Removed tabs everywhere except autogenerated & external files. Add make
[oota-llvm.git] / lib / Transforms / Instrumentation / RSProfiling.cpp
1 //===- RSProfiling.cpp - Various profiling using random sampling ----------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These passes implement a random sampling based profiling.  Different methods
11 // of choosing when to sample are supported, as well as different types of
12 // profiling.  This is done as two passes.  The first is a sequence of profiling
13 // passes which insert profiling into the program, and remember what they 
14 // inserted.
15 //
16 // The second stage duplicates all instructions in a function, ignoring the 
17 // profiling code, then connects the two versions togeather at the entry and at
18 // backedges.  At each connection point a choice is made as to whether to jump
19 // to the profiled code (take a sample) or execute the unprofiled code.
20 //
21 // It is highly recommeneded that after this pass one runs mem2reg and adce
22 // (instcombine load-vn gdce dse also are good to run afterwards)
23 //
24 // This design is intended to make the profiling passes independent of the RS
25 // framework, but any profiling pass that implements the RSProfiling interface
26 // is compatible with the rs framework (and thus can be sampled)
27 //
28 // TODO: obviously the block and function profiling are almost identical to the
29 // existing ones, so they can be unified (esp since these passes are valid
30 // without the rs framework).
31 // TODO: Fix choice code so that frequency is not hard coded
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "llvm/Pass.h"
36 #include "llvm/Module.h"
37 #include "llvm/Instructions.h"
38 #include "llvm/Constants.h"
39 #include "llvm/DerivedTypes.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "RSProfiling.h"
47 #include <set>
48 #include <map>
49 #include <queue>
50 #include <list>
51 using namespace llvm;
52
53 namespace {
54   enum RandomMeth {
55     GBV, GBVO, HOSTCC
56   };
57
58   cl::opt<RandomMeth> RandomMethod("profile-randomness",
59       cl::desc("How to randomly choose to profile:"),
60       cl::values(
61                  clEnumValN(GBV, "global", "global counter"),
62                  clEnumValN(GBVO, "ra_global", 
63                             "register allocated global counter"),
64                  clEnumValN(HOSTCC, "rdcc", "cycle counter"),
65                  clEnumValEnd));
66   
67   /// NullProfilerRS - The basic profiler that does nothing.  It is the default
68   /// profiler and thus terminates RSProfiler chains.  It is useful for 
69   /// measuring framework overhead
70   class VISIBILITY_HIDDEN NullProfilerRS : public RSProfilers {
71   public:
72     bool isProfiling(Value* v) {
73       return false;
74     }
75     bool runOnModule(Module &M) {
76       return false;
77     }
78     void getAnalysisUsage(AnalysisUsage &AU) const {
79       AU.setPreservesAll();
80     }
81   };
82
83   static RegisterAnalysisGroup<RSProfilers> A("Profiling passes");
84   static RegisterPass<NullProfilerRS> NP("insert-null-profiling-rs",
85                                          "Measure profiling framework overhead");
86   static RegisterAnalysisGroup<RSProfilers, true> NPT(NP);
87
88   /// Chooser - Something that chooses when to make a sample of the profiled code
89   class VISIBILITY_HIDDEN Chooser {
90   public:
91     /// ProcessChoicePoint - is called for each basic block inserted to choose 
92     /// between normal and sample code
93     virtual void ProcessChoicePoint(BasicBlock*) = 0;
94     /// PrepFunction - is called once per function before other work is done.
95     /// This gives the opertunity to insert new allocas and such.
96     virtual void PrepFunction(Function*) = 0;
97     virtual ~Chooser() {}
98   };
99
100   //Things that implement sampling policies
101   //A global value that is read-mod-stored to choose when to sample.
102   //A sample is taken when the global counter hits 0
103   class VISIBILITY_HIDDEN GlobalRandomCounter : public Chooser {
104     GlobalVariable* Counter;
105     Value* ResetValue;
106     const Type* T;
107   public:
108     GlobalRandomCounter(Module& M, const Type* t, uint64_t resetval);
109     virtual ~GlobalRandomCounter();
110     virtual void PrepFunction(Function* F);
111     virtual void ProcessChoicePoint(BasicBlock* bb);
112   };
113
114   //Same is GRC, but allow register allocation of the global counter
115   class VISIBILITY_HIDDEN GlobalRandomCounterOpt : public Chooser {
116     GlobalVariable* Counter;
117     Value* ResetValue;
118     AllocaInst* AI;
119     const Type* T;
120   public:
121     GlobalRandomCounterOpt(Module& M, const Type* t, uint64_t resetval);
122     virtual ~GlobalRandomCounterOpt();
123     virtual void PrepFunction(Function* F);
124     virtual void ProcessChoicePoint(BasicBlock* bb);
125   };
126
127   //Use the cycle counter intrinsic as a source of pseudo randomness when
128   //deciding when to sample.
129   class VISIBILITY_HIDDEN CycleCounter : public Chooser {
130     uint64_t rm;
131     Constant *F;
132   public:
133     CycleCounter(Module& m, uint64_t resetmask);
134     virtual ~CycleCounter();
135     virtual void PrepFunction(Function* F);
136     virtual void ProcessChoicePoint(BasicBlock* bb);
137   };
138
139   /// ProfilerRS - Insert the random sampling framework
140   struct VISIBILITY_HIDDEN ProfilerRS : public FunctionPass {
141     std::map<Value*, Value*> TransCache;
142     std::set<BasicBlock*> ChoicePoints;
143     Chooser* c;
144
145     //Translate and duplicate values for the new profile free version of stuff
146     Value* Translate(Value* v);
147     //Duplicate an entire function (with out profiling)
148     void Duplicate(Function& F, RSProfilers& LI);
149     //Called once for each backedge, handle the insertion of choice points and
150     //the interconection of the two versions of the code
151     void ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F);
152     bool runOnFunction(Function& F);
153     bool doInitialization(Module &M);
154     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
155   };
156
157   RegisterPass<ProfilerRS> X("insert-rs-profiling-framework",
158                              "Insert random sampling instrumentation framework");
159 }
160
161 //Local utilities
162 static void ReplacePhiPred(BasicBlock* btarget, 
163                            BasicBlock* bold, BasicBlock* bnew);
164
165 static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc);
166
167 template<class T>
168 static void recBackEdge(BasicBlock* bb, T& BackEdges, 
169                         std::map<BasicBlock*, int>& color,
170                         std::map<BasicBlock*, int>& depth,
171                         std::map<BasicBlock*, int>& finish,
172                         int& time);
173
174 //find the back edges and where they go to
175 template<class T>
176 static void getBackEdges(Function& F, T& BackEdges);
177
178
179 ///////////////////////////////////////
180 // Methods of choosing when to profile
181 ///////////////////////////////////////
182   
183 GlobalRandomCounter::GlobalRandomCounter(Module& M, const Type* t, 
184                                          uint64_t resetval) : T(t) {
185   ConstantInt* Init = ConstantInt::get(T, resetval); 
186   ResetValue = Init;
187   Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
188                                Init, "RandomSteeringCounter", &M);
189 }
190
191 GlobalRandomCounter::~GlobalRandomCounter() {}
192
193 void GlobalRandomCounter::PrepFunction(Function* F) {}
194
195 void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
196   BranchInst* t = cast<BranchInst>(bb->getTerminator());
197   
198   //decrement counter
199   LoadInst* l = new LoadInst(Counter, "counter", t);
200   
201   ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0), 
202                              "countercc", t);
203
204   Value* nv = BinaryOperator::createSub(l, ConstantInt::get(T, 1),
205                                         "counternew", t);
206   new StoreInst(nv, Counter, t);
207   t->setCondition(s);
208   
209   //reset counter
210   BasicBlock* oldnext = t->getSuccessor(0);
211   BasicBlock* resetblock = new BasicBlock("reset", oldnext->getParent(), 
212                                           oldnext);
213   TerminatorInst* t2 = new BranchInst(oldnext, resetblock);
214   t->setSuccessor(0, resetblock);
215   new StoreInst(ResetValue, Counter, t2);
216   ReplacePhiPred(oldnext, bb, resetblock);
217 }
218
219 GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const Type* t, 
220                                                uint64_t resetval) 
221   : AI(0), T(t) {
222   ConstantInt* Init = ConstantInt::get(T, resetval);
223   ResetValue  = Init;
224   Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
225                                Init, "RandomSteeringCounter", &M);
226 }
227
228 GlobalRandomCounterOpt::~GlobalRandomCounterOpt() {}
229
230 void GlobalRandomCounterOpt::PrepFunction(Function* F) {
231   //make a local temporary to cache the global
232   BasicBlock& bb = F->getEntryBlock();
233   AI = new AllocaInst(T, 0, "localcounter", bb.begin());
234   LoadInst* l = new LoadInst(Counter, "counterload", AI->getNext());
235   new StoreInst(l, AI, l->getNext());
236   
237   //modify all functions and return values to restore the local variable to/from
238   //the global variable
239   for(Function::iterator fib = F->begin(), fie = F->end();
240       fib != fie; ++fib)
241     for(BasicBlock::iterator bib = fib->begin(), bie = fib->end();
242         bib != bie; ++bib)
243       if (isa<CallInst>(&*bib)) {
244         LoadInst* l = new LoadInst(AI, "counter", bib);
245         new StoreInst(l, Counter, bib);
246         l = new LoadInst(Counter, "counter", bib->getNext());
247         new StoreInst(l, AI, l->getNext());
248       } else if (isa<InvokeInst>(&*bib)) {
249         LoadInst* l = new LoadInst(AI, "counter", bib);
250         new StoreInst(l, Counter, bib);
251         
252         BasicBlock* bb = cast<InvokeInst>(&*bib)->getNormalDest();
253         Instruction* i = bb->begin();
254         while (isa<PHINode>(i)) i = i->getNext();
255         l = new LoadInst(Counter, "counter", i);
256         
257         bb = cast<InvokeInst>(&*bib)->getUnwindDest();
258         i = bb->begin();
259         while (isa<PHINode>(i)) i = i->getNext();
260         l = new LoadInst(Counter, "counter", i);
261         new StoreInst(l, AI, l->getNext());
262       } else if (isa<UnwindInst>(&*bib) || isa<ReturnInst>(&*bib)) {
263         LoadInst* l = new LoadInst(AI, "counter", bib);
264         new StoreInst(l, Counter, bib);
265       }
266 }
267
268 void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
269   BranchInst* t = cast<BranchInst>(bb->getTerminator());
270   
271   //decrement counter
272   LoadInst* l = new LoadInst(AI, "counter", t);
273   
274   ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0), 
275                              "countercc", t);
276
277   Value* nv = BinaryOperator::createSub(l, ConstantInt::get(T, 1),
278                                         "counternew", t);
279   new StoreInst(nv, AI, t);
280   t->setCondition(s);
281   
282   //reset counter
283   BasicBlock* oldnext = t->getSuccessor(0);
284   BasicBlock* resetblock = new BasicBlock("reset", oldnext->getParent(), 
285                                           oldnext);
286   TerminatorInst* t2 = new BranchInst(oldnext, resetblock);
287   t->setSuccessor(0, resetblock);
288   new StoreInst(ResetValue, AI, t2);
289   ReplacePhiPred(oldnext, bb, resetblock);
290 }
291
292
293 CycleCounter::CycleCounter(Module& m, uint64_t resetmask) : rm(resetmask) {
294   F = m.getOrInsertFunction("llvm.readcyclecounter", Type::Int64Ty, NULL);
295 }
296
297 CycleCounter::~CycleCounter() {}
298
299 void CycleCounter::PrepFunction(Function* F) {}
300
301 void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
302   BranchInst* t = cast<BranchInst>(bb->getTerminator());
303   
304   CallInst* c = new CallInst(F, "rdcc", t);
305   BinaryOperator* b = 
306     BinaryOperator::createAnd(c, ConstantInt::get(Type::Int64Ty, rm),
307                               "mrdcc", t);
308   
309   ICmpInst *s = new ICmpInst(ICmpInst::ICMP_EQ, b,
310                              ConstantInt::get(Type::Int64Ty, 0), 
311                              "mrdccc", t);
312
313   t->setCondition(s);
314 }
315
316 ///////////////////////////////////////
317 // Profiling:
318 ///////////////////////////////////////
319 bool RSProfilers_std::isProfiling(Value* v) {
320   if (profcode.find(v) != profcode.end())
321     return true;
322   //else
323   RSProfilers& LI = getAnalysis<RSProfilers>();
324   return LI.isProfiling(v);
325 }
326
327 void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
328                                           GlobalValue *CounterArray) {
329   // Insert the increment after any alloca or PHI instructions...
330   BasicBlock::iterator InsertPos = BB->begin();
331   while (isa<AllocaInst>(InsertPos) || isa<PHINode>(InsertPos))
332     ++InsertPos;
333   
334   // Create the getelementptr constant expression
335   std::vector<Constant*> Indices(2);
336   Indices[0] = Constant::getNullValue(Type::Int32Ty);
337   Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
338   Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray,
339                                                         &Indices[0], 2);
340   
341   // Load, increment and store the value back.
342   Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
343   profcode.insert(OldVal);
344   Value *NewVal = BinaryOperator::createAdd(OldVal,
345                                             ConstantInt::get(Type::Int32Ty, 1),
346                                             "NewCounter", InsertPos);
347   profcode.insert(NewVal);
348   profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
349 }
350
351 void RSProfilers_std::getAnalysisUsage(AnalysisUsage &AU) const {
352   //grab any outstanding profiler, or get the null one
353   AU.addRequired<RSProfilers>();
354 }
355
356 ///////////////////////////////////////
357 // RS Framework
358 ///////////////////////////////////////
359
360 Value* ProfilerRS::Translate(Value* v) {
361   if(TransCache[v])
362     return TransCache[v];
363   
364   if (BasicBlock* bb = dyn_cast<BasicBlock>(v)) {
365     if (bb == &bb->getParent()->getEntryBlock())
366       TransCache[bb] = bb; //don't translate entry block
367     else
368       TransCache[bb] = new BasicBlock("dup_" + bb->getName(), bb->getParent(), 
369                                       NULL);
370     return TransCache[bb];
371   } else if (Instruction* i = dyn_cast<Instruction>(v)) {
372     //we have already translated this
373     //do not translate entry block allocas
374     if(&i->getParent()->getParent()->getEntryBlock() == i->getParent()) {
375       TransCache[i] = i;
376       return i;
377     } else {
378       //translate this
379       Instruction* i2 = i->clone();
380       if (i->hasName())
381         i2->setName("dup_" + i->getName());
382       TransCache[i] = i2;
383       //NumNewInst++;
384       for (unsigned x = 0; x < i2->getNumOperands(); ++x)
385         i2->setOperand(x, Translate(i2->getOperand(x)));
386       return i2;
387     }
388   } else if (isa<Function>(v) || isa<Constant>(v) || isa<Argument>(v)) {
389     TransCache[v] = v;
390     return v;
391   }
392   assert(0 && "Value not handled");
393   return 0;
394 }
395
396 void ProfilerRS::Duplicate(Function& F, RSProfilers& LI)
397 {
398   //perform a breadth first search, building up a duplicate of the code
399   std::queue<BasicBlock*> worklist;
400   std::set<BasicBlock*> seen;
401   
402   //This loop ensures proper BB order, to help performance
403   for (Function::iterator fib = F.begin(), fie = F.end(); fib != fie; ++fib)
404     worklist.push(fib);
405   while (!worklist.empty()) {
406     Translate(worklist.front());
407     worklist.pop();
408   }
409   
410   //remember than reg2mem created a new entry block we don't want to duplicate
411   worklist.push(F.getEntryBlock().getTerminator()->getSuccessor(0));
412   seen.insert(&F.getEntryBlock());
413   
414   while (!worklist.empty()) {
415     BasicBlock* bb = worklist.front();
416     worklist.pop();
417     if(seen.find(bb) == seen.end()) {
418       BasicBlock* bbtarget = cast<BasicBlock>(Translate(bb));
419       BasicBlock::InstListType& instlist = bbtarget->getInstList();
420       for (BasicBlock::iterator iib = bb->begin(), iie = bb->end(); 
421            iib != iie; ++iib) {
422         //NumOldInst++;
423         if (!LI.isProfiling(&*iib)) {
424           Instruction* i = cast<Instruction>(Translate(iib));
425           instlist.insert(bbtarget->end(), i);
426         }
427       }
428       //updated search state;
429       seen.insert(bb);
430       TerminatorInst* ti = bb->getTerminator();
431       for (unsigned x = 0; x < ti->getNumSuccessors(); ++x) {
432         BasicBlock* bbs = ti->getSuccessor(x);
433         if (seen.find(bbs) == seen.end()) {
434           worklist.push(bbs);
435         }
436       }
437     }
438   }
439 }
440
441 void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F) {
442   //given a backedge from B -> A, and translations A' and B',
443   //a: insert C and C'
444   //b: add branches in C to A and A' and in C' to A and A'
445   //c: mod terminators@B, replace A with C
446   //d: mod terminators@B', replace A' with C'
447   //e: mod phis@A for pred B to be pred C
448   //       if multiple entries, simplify to one
449   //f: mod phis@A' for pred B' to be pred C'
450   //       if multiple entries, simplify to one
451   //g: for all phis@A with pred C using x
452   //       add in edge from C' using x'
453   //       add in edge from C using x in A'
454   
455   //a:
456   BasicBlock* bbC = new BasicBlock("choice", &F, src->getNext() );
457   //ChoicePoints.insert(bbC);
458   BasicBlock* bbCp = 
459     new BasicBlock("choice", &F, cast<BasicBlock>(Translate(src))->getNext() );
460   ChoicePoints.insert(bbCp);
461   
462   //b:
463   new BranchInst(cast<BasicBlock>(Translate(dst)), bbC);
464   new BranchInst(dst, cast<BasicBlock>(Translate(dst)), 
465                  ConstantInt::get(Type::Int1Ty, true), bbCp);
466   //c:
467   {
468     TerminatorInst* iB = src->getTerminator();
469     for (unsigned x = 0; x < iB->getNumSuccessors(); ++x)
470       if (iB->getSuccessor(x) == dst)
471         iB->setSuccessor(x, bbC);
472   }
473   //d:
474   {
475     TerminatorInst* iBp = cast<TerminatorInst>(Translate(src->getTerminator()));
476     for (unsigned x = 0; x < iBp->getNumSuccessors(); ++x)
477       if (iBp->getSuccessor(x) == cast<BasicBlock>(Translate(dst)))
478         iBp->setSuccessor(x, bbCp);
479   }
480   //e:
481   ReplacePhiPred(dst, src, bbC);
482   //src could be a switch, in which case we are replacing several edges with one
483   //thus collapse those edges int the Phi
484   CollapsePhi(dst, bbC);
485   //f:
486   ReplacePhiPred(cast<BasicBlock>(Translate(dst)),
487                  cast<BasicBlock>(Translate(src)),bbCp);
488   CollapsePhi(cast<BasicBlock>(Translate(dst)), bbCp);
489   //g:
490   for(BasicBlock::iterator ib = dst->begin(), ie = dst->end(); ib != ie;
491       ++ib)
492     if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
493       for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
494         if(bbC == phi->getIncomingBlock(x)) {
495           phi->addIncoming(Translate(phi->getIncomingValue(x)), bbCp);
496           cast<PHINode>(Translate(phi))->addIncoming(phi->getIncomingValue(x), 
497                                                      bbC);
498         }
499       phi->removeIncomingValue(bbC);
500     }
501 }
502
503 bool ProfilerRS::runOnFunction(Function& F) {
504   if (!F.isDeclaration()) {
505     std::set<std::pair<BasicBlock*, BasicBlock*> > BackEdges;
506     RSProfilers& LI = getAnalysis<RSProfilers>();
507     
508     getBackEdges(F, BackEdges);
509     Duplicate(F, LI);
510     //assume that stuff worked.  now connect the duplicated basic blocks 
511     //with the originals in such a way as to preserve ssa.  yuk!
512     for (std::set<std::pair<BasicBlock*, BasicBlock*> >::iterator 
513            ib = BackEdges.begin(), ie = BackEdges.end(); ib != ie; ++ib)
514       ProcessBackEdge(ib->first, ib->second, F);
515     
516     //oh, and add the edge from the reg2mem created entry node to the 
517     //duplicated second node
518     TerminatorInst* T = F.getEntryBlock().getTerminator();
519     ReplaceInstWithInst(T, new BranchInst(T->getSuccessor(0),
520                                           cast<BasicBlock>(
521                                             Translate(T->getSuccessor(0))),
522                                           ConstantInt::get(Type::Int1Ty, true)));
523     
524     //do whatever is needed now that the function is duplicated
525     c->PrepFunction(&F);
526     
527     //add entry node to choice points
528     ChoicePoints.insert(&F.getEntryBlock());
529     
530     for (std::set<BasicBlock*>::iterator 
531            ii = ChoicePoints.begin(), ie = ChoicePoints.end(); ii != ie; ++ii)
532       c->ProcessChoicePoint(*ii);
533     
534     ChoicePoints.clear();
535     TransCache.clear();
536     
537     return true;
538   }
539   return false;
540 }
541
542 bool ProfilerRS::doInitialization(Module &M) {
543   switch (RandomMethod) {
544   case GBV:
545     c = new GlobalRandomCounter(M, Type::Int32Ty, (1 << 14) - 1);
546     break;
547   case GBVO:
548     c = new GlobalRandomCounterOpt(M, Type::Int32Ty, (1 << 14) - 1);
549     break;
550   case HOSTCC:
551     c = new CycleCounter(M, (1 << 14) - 1);
552     break;
553   };
554   return true;
555 }
556
557 void ProfilerRS::getAnalysisUsage(AnalysisUsage &AU) const {
558   AU.addRequired<RSProfilers>();
559   AU.addRequiredID(DemoteRegisterToMemoryID);
560 }
561
562 ///////////////////////////////////////
563 // Utilities:
564 ///////////////////////////////////////
565 static void ReplacePhiPred(BasicBlock* btarget, 
566                            BasicBlock* bold, BasicBlock* bnew) {
567   for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
568       ib != ie; ++ib)
569     if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
570       for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
571         if(bold == phi->getIncomingBlock(x))
572           phi->setIncomingBlock(x, bnew);
573     }
574 }
575
576 static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc) {
577   for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
578       ib != ie; ++ib)
579     if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
580       std::map<BasicBlock*, Value*> counter;
581       for(unsigned i = 0; i < phi->getNumIncomingValues(); ) {
582         if (counter[phi->getIncomingBlock(i)]) {
583           assert(phi->getIncomingValue(i) == counter[phi->getIncomingBlock(i)]);
584           phi->removeIncomingValue(i, false);
585         } else {
586           counter[phi->getIncomingBlock(i)] = phi->getIncomingValue(i);
587           ++i;
588         }
589       }
590     } 
591 }
592
593 template<class T>
594 static void recBackEdge(BasicBlock* bb, T& BackEdges, 
595                         std::map<BasicBlock*, int>& color,
596                         std::map<BasicBlock*, int>& depth,
597                         std::map<BasicBlock*, int>& finish,
598                         int& time)
599 {
600   color[bb] = 1;
601   ++time;
602   depth[bb] = time;
603   TerminatorInst* t= bb->getTerminator();
604   for(unsigned i = 0; i < t->getNumSuccessors(); ++i) {
605     BasicBlock* bbnew = t->getSuccessor(i);
606     if (color[bbnew] == 0)
607       recBackEdge(bbnew, BackEdges, color, depth, finish, time);
608     else if (color[bbnew] == 1) {
609       BackEdges.insert(std::make_pair(bb, bbnew));
610       //NumBackEdges++;
611     }
612   }
613   color[bb] = 2;
614   ++time;
615   finish[bb] = time;
616 }
617
618
619
620 //find the back edges and where they go to
621 template<class T>
622 static void getBackEdges(Function& F, T& BackEdges) {
623   std::map<BasicBlock*, int> color;
624   std::map<BasicBlock*, int> depth;
625   std::map<BasicBlock*, int> finish;
626   int time = 0;
627   recBackEdge(&F.getEntryBlock(), BackEdges, color, depth, finish, time);
628   DOUT << F.getName() << " " << BackEdges.size() << "\n";
629 }
630
631
632 //Creation functions
633 ModulePass* llvm::createNullProfilerRSPass() {
634   return new NullProfilerRS();
635 }
636
637 FunctionPass* llvm::createRSProfilingPass() {
638   return new ProfilerRS();
639 }