOP;
176         op <= AtomicRMWInst::LAST_BINOP; ++op) {
177       TsanAtomicRMW[op][i] = NULL;
178       const char *NamePart = NULL;
179       if (op == AtomicRMWInst::Xchg)
180         NamePart = "_exchange";
181       else if (op == AtomicRMWInst::Add)
182         NamePart = "_fetch_add";
183       else if (op == AtomicRMWInst::Sub)
184         NamePart = "_fetch_sub";
185       else if (op == AtomicRMWInst::And)
186         NamePart = "_fetch_and";
187       else if (op == AtomicRMWInst::Or)
188         NamePart = "_fetch_or";
189       else if (op == AtomicRMWInst::Xor)
190         NamePart = "_fetch_xor";
191       else if (op == AtomicRMWInst::Nand)
192         NamePart = "_fetch_nand";
193       else
194         continue;
195       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
196       TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction(
197           RMWName, Ty, PtrTy, Ty, OrdTy, NULL));
198     }
199
200     SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
201                                   "_compare_exchange_val");
202     TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
203         AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL));
204   }
205   TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
206       "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
207       IRB.getInt8PtrTy(), NULL));
208   TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
209       "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
210   TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
211       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
212   TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
213       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
214
215   MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
216     "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
217     IRB.getInt8PtrTy(), IntptrTy, NULL));
218   MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
219     "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
220     IntptrTy, NULL));
221   MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
222     "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
223     IntptrTy, NULL));
224 }
225
226 bool ThreadSanitizer::doInitialization(Module &M) {
227   TD = getAnalysisIfAvailable<DataLayout>();
228   if (!TD)
229     return false;
230   BL.reset(new BlackList(BlacklistFile));
231
232   // Always insert a call to __tsan_init into the module's CTORs.
233   IRBuilder<> IRB(M.getContext());
234   IntptrTy = IRB.getIntPtrTy(TD);
235   Value *TsanInit = M.getOrInsertFunction("__tsan_init",
236                                           IRB.getVoidTy(), NULL);
237   appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
238
239   return true;
240 }
241
242 static bool isVtableAccess(Instruction *I) {
243   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) {
244     if (Tag->getNumOperands() < 1) return false;
245     if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
246       if (Tag1->getString() == "vtable pointer") return true;
247     }
248   }
249   return false;
250 }
251
252 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
253   // If this is a GEP, just analyze its pointer operand.
254   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
255     Addr = GEP->getPointerOperand();
256
257   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
258     if (GV->isConstant()) {
259       // Reads from constant globals can not race with any writes.
260       NumOmittedReadsFromConstantGlobals++;
261       return true;
262     }
263   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
264     if (isVtableAccess(L)) {
265       // Reads from a vtable pointer can not race with any writes.
266       NumOmittedReadsFromVtable++;
267       return true;
268     }
269   }
270   return false;
271 }
272
273 // Instrumenting some of the accesses may be proven redundant.
274 // Currently handled:
275 //  - read-before-write (within same BB, no calls between)
276 //
277 // We do not handle some of the patterns that should not survive
278 // after the classic compiler optimizations.
279 // E.g. two reads from the same temp should be eliminated by CSE,
280 // two writes should be eliminated by DSE, etc.
281 //
282 // 'Local' is a vector of insns within the same BB (no calls between).
283 // 'All' is a vector of insns that will be instrumented.
284 void ThreadSanitizer::chooseInstructionsToInstrument(
285     SmallVectorImpl<Instruction*> &Local,
286     SmallVectorImpl<Instruction*> &All) {
287   SmallSet<Value*, 8> WriteTargets;
288   // Iterate from the end.
289   for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
290        E = Local.rend(); It != E; ++It) {
291     Instruction *I = *It;
292     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
293       WriteTargets.insert(Store->getPointerOperand());
294     } else {
295       LoadInst *Load = cast<LoadInst>(I);
296       Value *Addr = Load->getPointerOperand();
297       if (WriteTargets.count(Addr)) {
298         // We will write to this temp, so no reason to analyze the read.
299         NumOmittedReadsBeforeWrite++;
300         continue;
301       }
302       if (addrPointsToConstantData(Addr)) {
303         // Addr points to some constant data -- it can not race with any writes.
304         continue;
305       }
306     }
307     All.push_back(I);
308   }
309   Local.clear();
310 }
311
312 static bool isAtomic(Instruction *I) {
313   if (LoadInst *LI = dyn_cast<LoadInst>(I))
314     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
315   if (StoreInst *SI = dyn_cast<StoreInst>(I))
316     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
317   if (isa<AtomicRMWInst>(I))
318     return true;
319   if (isa<AtomicCmpXchgInst>(I))
320     return true;
321   if (isa<FenceInst>(I))
322     return true;
323   return false;
324 }
325
326 bool ThreadSanitizer::runOnFunction(Function &F) {
327   if (!TD) return false;
328   if (BL->isIn(F)) return false;
329   initializeCallbacks(*F.getParent());
330   SmallVector<Instruction*, 8> RetVec;
331   SmallVector<Instruction*, 8> AllLoadsAndStores;
332   SmallVector<Instruction*, 8> LocalLoadsAndStores;
333   SmallVector<Instruction*, 8> AtomicAccesses;
334   SmallVector<Instruction*, 8> MemIntrinCalls;
335   bool Res = false;
336   bool HasCalls = false;
337
338   // Traverse all instructions, collect loads/stores/returns, check for calls.
339   for (Function::iterator FI = F.begin(), FE = F.end();
340        FI != FE; ++FI) {
341     BasicBlock &BB = *FI;
342     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
343          BI != BE; ++BI) {
344       if (isAtomic(BI))
345         AtomicAccesses.push_back(BI);
346       else if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
347         LocalLoadsAndStores.push_back(BI);
348       else if (isa<ReturnInst>(BI))
349         RetVec.push_back(BI);
350       else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
351         if (isa<MemIntrinsic>(BI))
352           MemIntrinCalls.push_back(BI);
353         HasCalls = true;
354         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
355       }
356     }
357     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
358   }
359
360   // We have collected all loads and stores.
361   // FIXME: many of these accesses do not need to be checked for races
362   // (e.g. variables that do not escape, etc).
363
364   // Instrument memory accesses.
365   if (ClInstrumentMemoryAccesses)
366     for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
367       Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
368     }
369
370   // Instrument atomic memory accesses.
371   if (ClInstrumentAtomics)
372     for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
373       Res |= instrumentAtomic(AtomicAccesses[i]);
374     }
375
376   if (ClInstrumentMemIntrinsics)
377     for (size_t i = 0, n = MemIntrinCalls.size(); i < n; ++i) {
378       Res |= instrumentMemIntrinsic(MemIntrinCalls[i]);
379     }
380
381   // Instrument function entry/exit points if there were instrumented accesses.
382   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
383     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
384     Value *ReturnAddress = IRB.CreateCall(
385         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
386         IRB.getInt32(0));
387     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
388     for (size_t i = 0, n = RetVec.size(); i < n; ++i) {
389       IRBuilder<> IRBRet(RetVec[i]);
390       IRBRet.CreateCall(TsanFuncExit);
391     }
392     Res = true;
393   }
394   return Res;
395 }
396
397 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
398   IRBuilder<> IRB(I);
399   bool IsWrite = isa<StoreInst>(*I);
400   Value *Addr = IsWrite
401       ? cast<StoreInst>(I)->getPointerOperand()
402       : cast<LoadInst>(I)->getPointerOperand();
403   int Idx = getMemoryAccessFuncIndex(Addr);
404   if (Idx < 0)
405     return false;
406   if (IsWrite && isVtableAccess(I)) {
407     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
408     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
409     // StoredValue does not necessary have a pointer type.
410     if (isa<IntegerType>(StoredValue->getType()))
411       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
412     // Call TsanVptrUpdate.
413     IRB.CreateCall2(TsanVptrUpdate,
414                     IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
415                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
416     NumInstrumentedVtableWrites++;
417     return true;
418   }
419   if (!IsWrite && isVtableAccess(I)) {
420     IRB.CreateCall(TsanVptrLoad,
421                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
422     NumInstrumentedVtableReads++;
423     return true;
424   }
425   Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
426   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
427   if (IsWrite) NumInstrumentedWrites++;
428   else         NumInstrumentedReads++;
429   return true;
430 }
431
432 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
433   uint32_t v = 0;
434   switch (ord) {
435     case NotAtomic:              assert(false);
436     case Unordered:              // Fall-through.
437     case Monotonic:              v = 0; break;
438     // case Consume:                v = 1; break;  // Not specified yet.
439     case Acquire:                v = 2; break;
440     case Release:                v = 3; break;
441     case AcquireRelease:         v = 4; break;
442     case SequentiallyConsistent: v = 5; break;
443   }
444   return IRB->getInt32(v);
445 }
446
447 static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
448   uint32_t v = 0;
449   switch (ord) {
450     case NotAtomic:              assert(false);
451     case Unordered:              // Fall-through.
452     case Monotonic:              v = 0; break;
453     // case Consume:                v = 1; break;  // Not specified yet.
454     case Acquire:                v = 2; break;
455     case Release:                v = 0; break;
456     case AcquireRelease:         v = 2; break;
457     case SequentiallyConsistent: v = 5; break;
458   }
459   return IRB->getInt32(v);
460 }
461
462 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
463 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
464 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
465 // instead we simply replace them with regular function calls, which are then
466 // intercepted by the run-time.
467 // Since tsan is running after everyone else, the calls should not be
468 // replaced back with intrinsics. If that becomes wrong at some point,
469 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
470 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
471   IRBuilder<> IRB(I);
472   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
473     IRB.CreateCall3(MemsetFn,
474       IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
475       IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
476       IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
477     I->eraseFromParent();
478   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
479     IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
480       IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
481       IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
482       IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
483     I->eraseFromParent();
484   }
485   return false;
486 }
487
488 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
489 // standards.  For background see C++11 standard.  A slightly older, publically
490 // available draft of the standard (not entirely up-to-date, but close enough
491 // for casual browsing) is available here:
492 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
493 // The following page contains more background information:
494 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
495
496 bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
497   IRBuilder<> IRB(I);
498   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
499     Value *Addr = LI->getPointerOperand();
500     int Idx = getMemoryAccessFuncIndex(Addr);
501     if (Idx < 0)
502       return false;
503     const size_t ByteSize = 1 << Idx;
504     const size_t BitSize = ByteSize * 8;
505     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
506     Type *PtrTy = Ty->getPointerTo();
507     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
508                      createOrdering(&IRB, LI->getOrdering())};
509     CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
510                                    ArrayRef<Value*>(Args));
511     ReplaceInstWithInst(I, C);
512
513   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
514     Value *Addr = SI->getPointerOperand();
515     int Idx = getMemoryAccessFuncIndex(Addr);
516     if (Idx < 0)
517       return false;
518     const size_t ByteSize = 1 << Idx;
519     const size_t BitSize = ByteSize * 8;
520     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
521     Type *PtrTy = Ty->getPointerTo();
522     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
523                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
524                      createOrdering(&IRB, SI->getOrdering())};
525     CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
526                                    ArrayRef<Value*>(Args));
527     ReplaceInstWithInst(I, C);
528   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
529     Value *Addr = RMWI->getPointerOperand();
530     int Idx = getMemoryAccessFuncIndex(Addr);
531     if (Idx < 0)
532       return false;
533     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
534     if (F == NULL)
535       return false;
536     const size_t ByteSize = 1 << Idx;
537     const size_t BitSize = ByteSize * 8;
538     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
539     Type *PtrTy = Ty->getPointerTo();
540     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
541                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
542                      createOrdering(&IRB, RMWI->getOrdering())};
543     CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
544     ReplaceInstWithInst(I, C);
545   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
546     Value *Addr = CASI->getPointerOperand();
547     int Idx = getMemoryAccessFuncIndex(Addr);
548     if (Idx < 0)
549       return false;
550     const size_t ByteSize = 1 << Idx;
551     const size_t BitSize = ByteSize * 8;
552     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
553     Type *PtrTy = Ty->getPointerTo();
554     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
555                      IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
556                      IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
557                      createOrdering(&IRB, CASI->getOrdering()),
558                      createFailOrdering(&IRB, CASI->getOrdering())};
559     CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args));
560     ReplaceInstWithInst(I, C);
561   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
562     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
563     Function *F = FI->getSynchScope() == SingleThread ?
564         TsanAtomicSignalFence : TsanAtomicThreadFence;
565     CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
566     ReplaceInstWithInst(I, C);
567   }
568   return true;
569 }
570
571 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
572   Type *OrigPtrTy = Addr->getType();
573   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
574   assert(OrigTy->isSized());
575   uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
576   if (TypeSize != 8  && TypeSize != 16 &&
577       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
578     NumAccessesWithBadSize++;
579     // Ignore all unusual sizes.
580     return -1;
581   }
582   size_t Idx = countTrailingZeros(TypeSize / 8);
583   assert(Idx < kNumberOfAccessSizes);
584   return Idx;
585 }