[opaque pointer type] More GEP IRBuilder API migrations
[oota-llvm.git] / lib / Transforms / Instrumentation / MemorySanitizer.cpp
1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwritting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91
92 //===----------------------------------------------------------------------===//
93
94 #include "llvm/Transforms/Instrumentation.h"
95 #include "llvm/ADT/DepthFirstIterator.h"
96 #include "llvm/ADT/SmallString.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/ADT/StringExtras.h"
99 #include "llvm/ADT/Triple.h"
100 #include "llvm/IR/DataLayout.h"
101 #include "llvm/IR/Function.h"
102 #include "llvm/IR/IRBuilder.h"
103 #include "llvm/IR/InlineAsm.h"
104 #include "llvm/IR/InstVisitor.h"
105 #include "llvm/IR/IntrinsicInst.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/MDBuilder.h"
108 #include "llvm/IR/Module.h"
109 #include "llvm/IR/Type.h"
110 #include "llvm/IR/ValueMap.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/Debug.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/ModuleUtils.h"
118
119 using namespace llvm;
120
121 #define DEBUG_TYPE "msan"
122
123 static const unsigned kOriginSize = 4;
124 static const unsigned kMinOriginAlignment = 4;
125 static const unsigned kShadowTLSAlignment = 8;
126
127 // These constants must be kept in sync with the ones in msan.h.
128 static const unsigned kParamTLSSize = 800;
129 static const unsigned kRetvalTLSSize = 800;
130
131 // Accesses sizes are powers of two: 1, 2, 4, 8.
132 static const size_t kNumberOfAccessSizes = 4;
133
134 /// \brief Track origins of uninitialized values.
135 ///
136 /// Adds a section to MemorySanitizer report that points to the allocation
137 /// (stack or heap) the uninitialized bits came from originally.
138 static cl::opt<int> ClTrackOrigins("msan-track-origins",
139        cl::desc("Track origins (allocation sites) of poisoned memory"),
140        cl::Hidden, cl::init(0));
141 static cl::opt<bool> ClKeepGoing("msan-keep-going",
142        cl::desc("keep going after reporting a UMR"),
143        cl::Hidden, cl::init(false));
144 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
145        cl::desc("poison uninitialized stack variables"),
146        cl::Hidden, cl::init(true));
147 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
148        cl::desc("poison uninitialized stack variables with a call"),
149        cl::Hidden, cl::init(false));
150 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
151        cl::desc("poison uninitialized stack variables with the given patter"),
152        cl::Hidden, cl::init(0xff));
153 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
154        cl::desc("poison undef temps"),
155        cl::Hidden, cl::init(true));
156
157 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
158        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
159        cl::Hidden, cl::init(true));
160
161 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
162        cl::desc("exact handling of relational integer ICmp"),
163        cl::Hidden, cl::init(false));
164
165 // This flag controls whether we check the shadow of the address
166 // operand of load or store. Such bugs are very rare, since load from
167 // a garbage address typically results in SEGV, but still happen
168 // (e.g. only lower bits of address are garbage, or the access happens
169 // early at program startup where malloc-ed memory is more likely to
170 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
171 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
172        cl::desc("report accesses through a pointer which has poisoned shadow"),
173        cl::Hidden, cl::init(true));
174
175 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
176        cl::desc("print out instructions with default strict semantics"),
177        cl::Hidden, cl::init(false));
178
179 static cl::opt<int> ClInstrumentationWithCallThreshold(
180     "msan-instrumentation-with-call-threshold",
181     cl::desc(
182         "If the function being instrumented requires more than "
183         "this number of checks and origin stores, use callbacks instead of "
184         "inline checks (-1 means never use callbacks)."),
185     cl::Hidden, cl::init(3500));
186
187 // This is an experiment to enable handling of cases where shadow is a non-zero
188 // compile-time constant. For some unexplainable reason they were silently
189 // ignored in the instrumentation.
190 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
191        cl::desc("Insert checks for constant shadow values"),
192        cl::Hidden, cl::init(false));
193
194 namespace {
195
196 // Memory map parameters used in application-to-shadow address calculation.
197 // Offset = (Addr & ~AndMask) ^ XorMask
198 // Shadow = ShadowBase + Offset
199 // Origin = OriginBase + Offset
200 struct MemoryMapParams {
201   uint64_t AndMask;
202   uint64_t XorMask;
203   uint64_t ShadowBase;
204   uint64_t OriginBase;
205 };
206
207 struct PlatformMemoryMapParams {
208   const MemoryMapParams *bits32;
209   const MemoryMapParams *bits64;
210 };
211
212 // i386 Linux
213 static const MemoryMapParams Linux_I386_MemoryMapParams = {
214   0x000080000000,  // AndMask
215   0,               // XorMask (not used)
216   0,               // ShadowBase (not used)
217   0x000040000000,  // OriginBase
218 };
219
220 // x86_64 Linux
221 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
222   0x400000000000,  // AndMask
223   0,               // XorMask (not used)
224   0,               // ShadowBase (not used)
225   0x200000000000,  // OriginBase
226 };
227
228 // mips64 Linux
229 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
230   0x004000000000,  // AndMask
231   0,               // XorMask (not used)
232   0,               // ShadowBase (not used)
233   0x002000000000,  // OriginBase
234 };
235
236 // i386 FreeBSD
237 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
238   0x000180000000,  // AndMask
239   0x000040000000,  // XorMask
240   0x000020000000,  // ShadowBase
241   0x000700000000,  // OriginBase
242 };
243
244 // x86_64 FreeBSD
245 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
246   0xc00000000000,  // AndMask
247   0x200000000000,  // XorMask
248   0x100000000000,  // ShadowBase
249   0x380000000000,  // OriginBase
250 };
251
252 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
253   &Linux_I386_MemoryMapParams,
254   &Linux_X86_64_MemoryMapParams,
255 };
256
257 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
258   NULL,
259   &Linux_MIPS64_MemoryMapParams,
260 };
261
262 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
263   &FreeBSD_I386_MemoryMapParams,
264   &FreeBSD_X86_64_MemoryMapParams,
265 };
266
267 /// \brief An instrumentation pass implementing detection of uninitialized
268 /// reads.
269 ///
270 /// MemorySanitizer: instrument the code in module to find
271 /// uninitialized reads.
272 class MemorySanitizer : public FunctionPass {
273  public:
274   MemorySanitizer(int TrackOrigins = 0)
275       : FunctionPass(ID),
276         TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
277         WarningFn(nullptr) {}
278   const char *getPassName() const override { return "MemorySanitizer"; }
279   bool runOnFunction(Function &F) override;
280   bool doInitialization(Module &M) override;
281   static char ID;  // Pass identification, replacement for typeid.
282
283  private:
284   void initializeCallbacks(Module &M);
285
286   /// \brief Track origins (allocation points) of uninitialized values.
287   int TrackOrigins;
288
289   LLVMContext *C;
290   Type *IntptrTy;
291   Type *OriginTy;
292   /// \brief Thread-local shadow storage for function parameters.
293   GlobalVariable *ParamTLS;
294   /// \brief Thread-local origin storage for function parameters.
295   GlobalVariable *ParamOriginTLS;
296   /// \brief Thread-local shadow storage for function return value.
297   GlobalVariable *RetvalTLS;
298   /// \brief Thread-local origin storage for function return value.
299   GlobalVariable *RetvalOriginTLS;
300   /// \brief Thread-local shadow storage for in-register va_arg function
301   /// parameters (x86_64-specific).
302   GlobalVariable *VAArgTLS;
303   /// \brief Thread-local shadow storage for va_arg overflow area
304   /// (x86_64-specific).
305   GlobalVariable *VAArgOverflowSizeTLS;
306   /// \brief Thread-local space used to pass origin value to the UMR reporting
307   /// function.
308   GlobalVariable *OriginTLS;
309
310   /// \brief The run-time callback to print a warning.
311   Value *WarningFn;
312   // These arrays are indexed by log2(AccessSize).
313   Value *MaybeWarningFn[kNumberOfAccessSizes];
314   Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
315
316   /// \brief Run-time helper that generates a new origin value for a stack
317   /// allocation.
318   Value *MsanSetAllocaOrigin4Fn;
319   /// \brief Run-time helper that poisons stack on function entry.
320   Value *MsanPoisonStackFn;
321   /// \brief Run-time helper that records a store (or any event) of an
322   /// uninitialized value and returns an updated origin id encoding this info.
323   Value *MsanChainOriginFn;
324   /// \brief MSan runtime replacements for memmove, memcpy and memset.
325   Value *MemmoveFn, *MemcpyFn, *MemsetFn;
326
327   /// \brief Memory map parameters used in application-to-shadow calculation.
328   const MemoryMapParams *MapParams;
329
330   MDNode *ColdCallWeights;
331   /// \brief Branch weights for origin store.
332   MDNode *OriginStoreWeights;
333   /// \brief An empty volatile inline asm that prevents callback merge.
334   InlineAsm *EmptyAsm;
335
336   friend struct MemorySanitizerVisitor;
337   friend struct VarArgAMD64Helper;
338   friend struct VarArgMIPS64Helper;
339 };
340 }  // namespace
341
342 char MemorySanitizer::ID = 0;
343 INITIALIZE_PASS(MemorySanitizer, "msan",
344                 "MemorySanitizer: detects uninitialized reads.",
345                 false, false)
346
347 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
348   return new MemorySanitizer(TrackOrigins);
349 }
350
351 /// \brief Create a non-const global initialized with the given string.
352 ///
353 /// Creates a writable global for Str so that we can pass it to the
354 /// run-time lib. Runtime uses first 4 bytes of the string to store the
355 /// frame ID, so the string needs to be mutable.
356 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
357                                                             StringRef Str) {
358   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
359   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
360                             GlobalValue::PrivateLinkage, StrConst, "");
361 }
362
363
364 /// \brief Insert extern declaration of runtime-provided functions and globals.
365 void MemorySanitizer::initializeCallbacks(Module &M) {
366   // Only do this once.
367   if (WarningFn)
368     return;
369
370   IRBuilder<> IRB(*C);
371   // Create the callback.
372   // FIXME: this function should have "Cold" calling conv,
373   // which is not yet implemented.
374   StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
375                                         : "__msan_warning_noreturn";
376   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
377
378   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
379        AccessSizeIndex++) {
380     unsigned AccessSize = 1 << AccessSizeIndex;
381     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
382     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
383         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
384         IRB.getInt32Ty(), nullptr);
385
386     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
387     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
388         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
389         IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
390   }
391
392   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
393     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
394     IRB.getInt8PtrTy(), IntptrTy, nullptr);
395   MsanPoisonStackFn =
396       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
397                             IRB.getInt8PtrTy(), IntptrTy, nullptr);
398   MsanChainOriginFn = M.getOrInsertFunction(
399     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
400   MemmoveFn = M.getOrInsertFunction(
401     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
402     IRB.getInt8PtrTy(), IntptrTy, nullptr);
403   MemcpyFn = M.getOrInsertFunction(
404     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
405     IntptrTy, nullptr);
406   MemsetFn = M.getOrInsertFunction(
407     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
408     IntptrTy, nullptr);
409
410   // Create globals.
411   RetvalTLS = new GlobalVariable(
412     M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
413     GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
414     GlobalVariable::InitialExecTLSModel);
415   RetvalOriginTLS = new GlobalVariable(
416     M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
417     "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
418
419   ParamTLS = new GlobalVariable(
420     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
421     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
422     GlobalVariable::InitialExecTLSModel);
423   ParamOriginTLS = new GlobalVariable(
424     M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
425     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
426     nullptr, GlobalVariable::InitialExecTLSModel);
427
428   VAArgTLS = new GlobalVariable(
429     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
430     GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
431     GlobalVariable::InitialExecTLSModel);
432   VAArgOverflowSizeTLS = new GlobalVariable(
433     M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
434     "__msan_va_arg_overflow_size_tls", nullptr,
435     GlobalVariable::InitialExecTLSModel);
436   OriginTLS = new GlobalVariable(
437     M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
438     "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
439
440   // We insert an empty inline asm after __msan_report* to avoid callback merge.
441   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
442                             StringRef(""), StringRef(""),
443                             /*hasSideEffects=*/true);
444 }
445
446 /// \brief Module-level initialization.
447 ///
448 /// inserts a call to __msan_init to the module's constructor list.
449 bool MemorySanitizer::doInitialization(Module &M) {
450   auto &DL = M.getDataLayout();
451
452   Triple TargetTriple(M.getTargetTriple());
453   switch (TargetTriple.getOS()) {
454     case Triple::FreeBSD:
455       switch (TargetTriple.getArch()) {
456         case Triple::x86_64:
457           MapParams = FreeBSD_X86_MemoryMapParams.bits64;
458           break;
459         case Triple::x86:
460           MapParams = FreeBSD_X86_MemoryMapParams.bits32;
461           break;
462         default:
463           report_fatal_error("unsupported architecture");
464       }
465       break;
466     case Triple::Linux:
467       switch (TargetTriple.getArch()) {
468         case Triple::x86_64:
469           MapParams = Linux_X86_MemoryMapParams.bits64;
470           break;
471         case Triple::x86:
472           MapParams = Linux_X86_MemoryMapParams.bits32;
473           break;
474         case Triple::mips64:
475         case Triple::mips64el:
476           MapParams = Linux_MIPS_MemoryMapParams.bits64;
477           break;
478         default:
479           report_fatal_error("unsupported architecture");
480       }
481       break;
482     default:
483       report_fatal_error("unsupported operating system");
484   }
485
486   C = &(M.getContext());
487   IRBuilder<> IRB(*C);
488   IntptrTy = IRB.getIntPtrTy(DL);
489   OriginTy = IRB.getInt32Ty();
490
491   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
492   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
493
494   // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
495   appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
496                       "__msan_init", IRB.getVoidTy(), nullptr)), 0);
497
498   if (TrackOrigins)
499     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
500                        IRB.getInt32(TrackOrigins), "__msan_track_origins");
501
502   if (ClKeepGoing)
503     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
504                        IRB.getInt32(ClKeepGoing), "__msan_keep_going");
505
506   return true;
507 }
508
509 namespace {
510
511 /// \brief A helper class that handles instrumentation of VarArg
512 /// functions on a particular platform.
513 ///
514 /// Implementations are expected to insert the instrumentation
515 /// necessary to propagate argument shadow through VarArg function
516 /// calls. Visit* methods are called during an InstVisitor pass over
517 /// the function, and should avoid creating new basic blocks. A new
518 /// instance of this class is created for each instrumented function.
519 struct VarArgHelper {
520   /// \brief Visit a CallSite.
521   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
522
523   /// \brief Visit a va_start call.
524   virtual void visitVAStartInst(VAStartInst &I) = 0;
525
526   /// \brief Visit a va_copy call.
527   virtual void visitVACopyInst(VACopyInst &I) = 0;
528
529   /// \brief Finalize function instrumentation.
530   ///
531   /// This method is called after visiting all interesting (see above)
532   /// instructions in a function.
533   virtual void finalizeInstrumentation() = 0;
534
535   virtual ~VarArgHelper() {}
536 };
537
538 struct MemorySanitizerVisitor;
539
540 VarArgHelper*
541 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
542                    MemorySanitizerVisitor &Visitor);
543
544 unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
545   if (TypeSize <= 8) return 0;
546   return Log2_32_Ceil(TypeSize / 8);
547 }
548
549 /// This class does all the work for a given function. Store and Load
550 /// instructions store and load corresponding shadow and origin
551 /// values. Most instructions propagate shadow from arguments to their
552 /// return values. Certain instructions (most importantly, BranchInst)
553 /// test their argument shadow and print reports (with a runtime call) if it's
554 /// non-zero.
555 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
556   Function &F;
557   MemorySanitizer &MS;
558   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
559   ValueMap<Value*, Value*> ShadowMap, OriginMap;
560   std::unique_ptr<VarArgHelper> VAHelper;
561
562   // The following flags disable parts of MSan instrumentation based on
563   // blacklist contents and command-line options.
564   bool InsertChecks;
565   bool PropagateShadow;
566   bool PoisonStack;
567   bool PoisonUndef;
568   bool CheckReturnValue;
569
570   struct ShadowOriginAndInsertPoint {
571     Value *Shadow;
572     Value *Origin;
573     Instruction *OrigIns;
574     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
575       : Shadow(S), Origin(O), OrigIns(I) { }
576   };
577   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
578   SmallVector<Instruction*, 16> StoreList;
579
580   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
581       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
582     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
583     InsertChecks = SanitizeFunction;
584     PropagateShadow = SanitizeFunction;
585     PoisonStack = SanitizeFunction && ClPoisonStack;
586     PoisonUndef = SanitizeFunction && ClPoisonUndef;
587     // FIXME: Consider using SpecialCaseList to specify a list of functions that
588     // must always return fully initialized values. For now, we hardcode "main".
589     CheckReturnValue = SanitizeFunction && (F.getName() == "main");
590
591     DEBUG(if (!InsertChecks)
592           dbgs() << "MemorySanitizer is not inserting checks into '"
593                  << F.getName() << "'\n");
594   }
595
596   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
597     if (MS.TrackOrigins <= 1) return V;
598     return IRB.CreateCall(MS.MsanChainOriginFn, V);
599   }
600
601   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
602     const DataLayout &DL = F.getParent()->getDataLayout();
603     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
604     if (IntptrSize == kOriginSize) return Origin;
605     assert(IntptrSize == kOriginSize * 2);
606     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
607     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
608   }
609
610   /// \brief Fill memory range with the given origin value.
611   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
612                    unsigned Size, unsigned Alignment) {
613     const DataLayout &DL = F.getParent()->getDataLayout();
614     unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
615     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
616     assert(IntptrAlignment >= kMinOriginAlignment);
617     assert(IntptrSize >= kOriginSize);
618
619     unsigned Ofs = 0;
620     unsigned CurrentAlignment = Alignment;
621     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
622       Value *IntptrOrigin = originToIntptr(IRB, Origin);
623       Value *IntptrOriginPtr =
624           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
625       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
626         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
627                        : IntptrOriginPtr;
628         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
629         Ofs += IntptrSize / kOriginSize;
630         CurrentAlignment = IntptrAlignment;
631       }
632     }
633
634     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
635       Value *GEP =
636           i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
637       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
638       CurrentAlignment = kMinOriginAlignment;
639     }
640   }
641
642   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
643                    unsigned Alignment, bool AsCall) {
644     const DataLayout &DL = F.getParent()->getDataLayout();
645     unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
646     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
647     if (isa<StructType>(Shadow->getType())) {
648       paintOrigin(IRB, updateOrigin(Origin, IRB),
649                   getOriginPtr(Addr, IRB, Alignment), StoreSize,
650                   OriginAlignment);
651     } else {
652       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
653       Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
654       if (ConstantShadow) {
655         if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
656           paintOrigin(IRB, updateOrigin(Origin, IRB),
657                       getOriginPtr(Addr, IRB, Alignment), StoreSize,
658                       OriginAlignment);
659         return;
660       }
661
662       unsigned TypeSizeInBits =
663           DL.getTypeSizeInBits(ConvertedShadow->getType());
664       unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
665       if (AsCall && SizeIndex < kNumberOfAccessSizes) {
666         Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
667         Value *ConvertedShadow2 = IRB.CreateZExt(
668             ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
669         IRB.CreateCall3(Fn, ConvertedShadow2,
670                         IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
671                         Origin);
672       } else {
673         Value *Cmp = IRB.CreateICmpNE(
674             ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
675         Instruction *CheckTerm = SplitBlockAndInsertIfThen(
676             Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
677         IRBuilder<> IRBNew(CheckTerm);
678         paintOrigin(IRBNew, updateOrigin(Origin, IRBNew),
679                     getOriginPtr(Addr, IRBNew, Alignment), StoreSize,
680                     OriginAlignment);
681       }
682     }
683   }
684
685   void materializeStores(bool InstrumentWithCalls) {
686     for (auto Inst : StoreList) {
687       StoreInst &SI = *dyn_cast<StoreInst>(Inst);
688
689       IRBuilder<> IRB(&SI);
690       Value *Val = SI.getValueOperand();
691       Value *Addr = SI.getPointerOperand();
692       Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
693       Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
694
695       StoreInst *NewSI =
696           IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
697       DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
698       (void)NewSI;
699
700       if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
701
702       if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
703
704       if (MS.TrackOrigins && !SI.isAtomic())
705         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
706                     InstrumentWithCalls);
707     }
708   }
709
710   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
711                            bool AsCall) {
712     IRBuilder<> IRB(OrigIns);
713     DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
714     Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
715     DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
716
717     Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
718     if (ConstantShadow) {
719       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
720         if (MS.TrackOrigins) {
721           IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
722                           MS.OriginTLS);
723         }
724         IRB.CreateCall(MS.WarningFn);
725         IRB.CreateCall(MS.EmptyAsm);
726         // FIXME: Insert UnreachableInst if !ClKeepGoing?
727         // This may invalidate some of the following checks and needs to be done
728         // at the very end.
729       }
730       return;
731     }
732
733     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
734
735     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
736     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
737     if (AsCall && SizeIndex < kNumberOfAccessSizes) {
738       Value *Fn = MS.MaybeWarningFn[SizeIndex];
739       Value *ConvertedShadow2 =
740           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
741       IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
742                                                 ? Origin
743                                                 : (Value *)IRB.getInt32(0));
744     } else {
745       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
746                                     getCleanShadow(ConvertedShadow), "_mscmp");
747       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
748           Cmp, OrigIns,
749           /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
750
751       IRB.SetInsertPoint(CheckTerm);
752       if (MS.TrackOrigins) {
753         IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
754                         MS.OriginTLS);
755       }
756       IRB.CreateCall(MS.WarningFn);
757       IRB.CreateCall(MS.EmptyAsm);
758       DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
759     }
760   }
761
762   void materializeChecks(bool InstrumentWithCalls) {
763     for (const auto &ShadowData : InstrumentationList) {
764       Instruction *OrigIns = ShadowData.OrigIns;
765       Value *Shadow = ShadowData.Shadow;
766       Value *Origin = ShadowData.Origin;
767       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
768     }
769     DEBUG(dbgs() << "DONE:\n" << F);
770   }
771
772   /// \brief Add MemorySanitizer instrumentation to a function.
773   bool runOnFunction() {
774     MS.initializeCallbacks(*F.getParent());
775
776     // In the presence of unreachable blocks, we may see Phi nodes with
777     // incoming nodes from such blocks. Since InstVisitor skips unreachable
778     // blocks, such nodes will not have any shadow value associated with them.
779     // It's easier to remove unreachable blocks than deal with missing shadow.
780     removeUnreachableBlocks(F);
781
782     // Iterate all BBs in depth-first order and create shadow instructions
783     // for all instructions (where applicable).
784     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
785     for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
786       visit(*BB);
787
788
789     // Finalize PHI nodes.
790     for (PHINode *PN : ShadowPHINodes) {
791       PHINode *PNS = cast<PHINode>(getShadow(PN));
792       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
793       size_t NumValues = PN->getNumIncomingValues();
794       for (size_t v = 0; v < NumValues; v++) {
795         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
796         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
797       }
798     }
799
800     VAHelper->finalizeInstrumentation();
801
802     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
803                                InstrumentationList.size() + StoreList.size() >
804                                    (unsigned)ClInstrumentationWithCallThreshold;
805
806     // Delayed instrumentation of StoreInst.
807     // This may add new checks to be inserted later.
808     materializeStores(InstrumentWithCalls);
809
810     // Insert shadow value checks.
811     materializeChecks(InstrumentWithCalls);
812
813     return true;
814   }
815
816   /// \brief Compute the shadow type that corresponds to a given Value.
817   Type *getShadowTy(Value *V) {
818     return getShadowTy(V->getType());
819   }
820
821   /// \brief Compute the shadow type that corresponds to a given Type.
822   Type *getShadowTy(Type *OrigTy) {
823     if (!OrigTy->isSized()) {
824       return nullptr;
825     }
826     // For integer type, shadow is the same as the original type.
827     // This may return weird-sized types like i1.
828     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
829       return IT;
830     const DataLayout &DL = F.getParent()->getDataLayout();
831     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
832       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
833       return VectorType::get(IntegerType::get(*MS.C, EltSize),
834                              VT->getNumElements());
835     }
836     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
837       return ArrayType::get(getShadowTy(AT->getElementType()),
838                             AT->getNumElements());
839     }
840     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
841       SmallVector<Type*, 4> Elements;
842       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
843         Elements.push_back(getShadowTy(ST->getElementType(i)));
844       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
845       DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
846       return Res;
847     }
848     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
849     return IntegerType::get(*MS.C, TypeSize);
850   }
851
852   /// \brief Flatten a vector type.
853   Type *getShadowTyNoVec(Type *ty) {
854     if (VectorType *vt = dyn_cast<VectorType>(ty))
855       return IntegerType::get(*MS.C, vt->getBitWidth());
856     return ty;
857   }
858
859   /// \brief Convert a shadow value to it's flattened variant.
860   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
861     Type *Ty = V->getType();
862     Type *NoVecTy = getShadowTyNoVec(Ty);
863     if (Ty == NoVecTy) return V;
864     return IRB.CreateBitCast(V, NoVecTy);
865   }
866
867   /// \brief Compute the integer shadow offset that corresponds to a given
868   /// application address.
869   ///
870   /// Offset = (Addr & ~AndMask) ^ XorMask
871   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
872     uint64_t AndMask = MS.MapParams->AndMask;
873     assert(AndMask != 0 && "AndMask shall be specified");
874     Value *OffsetLong =
875       IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
876                     ConstantInt::get(MS.IntptrTy, ~AndMask));
877
878     uint64_t XorMask = MS.MapParams->XorMask;
879     if (XorMask != 0)
880       OffsetLong = IRB.CreateXor(OffsetLong,
881                                  ConstantInt::get(MS.IntptrTy, XorMask));
882     return OffsetLong;
883   }
884
885   /// \brief Compute the shadow address that corresponds to a given application
886   /// address.
887   ///
888   /// Shadow = ShadowBase + Offset
889   Value *getShadowPtr(Value *Addr, Type *ShadowTy,
890                       IRBuilder<> &IRB) {
891     Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
892     uint64_t ShadowBase = MS.MapParams->ShadowBase;
893     if (ShadowBase != 0)
894       ShadowLong =
895         IRB.CreateAdd(ShadowLong,
896                       ConstantInt::get(MS.IntptrTy, ShadowBase));
897     return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
898   }
899
900   /// \brief Compute the origin address that corresponds to a given application
901   /// address.
902   ///
903   /// OriginAddr = (OriginBase + Offset) & ~3ULL
904   Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
905     Value *OriginLong = getShadowPtrOffset(Addr, IRB);
906     uint64_t OriginBase = MS.MapParams->OriginBase;
907     if (OriginBase != 0)
908       OriginLong =
909         IRB.CreateAdd(OriginLong,
910                       ConstantInt::get(MS.IntptrTy, OriginBase));
911     if (Alignment < kMinOriginAlignment) {
912       uint64_t Mask = kMinOriginAlignment - 1;
913       OriginLong = IRB.CreateAnd(OriginLong,
914                                  ConstantInt::get(MS.IntptrTy, ~Mask));
915     }
916     return IRB.CreateIntToPtr(OriginLong,
917                               PointerType::get(IRB.getInt32Ty(), 0));
918   }
919
920   /// \brief Compute the shadow address for a given function argument.
921   ///
922   /// Shadow = ParamTLS+ArgOffset.
923   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
924                                  int ArgOffset) {
925     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
926     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
927     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
928                               "_msarg");
929   }
930
931   /// \brief Compute the origin address for a given function argument.
932   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
933                                  int ArgOffset) {
934     if (!MS.TrackOrigins) return nullptr;
935     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
936     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
937     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
938                               "_msarg_o");
939   }
940
941   /// \brief Compute the shadow address for a retval.
942   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
943     Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
944     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
945                               "_msret");
946   }
947
948   /// \brief Compute the origin address for a retval.
949   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
950     // We keep a single origin for the entire retval. Might be too optimistic.
951     return MS.RetvalOriginTLS;
952   }
953
954   /// \brief Set SV to be the shadow value for V.
955   void setShadow(Value *V, Value *SV) {
956     assert(!ShadowMap.count(V) && "Values may only have one shadow");
957     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
958   }
959
960   /// \brief Set Origin to be the origin value for V.
961   void setOrigin(Value *V, Value *Origin) {
962     if (!MS.TrackOrigins) return;
963     assert(!OriginMap.count(V) && "Values may only have one origin");
964     DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
965     OriginMap[V] = Origin;
966   }
967
968   /// \brief Create a clean shadow value for a given value.
969   ///
970   /// Clean shadow (all zeroes) means all bits of the value are defined
971   /// (initialized).
972   Constant *getCleanShadow(Value *V) {
973     Type *ShadowTy = getShadowTy(V);
974     if (!ShadowTy)
975       return nullptr;
976     return Constant::getNullValue(ShadowTy);
977   }
978
979   /// \brief Create a dirty shadow of a given shadow type.
980   Constant *getPoisonedShadow(Type *ShadowTy) {
981     assert(ShadowTy);
982     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
983       return Constant::getAllOnesValue(ShadowTy);
984     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
985       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
986                                       getPoisonedShadow(AT->getElementType()));
987       return ConstantArray::get(AT, Vals);
988     }
989     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
990       SmallVector<Constant *, 4> Vals;
991       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
992         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
993       return ConstantStruct::get(ST, Vals);
994     }
995     llvm_unreachable("Unexpected shadow type");
996   }
997
998   /// \brief Create a dirty shadow for a given value.
999   Constant *getPoisonedShadow(Value *V) {
1000     Type *ShadowTy = getShadowTy(V);
1001     if (!ShadowTy)
1002       return nullptr;
1003     return getPoisonedShadow(ShadowTy);
1004   }
1005
1006   /// \brief Create a clean (zero) origin.
1007   Value *getCleanOrigin() {
1008     return Constant::getNullValue(MS.OriginTy);
1009   }
1010
1011   /// \brief Get the shadow value for a given Value.
1012   ///
1013   /// This function either returns the value set earlier with setShadow,
1014   /// or extracts if from ParamTLS (for function arguments).
1015   Value *getShadow(Value *V) {
1016     if (!PropagateShadow) return getCleanShadow(V);
1017     if (Instruction *I = dyn_cast<Instruction>(V)) {
1018       // For instructions the shadow is already stored in the map.
1019       Value *Shadow = ShadowMap[V];
1020       if (!Shadow) {
1021         DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1022         (void)I;
1023         assert(Shadow && "No shadow for a value");
1024       }
1025       return Shadow;
1026     }
1027     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1028       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1029       DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1030       (void)U;
1031       return AllOnes;
1032     }
1033     if (Argument *A = dyn_cast<Argument>(V)) {
1034       // For arguments we compute the shadow on demand and store it in the map.
1035       Value **ShadowPtr = &ShadowMap[V];
1036       if (*ShadowPtr)
1037         return *ShadowPtr;
1038       Function *F = A->getParent();
1039       IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
1040       unsigned ArgOffset = 0;
1041       const DataLayout &DL = F->getParent()->getDataLayout();
1042       for (auto &FArg : F->args()) {
1043         if (!FArg.getType()->isSized()) {
1044           DEBUG(dbgs() << "Arg is not sized\n");
1045           continue;
1046         }
1047         unsigned Size =
1048             FArg.hasByValAttr()
1049                 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1050                 : DL.getTypeAllocSize(FArg.getType());
1051         if (A == &FArg) {
1052           bool Overflow = ArgOffset + Size > kParamTLSSize;
1053           Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1054           if (FArg.hasByValAttr()) {
1055             // ByVal pointer itself has clean shadow. We copy the actual
1056             // argument shadow to the underlying memory.
1057             // Figure out maximal valid memcpy alignment.
1058             unsigned ArgAlign = FArg.getParamAlignment();
1059             if (ArgAlign == 0) {
1060               Type *EltType = A->getType()->getPointerElementType();
1061               ArgAlign = DL.getABITypeAlignment(EltType);
1062             }
1063             if (Overflow) {
1064               // ParamTLS overflow.
1065               EntryIRB.CreateMemSet(
1066                   getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
1067                   Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
1068             } else {
1069               unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1070               Value *Cpy = EntryIRB.CreateMemCpy(
1071                   getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
1072                   CopyAlign);
1073               DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1074               (void)Cpy;
1075             }
1076             *ShadowPtr = getCleanShadow(V);
1077           } else {
1078             if (Overflow) {
1079               // ParamTLS overflow.
1080               *ShadowPtr = getCleanShadow(V);
1081             } else {
1082               *ShadowPtr =
1083                   EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
1084             }
1085           }
1086           DEBUG(dbgs() << "  ARG:    "  << FArg << " ==> " <<
1087                 **ShadowPtr << "\n");
1088           if (MS.TrackOrigins && !Overflow) {
1089             Value *OriginPtr =
1090                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1091             setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
1092           } else {
1093             setOrigin(A, getCleanOrigin());
1094           }
1095         }
1096         ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
1097       }
1098       assert(*ShadowPtr && "Could not find shadow for an argument");
1099       return *ShadowPtr;
1100     }
1101     // For everything else the shadow is zero.
1102     return getCleanShadow(V);
1103   }
1104
1105   /// \brief Get the shadow for i-th argument of the instruction I.
1106   Value *getShadow(Instruction *I, int i) {
1107     return getShadow(I->getOperand(i));
1108   }
1109
1110   /// \brief Get the origin for a value.
1111   Value *getOrigin(Value *V) {
1112     if (!MS.TrackOrigins) return nullptr;
1113     if (!PropagateShadow) return getCleanOrigin();
1114     if (isa<Constant>(V)) return getCleanOrigin();
1115     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1116            "Unexpected value type in getOrigin()");
1117     Value *Origin = OriginMap[V];
1118     assert(Origin && "Missing origin");
1119     return Origin;
1120   }
1121
1122   /// \brief Get the origin for i-th argument of the instruction I.
1123   Value *getOrigin(Instruction *I, int i) {
1124     return getOrigin(I->getOperand(i));
1125   }
1126
1127   /// \brief Remember the place where a shadow check should be inserted.
1128   ///
1129   /// This location will be later instrumented with a check that will print a
1130   /// UMR warning in runtime if the shadow value is not 0.
1131   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1132     assert(Shadow);
1133     if (!InsertChecks) return;
1134 #ifndef NDEBUG
1135     Type *ShadowTy = Shadow->getType();
1136     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1137            "Can only insert checks for integer and vector shadow types");
1138 #endif
1139     InstrumentationList.push_back(
1140         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1141   }
1142
1143   /// \brief Remember the place where a shadow check should be inserted.
1144   ///
1145   /// This location will be later instrumented with a check that will print a
1146   /// UMR warning in runtime if the value is not fully defined.
1147   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1148     assert(Val);
1149     Value *Shadow, *Origin;
1150     if (ClCheckConstantShadow) {
1151       Shadow = getShadow(Val);
1152       if (!Shadow) return;
1153       Origin = getOrigin(Val);
1154     } else {
1155       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1156       if (!Shadow) return;
1157       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1158     }
1159     insertShadowCheck(Shadow, Origin, OrigIns);
1160   }
1161
1162   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1163     switch (a) {
1164       case NotAtomic:
1165         return NotAtomic;
1166       case Unordered:
1167       case Monotonic:
1168       case Release:
1169         return Release;
1170       case Acquire:
1171       case AcquireRelease:
1172         return AcquireRelease;
1173       case SequentiallyConsistent:
1174         return SequentiallyConsistent;
1175     }
1176     llvm_unreachable("Unknown ordering");
1177   }
1178
1179   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1180     switch (a) {
1181       case NotAtomic:
1182         return NotAtomic;
1183       case Unordered:
1184       case Monotonic:
1185       case Acquire:
1186         return Acquire;
1187       case Release:
1188       case AcquireRelease:
1189         return AcquireRelease;
1190       case SequentiallyConsistent:
1191         return SequentiallyConsistent;
1192     }
1193     llvm_unreachable("Unknown ordering");
1194   }
1195
1196   // ------------------- Visitors.
1197
1198   /// \brief Instrument LoadInst
1199   ///
1200   /// Loads the corresponding shadow and (optionally) origin.
1201   /// Optionally, checks that the load address is fully defined.
1202   void visitLoadInst(LoadInst &I) {
1203     assert(I.getType()->isSized() && "Load type must have size");
1204     IRBuilder<> IRB(I.getNextNode());
1205     Type *ShadowTy = getShadowTy(&I);
1206     Value *Addr = I.getPointerOperand();
1207     if (PropagateShadow && !I.getMetadata("nosanitize")) {
1208       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1209       setShadow(&I,
1210                 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1211     } else {
1212       setShadow(&I, getCleanShadow(&I));
1213     }
1214
1215     if (ClCheckAccessAddress)
1216       insertShadowCheck(I.getPointerOperand(), &I);
1217
1218     if (I.isAtomic())
1219       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1220
1221     if (MS.TrackOrigins) {
1222       if (PropagateShadow) {
1223         unsigned Alignment = I.getAlignment();
1224         unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1225         setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
1226                                             OriginAlignment));
1227       } else {
1228         setOrigin(&I, getCleanOrigin());
1229       }
1230     }
1231   }
1232
1233   /// \brief Instrument StoreInst
1234   ///
1235   /// Stores the corresponding shadow and (optionally) origin.
1236   /// Optionally, checks that the store address is fully defined.
1237   void visitStoreInst(StoreInst &I) {
1238     StoreList.push_back(&I);
1239   }
1240
1241   void handleCASOrRMW(Instruction &I) {
1242     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1243
1244     IRBuilder<> IRB(&I);
1245     Value *Addr = I.getOperand(0);
1246     Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1247
1248     if (ClCheckAccessAddress)
1249       insertShadowCheck(Addr, &I);
1250
1251     // Only test the conditional argument of cmpxchg instruction.
1252     // The other argument can potentially be uninitialized, but we can not
1253     // detect this situation reliably without possible false positives.
1254     if (isa<AtomicCmpXchgInst>(I))
1255       insertShadowCheck(I.getOperand(1), &I);
1256
1257     IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1258
1259     setShadow(&I, getCleanShadow(&I));
1260     setOrigin(&I, getCleanOrigin());
1261   }
1262
1263   void visitAtomicRMWInst(AtomicRMWInst &I) {
1264     handleCASOrRMW(I);
1265     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1266   }
1267
1268   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1269     handleCASOrRMW(I);
1270     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1271   }
1272
1273   // Vector manipulation.
1274   void visitExtractElementInst(ExtractElementInst &I) {
1275     insertShadowCheck(I.getOperand(1), &I);
1276     IRBuilder<> IRB(&I);
1277     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1278               "_msprop"));
1279     setOrigin(&I, getOrigin(&I, 0));
1280   }
1281
1282   void visitInsertElementInst(InsertElementInst &I) {
1283     insertShadowCheck(I.getOperand(2), &I);
1284     IRBuilder<> IRB(&I);
1285     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1286               I.getOperand(2), "_msprop"));
1287     setOriginForNaryOp(I);
1288   }
1289
1290   void visitShuffleVectorInst(ShuffleVectorInst &I) {
1291     insertShadowCheck(I.getOperand(2), &I);
1292     IRBuilder<> IRB(&I);
1293     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1294               I.getOperand(2), "_msprop"));
1295     setOriginForNaryOp(I);
1296   }
1297
1298   // Casts.
1299   void visitSExtInst(SExtInst &I) {
1300     IRBuilder<> IRB(&I);
1301     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1302     setOrigin(&I, getOrigin(&I, 0));
1303   }
1304
1305   void visitZExtInst(ZExtInst &I) {
1306     IRBuilder<> IRB(&I);
1307     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1308     setOrigin(&I, getOrigin(&I, 0));
1309   }
1310
1311   void visitTruncInst(TruncInst &I) {
1312     IRBuilder<> IRB(&I);
1313     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1314     setOrigin(&I, getOrigin(&I, 0));
1315   }
1316
1317   void visitBitCastInst(BitCastInst &I) {
1318     IRBuilder<> IRB(&I);
1319     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1320     setOrigin(&I, getOrigin(&I, 0));
1321   }
1322
1323   void visitPtrToIntInst(PtrToIntInst &I) {
1324     IRBuilder<> IRB(&I);
1325     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1326              "_msprop_ptrtoint"));
1327     setOrigin(&I, getOrigin(&I, 0));
1328   }
1329
1330   void visitIntToPtrInst(IntToPtrInst &I) {
1331     IRBuilder<> IRB(&I);
1332     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1333              "_msprop_inttoptr"));
1334     setOrigin(&I, getOrigin(&I, 0));
1335   }
1336
1337   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1338   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1339   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1340   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1341   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1342   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1343
1344   /// \brief Propagate shadow for bitwise AND.
1345   ///
1346   /// This code is exact, i.e. if, for example, a bit in the left argument
1347   /// is defined and 0, then neither the value not definedness of the
1348   /// corresponding bit in B don't affect the resulting shadow.
1349   void visitAnd(BinaryOperator &I) {
1350     IRBuilder<> IRB(&I);
1351     //  "And" of 0 and a poisoned value results in unpoisoned value.
1352     //  1&1 => 1;     0&1 => 0;     p&1 => p;
1353     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1354     //  1&p => p;     0&p => 0;     p&p => p;
1355     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1356     Value *S1 = getShadow(&I, 0);
1357     Value *S2 = getShadow(&I, 1);
1358     Value *V1 = I.getOperand(0);
1359     Value *V2 = I.getOperand(1);
1360     if (V1->getType() != S1->getType()) {
1361       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1362       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1363     }
1364     Value *S1S2 = IRB.CreateAnd(S1, S2);
1365     Value *V1S2 = IRB.CreateAnd(V1, S2);
1366     Value *S1V2 = IRB.CreateAnd(S1, V2);
1367     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1368     setOriginForNaryOp(I);
1369   }
1370
1371   void visitOr(BinaryOperator &I) {
1372     IRBuilder<> IRB(&I);
1373     //  "Or" of 1 and a poisoned value results in unpoisoned value.
1374     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1375     //  1|0 => 1;     0|0 => 0;     p|0 => p;
1376     //  1|p => 1;     0|p => p;     p|p => p;
1377     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1378     Value *S1 = getShadow(&I, 0);
1379     Value *S2 = getShadow(&I, 1);
1380     Value *V1 = IRB.CreateNot(I.getOperand(0));
1381     Value *V2 = IRB.CreateNot(I.getOperand(1));
1382     if (V1->getType() != S1->getType()) {
1383       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1384       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1385     }
1386     Value *S1S2 = IRB.CreateAnd(S1, S2);
1387     Value *V1S2 = IRB.CreateAnd(V1, S2);
1388     Value *S1V2 = IRB.CreateAnd(S1, V2);
1389     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1390     setOriginForNaryOp(I);
1391   }
1392
1393   /// \brief Default propagation of shadow and/or origin.
1394   ///
1395   /// This class implements the general case of shadow propagation, used in all
1396   /// cases where we don't know and/or don't care about what the operation
1397   /// actually does. It converts all input shadow values to a common type
1398   /// (extending or truncating as necessary), and bitwise OR's them.
1399   ///
1400   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1401   /// fully initialized), and less prone to false positives.
1402   ///
1403   /// This class also implements the general case of origin propagation. For a
1404   /// Nary operation, result origin is set to the origin of an argument that is
1405   /// not entirely initialized. If there is more than one such arguments, the
1406   /// rightmost of them is picked. It does not matter which one is picked if all
1407   /// arguments are initialized.
1408   template <bool CombineShadow>
1409   class Combiner {
1410     Value *Shadow;
1411     Value *Origin;
1412     IRBuilder<> &IRB;
1413     MemorySanitizerVisitor *MSV;
1414
1415   public:
1416     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1417       Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
1418
1419     /// \brief Add a pair of shadow and origin values to the mix.
1420     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1421       if (CombineShadow) {
1422         assert(OpShadow);
1423         if (!Shadow)
1424           Shadow = OpShadow;
1425         else {
1426           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1427           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1428         }
1429       }
1430
1431       if (MSV->MS.TrackOrigins) {
1432         assert(OpOrigin);
1433         if (!Origin) {
1434           Origin = OpOrigin;
1435         } else {
1436           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1437           // No point in adding something that might result in 0 origin value.
1438           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1439             Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1440             Value *Cond =
1441                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1442             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1443           }
1444         }
1445       }
1446       return *this;
1447     }
1448
1449     /// \brief Add an application value to the mix.
1450     Combiner &Add(Value *V) {
1451       Value *OpShadow = MSV->getShadow(V);
1452       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
1453       return Add(OpShadow, OpOrigin);
1454     }
1455
1456     /// \brief Set the current combined values as the given instruction's shadow
1457     /// and origin.
1458     void Done(Instruction *I) {
1459       if (CombineShadow) {
1460         assert(Shadow);
1461         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1462         MSV->setShadow(I, Shadow);
1463       }
1464       if (MSV->MS.TrackOrigins) {
1465         assert(Origin);
1466         MSV->setOrigin(I, Origin);
1467       }
1468     }
1469   };
1470
1471   typedef Combiner<true> ShadowAndOriginCombiner;
1472   typedef Combiner<false> OriginCombiner;
1473
1474   /// \brief Propagate origin for arbitrary operation.
1475   void setOriginForNaryOp(Instruction &I) {
1476     if (!MS.TrackOrigins) return;
1477     IRBuilder<> IRB(&I);
1478     OriginCombiner OC(this, IRB);
1479     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1480       OC.Add(OI->get());
1481     OC.Done(&I);
1482   }
1483
1484   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1485     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1486            "Vector of pointers is not a valid shadow type");
1487     return Ty->isVectorTy() ?
1488       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1489       Ty->getPrimitiveSizeInBits();
1490   }
1491
1492   /// \brief Cast between two shadow types, extending or truncating as
1493   /// necessary.
1494   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1495                           bool Signed = false) {
1496     Type *srcTy = V->getType();
1497     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1498       return IRB.CreateIntCast(V, dstTy, Signed);
1499     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1500         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1501       return IRB.CreateIntCast(V, dstTy, Signed);
1502     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1503     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1504     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1505     Value *V2 =
1506       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
1507     return IRB.CreateBitCast(V2, dstTy);
1508     // TODO: handle struct types.
1509   }
1510
1511   /// \brief Cast an application value to the type of its own shadow.
1512   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1513     Type *ShadowTy = getShadowTy(V);
1514     if (V->getType() == ShadowTy)
1515       return V;
1516     if (V->getType()->isPtrOrPtrVectorTy())
1517       return IRB.CreatePtrToInt(V, ShadowTy);
1518     else
1519       return IRB.CreateBitCast(V, ShadowTy);
1520   }
1521
1522   /// \brief Propagate shadow for arbitrary operation.
1523   void handleShadowOr(Instruction &I) {
1524     IRBuilder<> IRB(&I);
1525     ShadowAndOriginCombiner SC(this, IRB);
1526     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1527       SC.Add(OI->get());
1528     SC.Done(&I);
1529   }
1530
1531   // \brief Handle multiplication by constant.
1532   //
1533   // Handle a special case of multiplication by constant that may have one or
1534   // more zeros in the lower bits. This makes corresponding number of lower bits
1535   // of the result zero as well. We model it by shifting the other operand
1536   // shadow left by the required number of bits. Effectively, we transform
1537   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1538   // We use multiplication by 2**N instead of shift to cover the case of
1539   // multiplication by 0, which may occur in some elements of a vector operand.
1540   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1541                            Value *OtherArg) {
1542     Constant *ShadowMul;
1543     Type *Ty = ConstArg->getType();
1544     if (Ty->isVectorTy()) {
1545       unsigned NumElements = Ty->getVectorNumElements();
1546       Type *EltTy = Ty->getSequentialElementType();
1547       SmallVector<Constant *, 16> Elements;
1548       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1549         ConstantInt *Elt =
1550             dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
1551         APInt V = Elt->getValue();
1552         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1553         Elements.push_back(ConstantInt::get(EltTy, V2));
1554       }
1555       ShadowMul = ConstantVector::get(Elements);
1556     } else {
1557       ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
1558       APInt V = Elt->getValue();
1559       APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1560       ShadowMul = ConstantInt::get(Elt->getType(), V2);
1561     }
1562
1563     IRBuilder<> IRB(&I);
1564     setShadow(&I,
1565               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1566     setOrigin(&I, getOrigin(OtherArg));
1567   }
1568
1569   void visitMul(BinaryOperator &I) {
1570     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1571     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1572     if (constOp0 && !constOp1)
1573       handleMulByConstant(I, constOp0, I.getOperand(1));
1574     else if (constOp1 && !constOp0)
1575       handleMulByConstant(I, constOp1, I.getOperand(0));
1576     else
1577       handleShadowOr(I);
1578   }
1579
1580   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1581   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1582   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1583   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1584   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1585   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1586
1587   void handleDiv(Instruction &I) {
1588     IRBuilder<> IRB(&I);
1589     // Strict on the second argument.
1590     insertShadowCheck(I.getOperand(1), &I);
1591     setShadow(&I, getShadow(&I, 0));
1592     setOrigin(&I, getOrigin(&I, 0));
1593   }
1594
1595   void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1596   void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1597   void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1598   void visitURem(BinaryOperator &I) { handleDiv(I); }
1599   void visitSRem(BinaryOperator &I) { handleDiv(I); }
1600   void visitFRem(BinaryOperator &I) { handleDiv(I); }
1601
1602   /// \brief Instrument == and != comparisons.
1603   ///
1604   /// Sometimes the comparison result is known even if some of the bits of the
1605   /// arguments are not.
1606   void handleEqualityComparison(ICmpInst &I) {
1607     IRBuilder<> IRB(&I);
1608     Value *A = I.getOperand(0);
1609     Value *B = I.getOperand(1);
1610     Value *Sa = getShadow(A);
1611     Value *Sb = getShadow(B);
1612
1613     // Get rid of pointers and vectors of pointers.
1614     // For ints (and vectors of ints), types of A and Sa match,
1615     // and this is a no-op.
1616     A = IRB.CreatePointerCast(A, Sa->getType());
1617     B = IRB.CreatePointerCast(B, Sb->getType());
1618
1619     // A == B  <==>  (C = A^B) == 0
1620     // A != B  <==>  (C = A^B) != 0
1621     // Sc = Sa | Sb
1622     Value *C = IRB.CreateXor(A, B);
1623     Value *Sc = IRB.CreateOr(Sa, Sb);
1624     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1625     // Result is defined if one of the following is true
1626     // * there is a defined 1 bit in C
1627     // * C is fully defined
1628     // Si = !(C & ~Sc) && Sc
1629     Value *Zero = Constant::getNullValue(Sc->getType());
1630     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1631     Value *Si =
1632       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1633                     IRB.CreateICmpEQ(
1634                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1635     Si->setName("_msprop_icmp");
1636     setShadow(&I, Si);
1637     setOriginForNaryOp(I);
1638   }
1639
1640   /// \brief Build the lowest possible value of V, taking into account V's
1641   ///        uninitialized bits.
1642   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1643                                 bool isSigned) {
1644     if (isSigned) {
1645       // Split shadow into sign bit and other bits.
1646       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1647       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1648       // Maximise the undefined shadow bit, minimize other undefined bits.
1649       return
1650         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1651     } else {
1652       // Minimize undefined bits.
1653       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1654     }
1655   }
1656
1657   /// \brief Build the highest possible value of V, taking into account V's
1658   ///        uninitialized bits.
1659   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1660                                 bool isSigned) {
1661     if (isSigned) {
1662       // Split shadow into sign bit and other bits.
1663       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1664       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1665       // Minimise the undefined shadow bit, maximise other undefined bits.
1666       return
1667         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1668     } else {
1669       // Maximize undefined bits.
1670       return IRB.CreateOr(A, Sa);
1671     }
1672   }
1673
1674   /// \brief Instrument relational comparisons.
1675   ///
1676   /// This function does exact shadow propagation for all relational
1677   /// comparisons of integers, pointers and vectors of those.
1678   /// FIXME: output seems suboptimal when one of the operands is a constant
1679   void handleRelationalComparisonExact(ICmpInst &I) {
1680     IRBuilder<> IRB(&I);
1681     Value *A = I.getOperand(0);
1682     Value *B = I.getOperand(1);
1683     Value *Sa = getShadow(A);
1684     Value *Sb = getShadow(B);
1685
1686     // Get rid of pointers and vectors of pointers.
1687     // For ints (and vectors of ints), types of A and Sa match,
1688     // and this is a no-op.
1689     A = IRB.CreatePointerCast(A, Sa->getType());
1690     B = IRB.CreatePointerCast(B, Sb->getType());
1691
1692     // Let [a0, a1] be the interval of possible values of A, taking into account
1693     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1694     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1695     bool IsSigned = I.isSigned();
1696     Value *S1 = IRB.CreateICmp(I.getPredicate(),
1697                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
1698                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
1699     Value *S2 = IRB.CreateICmp(I.getPredicate(),
1700                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
1701                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
1702     Value *Si = IRB.CreateXor(S1, S2);
1703     setShadow(&I, Si);
1704     setOriginForNaryOp(I);
1705   }
1706
1707   /// \brief Instrument signed relational comparisons.
1708   ///
1709   /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1710   /// propagating the highest bit of the shadow. Everything else is delegated
1711   /// to handleShadowOr().
1712   void handleSignedRelationalComparison(ICmpInst &I) {
1713     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1714     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1715     Value* op = nullptr;
1716     CmpInst::Predicate pre = I.getPredicate();
1717     if (constOp0 && constOp0->isNullValue() &&
1718         (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1719       op = I.getOperand(1);
1720     } else if (constOp1 && constOp1->isNullValue() &&
1721                (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1722       op = I.getOperand(0);
1723     }
1724     if (op) {
1725       IRBuilder<> IRB(&I);
1726       Value* Shadow =
1727         IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1728       setShadow(&I, Shadow);
1729       setOrigin(&I, getOrigin(op));
1730     } else {
1731       handleShadowOr(I);
1732     }
1733   }
1734
1735   void visitICmpInst(ICmpInst &I) {
1736     if (!ClHandleICmp) {
1737       handleShadowOr(I);
1738       return;
1739     }
1740     if (I.isEquality()) {
1741       handleEqualityComparison(I);
1742       return;
1743     }
1744
1745     assert(I.isRelational());
1746     if (ClHandleICmpExact) {
1747       handleRelationalComparisonExact(I);
1748       return;
1749     }
1750     if (I.isSigned()) {
1751       handleSignedRelationalComparison(I);
1752       return;
1753     }
1754
1755     assert(I.isUnsigned());
1756     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1757       handleRelationalComparisonExact(I);
1758       return;
1759     }
1760
1761     handleShadowOr(I);
1762   }
1763
1764   void visitFCmpInst(FCmpInst &I) {
1765     handleShadowOr(I);
1766   }
1767
1768   void handleShift(BinaryOperator &I) {
1769     IRBuilder<> IRB(&I);
1770     // If any of the S2 bits are poisoned, the whole thing is poisoned.
1771     // Otherwise perform the same shift on S1.
1772     Value *S1 = getShadow(&I, 0);
1773     Value *S2 = getShadow(&I, 1);
1774     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1775                                    S2->getType());
1776     Value *V2 = I.getOperand(1);
1777     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1778     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1779     setOriginForNaryOp(I);
1780   }
1781
1782   void visitShl(BinaryOperator &I) { handleShift(I); }
1783   void visitAShr(BinaryOperator &I) { handleShift(I); }
1784   void visitLShr(BinaryOperator &I) { handleShift(I); }
1785
1786   /// \brief Instrument llvm.memmove
1787   ///
1788   /// At this point we don't know if llvm.memmove will be inlined or not.
1789   /// If we don't instrument it and it gets inlined,
1790   /// our interceptor will not kick in and we will lose the memmove.
1791   /// If we instrument the call here, but it does not get inlined,
1792   /// we will memove the shadow twice: which is bad in case
1793   /// of overlapping regions. So, we simply lower the intrinsic to a call.
1794   ///
1795   /// Similar situation exists for memcpy and memset.
1796   void visitMemMoveInst(MemMoveInst &I) {
1797     IRBuilder<> IRB(&I);
1798     IRB.CreateCall3(
1799       MS.MemmoveFn,
1800       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1801       IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1802       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1803     I.eraseFromParent();
1804   }
1805
1806   // Similar to memmove: avoid copying shadow twice.
1807   // This is somewhat unfortunate as it may slowdown small constant memcpys.
1808   // FIXME: consider doing manual inline for small constant sizes and proper
1809   // alignment.
1810   void visitMemCpyInst(MemCpyInst &I) {
1811     IRBuilder<> IRB(&I);
1812     IRB.CreateCall3(
1813       MS.MemcpyFn,
1814       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1815       IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1816       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1817     I.eraseFromParent();
1818   }
1819
1820   // Same as memcpy.
1821   void visitMemSetInst(MemSetInst &I) {
1822     IRBuilder<> IRB(&I);
1823     IRB.CreateCall3(
1824       MS.MemsetFn,
1825       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1826       IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1827       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1828     I.eraseFromParent();
1829   }
1830
1831   void visitVAStartInst(VAStartInst &I) {
1832     VAHelper->visitVAStartInst(I);
1833   }
1834
1835   void visitVACopyInst(VACopyInst &I) {
1836     VAHelper->visitVACopyInst(I);
1837   }
1838
1839   enum IntrinsicKind {
1840     IK_DoesNotAccessMemory,
1841     IK_OnlyReadsMemory,
1842     IK_WritesMemory
1843   };
1844
1845   static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1846     const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1847     const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1848     const int OnlyReadsMemory = IK_OnlyReadsMemory;
1849     const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1850     const int UnknownModRefBehavior = IK_WritesMemory;
1851 #define GET_INTRINSIC_MODREF_BEHAVIOR
1852 #define ModRefBehavior IntrinsicKind
1853 #include "llvm/IR/Intrinsics.gen"
1854 #undef ModRefBehavior
1855 #undef GET_INTRINSIC_MODREF_BEHAVIOR
1856   }
1857
1858   /// \brief Handle vector store-like intrinsics.
1859   ///
1860   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1861   /// has 1 pointer argument and 1 vector argument, returns void.
1862   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1863     IRBuilder<> IRB(&I);
1864     Value* Addr = I.getArgOperand(0);
1865     Value *Shadow = getShadow(&I, 1);
1866     Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1867
1868     // We don't know the pointer alignment (could be unaligned SSE store!).
1869     // Have to assume to worst case.
1870     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1871
1872     if (ClCheckAccessAddress)
1873       insertShadowCheck(Addr, &I);
1874
1875     // FIXME: use ClStoreCleanOrigin
1876     // FIXME: factor out common code from materializeStores
1877     if (MS.TrackOrigins)
1878       IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
1879     return true;
1880   }
1881
1882   /// \brief Handle vector load-like intrinsics.
1883   ///
1884   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1885   /// has 1 pointer argument, returns a vector.
1886   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1887     IRBuilder<> IRB(&I);
1888     Value *Addr = I.getArgOperand(0);
1889
1890     Type *ShadowTy = getShadowTy(&I);
1891     if (PropagateShadow) {
1892       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1893       // We don't know the pointer alignment (could be unaligned SSE load!).
1894       // Have to assume to worst case.
1895       setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1896     } else {
1897       setShadow(&I, getCleanShadow(&I));
1898     }
1899
1900     if (ClCheckAccessAddress)
1901       insertShadowCheck(Addr, &I);
1902
1903     if (MS.TrackOrigins) {
1904       if (PropagateShadow)
1905         setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
1906       else
1907         setOrigin(&I, getCleanOrigin());
1908     }
1909     return true;
1910   }
1911
1912   /// \brief Handle (SIMD arithmetic)-like intrinsics.
1913   ///
1914   /// Instrument intrinsics with any number of arguments of the same type,
1915   /// equal to the return type. The type should be simple (no aggregates or
1916   /// pointers; vectors are fine).
1917   /// Caller guarantees that this intrinsic does not access memory.
1918   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1919     Type *RetTy = I.getType();
1920     if (!(RetTy->isIntOrIntVectorTy() ||
1921           RetTy->isFPOrFPVectorTy() ||
1922           RetTy->isX86_MMXTy()))
1923       return false;
1924
1925     unsigned NumArgOperands = I.getNumArgOperands();
1926
1927     for (unsigned i = 0; i < NumArgOperands; ++i) {
1928       Type *Ty = I.getArgOperand(i)->getType();
1929       if (Ty != RetTy)
1930         return false;
1931     }
1932
1933     IRBuilder<> IRB(&I);
1934     ShadowAndOriginCombiner SC(this, IRB);
1935     for (unsigned i = 0; i < NumArgOperands; ++i)
1936       SC.Add(I.getArgOperand(i));
1937     SC.Done(&I);
1938
1939     return true;
1940   }
1941
1942   /// \brief Heuristically instrument unknown intrinsics.
1943   ///
1944   /// The main purpose of this code is to do something reasonable with all
1945   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1946   /// We recognize several classes of intrinsics by their argument types and
1947   /// ModRefBehaviour and apply special intrumentation when we are reasonably
1948   /// sure that we know what the intrinsic does.
1949   ///
1950   /// We special-case intrinsics where this approach fails. See llvm.bswap
1951   /// handling as an example of that.
1952   bool handleUnknownIntrinsic(IntrinsicInst &I) {
1953     unsigned NumArgOperands = I.getNumArgOperands();
1954     if (NumArgOperands == 0)
1955       return false;
1956
1957     Intrinsic::ID iid = I.getIntrinsicID();
1958     IntrinsicKind IK = getIntrinsicKind(iid);
1959     bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1960     bool WritesMemory = IK == IK_WritesMemory;
1961     assert(!(OnlyReadsMemory && WritesMemory));
1962
1963     if (NumArgOperands == 2 &&
1964         I.getArgOperand(0)->getType()->isPointerTy() &&
1965         I.getArgOperand(1)->getType()->isVectorTy() &&
1966         I.getType()->isVoidTy() &&
1967         WritesMemory) {
1968       // This looks like a vector store.
1969       return handleVectorStoreIntrinsic(I);
1970     }
1971
1972     if (NumArgOperands == 1 &&
1973         I.getArgOperand(0)->getType()->isPointerTy() &&
1974         I.getType()->isVectorTy() &&
1975         OnlyReadsMemory) {
1976       // This looks like a vector load.
1977       return handleVectorLoadIntrinsic(I);
1978     }
1979
1980     if (!OnlyReadsMemory && !WritesMemory)
1981       if (maybeHandleSimpleNomemIntrinsic(I))
1982         return true;
1983
1984     // FIXME: detect and handle SSE maskstore/maskload
1985     return false;
1986   }
1987
1988   void handleBswap(IntrinsicInst &I) {
1989     IRBuilder<> IRB(&I);
1990     Value *Op = I.getArgOperand(0);
1991     Type *OpType = Op->getType();
1992     Function *BswapFunc = Intrinsic::getDeclaration(
1993       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
1994     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1995     setOrigin(&I, getOrigin(Op));
1996   }
1997
1998   // \brief Instrument vector convert instrinsic.
1999   //
2000   // This function instruments intrinsics like cvtsi2ss:
2001   // %Out = int_xxx_cvtyyy(%ConvertOp)
2002   // or
2003   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2004   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2005   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2006   // elements from \p CopyOp.
2007   // In most cases conversion involves floating-point value which may trigger a
2008   // hardware exception when not fully initialized. For this reason we require
2009   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2010   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2011   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2012   // return a fully initialized value.
2013   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2014     IRBuilder<> IRB(&I);
2015     Value *CopyOp, *ConvertOp;
2016
2017     switch (I.getNumArgOperands()) {
2018     case 2:
2019       CopyOp = I.getArgOperand(0);
2020       ConvertOp = I.getArgOperand(1);
2021       break;
2022     case 1:
2023       ConvertOp = I.getArgOperand(0);
2024       CopyOp = nullptr;
2025       break;
2026     default:
2027       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2028     }
2029
2030     // The first *NumUsedElements* elements of ConvertOp are converted to the
2031     // same number of output elements. The rest of the output is copied from
2032     // CopyOp, or (if not available) filled with zeroes.
2033     // Combine shadow for elements of ConvertOp that are used in this operation,
2034     // and insert a check.
2035     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2036     // int->any conversion.
2037     Value *ConvertShadow = getShadow(ConvertOp);
2038     Value *AggShadow = nullptr;
2039     if (ConvertOp->getType()->isVectorTy()) {
2040       AggShadow = IRB.CreateExtractElement(
2041           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2042       for (int i = 1; i < NumUsedElements; ++i) {
2043         Value *MoreShadow = IRB.CreateExtractElement(
2044             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2045         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2046       }
2047     } else {
2048       AggShadow = ConvertShadow;
2049     }
2050     assert(AggShadow->getType()->isIntegerTy());
2051     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2052
2053     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2054     // ConvertOp.
2055     if (CopyOp) {
2056       assert(CopyOp->getType() == I.getType());
2057       assert(CopyOp->getType()->isVectorTy());
2058       Value *ResultShadow = getShadow(CopyOp);
2059       Type *EltTy = ResultShadow->getType()->getVectorElementType();
2060       for (int i = 0; i < NumUsedElements; ++i) {
2061         ResultShadow = IRB.CreateInsertElement(
2062             ResultShadow, ConstantInt::getNullValue(EltTy),
2063             ConstantInt::get(IRB.getInt32Ty(), i));
2064       }
2065       setShadow(&I, ResultShadow);
2066       setOrigin(&I, getOrigin(CopyOp));
2067     } else {
2068       setShadow(&I, getCleanShadow(&I));
2069       setOrigin(&I, getCleanOrigin());
2070     }
2071   }
2072
2073   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2074   // zeroes if it is zero, and all ones otherwise.
2075   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2076     if (S->getType()->isVectorTy())
2077       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2078     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2079     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2080     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2081   }
2082
2083   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2084     Type *T = S->getType();
2085     assert(T->isVectorTy());
2086     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2087     return IRB.CreateSExt(S2, T);
2088   }
2089
2090   // \brief Instrument vector shift instrinsic.
2091   //
2092   // This function instruments intrinsics like int_x86_avx2_psll_w.
2093   // Intrinsic shifts %In by %ShiftSize bits.
2094   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2095   // size, and the rest is ignored. Behavior is defined even if shift size is
2096   // greater than register (or field) width.
2097   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2098     assert(I.getNumArgOperands() == 2);
2099     IRBuilder<> IRB(&I);
2100     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2101     // Otherwise perform the same shift on S1.
2102     Value *S1 = getShadow(&I, 0);
2103     Value *S2 = getShadow(&I, 1);
2104     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2105                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2106     Value *V1 = I.getOperand(0);
2107     Value *V2 = I.getOperand(1);
2108     Value *Shift = IRB.CreateCall2(I.getCalledValue(),
2109                                    IRB.CreateBitCast(S1, V1->getType()), V2);
2110     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2111     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2112     setOriginForNaryOp(I);
2113   }
2114
2115   // \brief Get an X86_MMX-sized vector type.
2116   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2117     const unsigned X86_MMXSizeInBits = 64;
2118     return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2119                            X86_MMXSizeInBits / EltSizeInBits);
2120   }
2121
2122   // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
2123   // intrinsic.
2124   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2125     switch (id) {
2126       case llvm::Intrinsic::x86_sse2_packsswb_128:
2127       case llvm::Intrinsic::x86_sse2_packuswb_128:
2128         return llvm::Intrinsic::x86_sse2_packsswb_128;
2129
2130       case llvm::Intrinsic::x86_sse2_packssdw_128:
2131       case llvm::Intrinsic::x86_sse41_packusdw:
2132         return llvm::Intrinsic::x86_sse2_packssdw_128;
2133
2134       case llvm::Intrinsic::x86_avx2_packsswb:
2135       case llvm::Intrinsic::x86_avx2_packuswb:
2136         return llvm::Intrinsic::x86_avx2_packsswb;
2137
2138       case llvm::Intrinsic::x86_avx2_packssdw:
2139       case llvm::Intrinsic::x86_avx2_packusdw:
2140         return llvm::Intrinsic::x86_avx2_packssdw;
2141
2142       case llvm::Intrinsic::x86_mmx_packsswb:
2143       case llvm::Intrinsic::x86_mmx_packuswb:
2144         return llvm::Intrinsic::x86_mmx_packsswb;
2145
2146       case llvm::Intrinsic::x86_mmx_packssdw:
2147         return llvm::Intrinsic::x86_mmx_packssdw;
2148       default:
2149         llvm_unreachable("unexpected intrinsic id");
2150     }
2151   }
2152
2153   // \brief Instrument vector pack instrinsic.
2154   //
2155   // This function instruments intrinsics like x86_mmx_packsswb, that
2156   // packs elements of 2 input vectors into half as many bits with saturation.
2157   // Shadow is propagated with the signed variant of the same intrinsic applied
2158   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2159   // EltSizeInBits is used only for x86mmx arguments.
2160   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2161     assert(I.getNumArgOperands() == 2);
2162     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2163     IRBuilder<> IRB(&I);
2164     Value *S1 = getShadow(&I, 0);
2165     Value *S2 = getShadow(&I, 1);
2166     assert(isX86_MMX || S1->getType()->isVectorTy());
2167
2168     // SExt and ICmpNE below must apply to individual elements of input vectors.
2169     // In case of x86mmx arguments, cast them to appropriate vector types and
2170     // back.
2171     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2172     if (isX86_MMX) {
2173       S1 = IRB.CreateBitCast(S1, T);
2174       S2 = IRB.CreateBitCast(S2, T);
2175     }
2176     Value *S1_ext = IRB.CreateSExt(
2177         IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2178     Value *S2_ext = IRB.CreateSExt(
2179         IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
2180     if (isX86_MMX) {
2181       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2182       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2183       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2184     }
2185
2186     Function *ShadowFn = Intrinsic::getDeclaration(
2187         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2188
2189     Value *S = IRB.CreateCall2(ShadowFn, S1_ext, S2_ext, "_msprop_vector_pack");
2190     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2191     setShadow(&I, S);
2192     setOriginForNaryOp(I);
2193   }
2194
2195   // \brief Instrument sum-of-absolute-differencies intrinsic.
2196   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2197     const unsigned SignificantBitsPerResultElement = 16;
2198     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2199     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2200     unsigned ZeroBitsPerResultElement =
2201         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2202
2203     IRBuilder<> IRB(&I);
2204     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2205     S = IRB.CreateBitCast(S, ResTy);
2206     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2207                        ResTy);
2208     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2209     S = IRB.CreateBitCast(S, getShadowTy(&I));
2210     setShadow(&I, S);
2211     setOriginForNaryOp(I);
2212   }
2213
2214   // \brief Instrument multiply-add intrinsic.
2215   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2216                                   unsigned EltSizeInBits = 0) {
2217     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2218     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2219     IRBuilder<> IRB(&I);
2220     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2221     S = IRB.CreateBitCast(S, ResTy);
2222     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2223                        ResTy);
2224     S = IRB.CreateBitCast(S, getShadowTy(&I));
2225     setShadow(&I, S);
2226     setOriginForNaryOp(I);
2227   }
2228
2229   void visitIntrinsicInst(IntrinsicInst &I) {
2230     switch (I.getIntrinsicID()) {
2231     case llvm::Intrinsic::bswap:
2232       handleBswap(I);
2233       break;
2234     case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
2235     case llvm::Intrinsic::x86_avx512_cvtsd2usi:
2236     case llvm::Intrinsic::x86_avx512_cvtss2usi64:
2237     case llvm::Intrinsic::x86_avx512_cvtss2usi:
2238     case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2239     case llvm::Intrinsic::x86_avx512_cvttss2usi:
2240     case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2241     case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2242     case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2243     case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2244     case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2245     case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2246     case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2247     case llvm::Intrinsic::x86_sse2_cvtsd2si:
2248     case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2249     case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2250     case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2251     case llvm::Intrinsic::x86_sse2_cvtss2sd:
2252     case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2253     case llvm::Intrinsic::x86_sse2_cvttsd2si:
2254     case llvm::Intrinsic::x86_sse_cvtsi2ss:
2255     case llvm::Intrinsic::x86_sse_cvtsi642ss:
2256     case llvm::Intrinsic::x86_sse_cvtss2si64:
2257     case llvm::Intrinsic::x86_sse_cvtss2si:
2258     case llvm::Intrinsic::x86_sse_cvttss2si64:
2259     case llvm::Intrinsic::x86_sse_cvttss2si:
2260       handleVectorConvertIntrinsic(I, 1);
2261       break;
2262     case llvm::Intrinsic::x86_sse2_cvtdq2pd:
2263     case llvm::Intrinsic::x86_sse2_cvtps2pd:
2264     case llvm::Intrinsic::x86_sse_cvtps2pi:
2265     case llvm::Intrinsic::x86_sse_cvttps2pi:
2266       handleVectorConvertIntrinsic(I, 2);
2267       break;
2268     case llvm::Intrinsic::x86_avx2_psll_w:
2269     case llvm::Intrinsic::x86_avx2_psll_d:
2270     case llvm::Intrinsic::x86_avx2_psll_q:
2271     case llvm::Intrinsic::x86_avx2_pslli_w:
2272     case llvm::Intrinsic::x86_avx2_pslli_d:
2273     case llvm::Intrinsic::x86_avx2_pslli_q:
2274     case llvm::Intrinsic::x86_avx2_psrl_w:
2275     case llvm::Intrinsic::x86_avx2_psrl_d:
2276     case llvm::Intrinsic::x86_avx2_psrl_q:
2277     case llvm::Intrinsic::x86_avx2_psra_w:
2278     case llvm::Intrinsic::x86_avx2_psra_d:
2279     case llvm::Intrinsic::x86_avx2_psrli_w:
2280     case llvm::Intrinsic::x86_avx2_psrli_d:
2281     case llvm::Intrinsic::x86_avx2_psrli_q:
2282     case llvm::Intrinsic::x86_avx2_psrai_w:
2283     case llvm::Intrinsic::x86_avx2_psrai_d:
2284     case llvm::Intrinsic::x86_sse2_psll_w:
2285     case llvm::Intrinsic::x86_sse2_psll_d:
2286     case llvm::Intrinsic::x86_sse2_psll_q:
2287     case llvm::Intrinsic::x86_sse2_pslli_w:
2288     case llvm::Intrinsic::x86_sse2_pslli_d:
2289     case llvm::Intrinsic::x86_sse2_pslli_q:
2290     case llvm::Intrinsic::x86_sse2_psrl_w:
2291     case llvm::Intrinsic::x86_sse2_psrl_d:
2292     case llvm::Intrinsic::x86_sse2_psrl_q:
2293     case llvm::Intrinsic::x86_sse2_psra_w:
2294     case llvm::Intrinsic::x86_sse2_psra_d:
2295     case llvm::Intrinsic::x86_sse2_psrli_w:
2296     case llvm::Intrinsic::x86_sse2_psrli_d:
2297     case llvm::Intrinsic::x86_sse2_psrli_q:
2298     case llvm::Intrinsic::x86_sse2_psrai_w:
2299     case llvm::Intrinsic::x86_sse2_psrai_d:
2300     case llvm::Intrinsic::x86_mmx_psll_w:
2301     case llvm::Intrinsic::x86_mmx_psll_d:
2302     case llvm::Intrinsic::x86_mmx_psll_q:
2303     case llvm::Intrinsic::x86_mmx_pslli_w:
2304     case llvm::Intrinsic::x86_mmx_pslli_d:
2305     case llvm::Intrinsic::x86_mmx_pslli_q:
2306     case llvm::Intrinsic::x86_mmx_psrl_w:
2307     case llvm::Intrinsic::x86_mmx_psrl_d:
2308     case llvm::Intrinsic::x86_mmx_psrl_q:
2309     case llvm::Intrinsic::x86_mmx_psra_w:
2310     case llvm::Intrinsic::x86_mmx_psra_d:
2311     case llvm::Intrinsic::x86_mmx_psrli_w:
2312     case llvm::Intrinsic::x86_mmx_psrli_d:
2313     case llvm::Intrinsic::x86_mmx_psrli_q:
2314     case llvm::Intrinsic::x86_mmx_psrai_w:
2315     case llvm::Intrinsic::x86_mmx_psrai_d:
2316       handleVectorShiftIntrinsic(I, /* Variable */ false);
2317       break;
2318     case llvm::Intrinsic::x86_avx2_psllv_d:
2319     case llvm::Intrinsic::x86_avx2_psllv_d_256:
2320     case llvm::Intrinsic::x86_avx2_psllv_q:
2321     case llvm::Intrinsic::x86_avx2_psllv_q_256:
2322     case llvm::Intrinsic::x86_avx2_psrlv_d:
2323     case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2324     case llvm::Intrinsic::x86_avx2_psrlv_q:
2325     case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2326     case llvm::Intrinsic::x86_avx2_psrav_d:
2327     case llvm::Intrinsic::x86_avx2_psrav_d_256:
2328       handleVectorShiftIntrinsic(I, /* Variable */ true);
2329       break;
2330
2331     case llvm::Intrinsic::x86_sse2_packsswb_128:
2332     case llvm::Intrinsic::x86_sse2_packssdw_128:
2333     case llvm::Intrinsic::x86_sse2_packuswb_128:
2334     case llvm::Intrinsic::x86_sse41_packusdw:
2335     case llvm::Intrinsic::x86_avx2_packsswb:
2336     case llvm::Intrinsic::x86_avx2_packssdw:
2337     case llvm::Intrinsic::x86_avx2_packuswb:
2338     case llvm::Intrinsic::x86_avx2_packusdw:
2339       handleVectorPackIntrinsic(I);
2340       break;
2341
2342     case llvm::Intrinsic::x86_mmx_packsswb:
2343     case llvm::Intrinsic::x86_mmx_packuswb:
2344       handleVectorPackIntrinsic(I, 16);
2345       break;
2346
2347     case llvm::Intrinsic::x86_mmx_packssdw:
2348       handleVectorPackIntrinsic(I, 32);
2349       break;
2350
2351     case llvm::Intrinsic::x86_mmx_psad_bw:
2352     case llvm::Intrinsic::x86_sse2_psad_bw:
2353     case llvm::Intrinsic::x86_avx2_psad_bw:
2354       handleVectorSadIntrinsic(I);
2355       break;
2356
2357     case llvm::Intrinsic::x86_sse2_pmadd_wd:
2358     case llvm::Intrinsic::x86_avx2_pmadd_wd:
2359     case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2360     case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2361       handleVectorPmaddIntrinsic(I);
2362       break;
2363
2364     case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2365       handleVectorPmaddIntrinsic(I, 8);
2366       break;
2367
2368     case llvm::Intrinsic::x86_mmx_pmadd_wd:
2369       handleVectorPmaddIntrinsic(I, 16);
2370       break;
2371
2372     default:
2373       if (!handleUnknownIntrinsic(I))
2374         visitInstruction(I);
2375       break;
2376     }
2377   }
2378
2379   void visitCallSite(CallSite CS) {
2380     Instruction &I = *CS.getInstruction();
2381     assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2382     if (CS.isCall()) {
2383       CallInst *Call = cast<CallInst>(&I);
2384
2385       // For inline asm, do the usual thing: check argument shadow and mark all
2386       // outputs as clean. Note that any side effects of the inline asm that are
2387       // not immediately visible in its constraints are not handled.
2388       if (Call->isInlineAsm()) {
2389         visitInstruction(I);
2390         return;
2391       }
2392
2393       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
2394
2395       // We are going to insert code that relies on the fact that the callee
2396       // will become a non-readonly function after it is instrumented by us. To
2397       // prevent this code from being optimized out, mark that function
2398       // non-readonly in advance.
2399       if (Function *Func = Call->getCalledFunction()) {
2400         // Clear out readonly/readnone attributes.
2401         AttrBuilder B;
2402         B.addAttribute(Attribute::ReadOnly)
2403           .addAttribute(Attribute::ReadNone);
2404         Func->removeAttributes(AttributeSet::FunctionIndex,
2405                                AttributeSet::get(Func->getContext(),
2406                                                  AttributeSet::FunctionIndex,
2407                                                  B));
2408       }
2409     }
2410     IRBuilder<> IRB(&I);
2411
2412     unsigned ArgOffset = 0;
2413     DEBUG(dbgs() << "  CallSite: " << I << "\n");
2414     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2415          ArgIt != End; ++ArgIt) {
2416       Value *A = *ArgIt;
2417       unsigned i = ArgIt - CS.arg_begin();
2418       if (!A->getType()->isSized()) {
2419         DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2420         continue;
2421       }
2422       unsigned Size = 0;
2423       Value *Store = nullptr;
2424       // Compute the Shadow for arg even if it is ByVal, because
2425       // in that case getShadow() will copy the actual arg shadow to
2426       // __msan_param_tls.
2427       Value *ArgShadow = getShadow(A);
2428       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2429       DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
2430             " Shadow: " << *ArgShadow << "\n");
2431       bool ArgIsInitialized = false;
2432       const DataLayout &DL = F.getParent()->getDataLayout();
2433       if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
2434         assert(A->getType()->isPointerTy() &&
2435                "ByVal argument is not a pointer!");
2436         Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
2437         if (ArgOffset + Size > kParamTLSSize) break;
2438         unsigned ParamAlignment = CS.getParamAlignment(i + 1);
2439         unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
2440         Store = IRB.CreateMemCpy(ArgShadowBase,
2441                                  getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2442                                  Size, Alignment);
2443       } else {
2444         Size = DL.getTypeAllocSize(A->getType());
2445         if (ArgOffset + Size > kParamTLSSize) break;
2446         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2447                                        kShadowTLSAlignment);
2448         Constant *Cst = dyn_cast<Constant>(ArgShadow);
2449         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
2450       }
2451       if (MS.TrackOrigins && !ArgIsInitialized)
2452         IRB.CreateStore(getOrigin(A),
2453                         getOriginPtrForArgument(A, IRB, ArgOffset));
2454       (void)Store;
2455       assert(Size != 0 && Store != nullptr);
2456       DEBUG(dbgs() << "  Param:" << *Store << "\n");
2457       ArgOffset += RoundUpToAlignment(Size, 8);
2458     }
2459     DEBUG(dbgs() << "  done with call args\n");
2460
2461     FunctionType *FT =
2462       cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
2463     if (FT->isVarArg()) {
2464       VAHelper->visitCallSite(CS, IRB);
2465     }
2466
2467     // Now, get the shadow for the RetVal.
2468     if (!I.getType()->isSized()) return;
2469     IRBuilder<> IRBBefore(&I);
2470     // Until we have full dynamic coverage, make sure the retval shadow is 0.
2471     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
2472     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
2473     Instruction *NextInsn = nullptr;
2474     if (CS.isCall()) {
2475       NextInsn = I.getNextNode();
2476     } else {
2477       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2478       if (!NormalDest->getSinglePredecessor()) {
2479         // FIXME: this case is tricky, so we are just conservative here.
2480         // Perhaps we need to split the edge between this BB and NormalDest,
2481         // but a naive attempt to use SplitEdge leads to a crash.
2482         setShadow(&I, getCleanShadow(&I));
2483         setOrigin(&I, getCleanOrigin());
2484         return;
2485       }
2486       NextInsn = NormalDest->getFirstInsertionPt();
2487       assert(NextInsn &&
2488              "Could not find insertion point for retval shadow load");
2489     }
2490     IRBuilder<> IRBAfter(NextInsn);
2491     Value *RetvalShadow =
2492       IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2493                                  kShadowTLSAlignment, "_msret");
2494     setShadow(&I, RetvalShadow);
2495     if (MS.TrackOrigins)
2496       setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2497   }
2498
2499   void visitReturnInst(ReturnInst &I) {
2500     IRBuilder<> IRB(&I);
2501     Value *RetVal = I.getReturnValue();
2502     if (!RetVal) return;
2503     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2504     if (CheckReturnValue) {
2505       insertShadowCheck(RetVal, &I);
2506       Value *Shadow = getCleanShadow(RetVal);
2507       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2508     } else {
2509       Value *Shadow = getShadow(RetVal);
2510       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2511       // FIXME: make it conditional if ClStoreCleanOrigin==0
2512       if (MS.TrackOrigins)
2513         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2514     }
2515   }
2516
2517   void visitPHINode(PHINode &I) {
2518     IRBuilder<> IRB(&I);
2519     if (!PropagateShadow) {
2520       setShadow(&I, getCleanShadow(&I));
2521       setOrigin(&I, getCleanOrigin());
2522       return;
2523     }
2524
2525     ShadowPHINodes.push_back(&I);
2526     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2527                                 "_msphi_s"));
2528     if (MS.TrackOrigins)
2529       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2530                                   "_msphi_o"));
2531   }
2532
2533   void visitAllocaInst(AllocaInst &I) {
2534     setShadow(&I, getCleanShadow(&I));
2535     setOrigin(&I, getCleanOrigin());
2536     IRBuilder<> IRB(I.getNextNode());
2537     const DataLayout &DL = F.getParent()->getDataLayout();
2538     uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
2539     if (PoisonStack && ClPoisonStackWithCall) {
2540       IRB.CreateCall2(MS.MsanPoisonStackFn,
2541                       IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2542                       ConstantInt::get(MS.IntptrTy, Size));
2543     } else {
2544       Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
2545       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2546       IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
2547     }
2548
2549     if (PoisonStack && MS.TrackOrigins) {
2550       SmallString<2048> StackDescriptionStorage;
2551       raw_svector_ostream StackDescription(StackDescriptionStorage);
2552       // We create a string with a description of the stack allocation and
2553       // pass it into __msan_set_alloca_origin.
2554       // It will be printed by the run-time if stack-originated UMR is found.
2555       // The first 4 bytes of the string are set to '----' and will be replaced
2556       // by __msan_va_arg_overflow_size_tls at the first call.
2557       StackDescription << "----" << I.getName() << "@" << F.getName();
2558       Value *Descr =
2559           createPrivateNonConstGlobalForString(*F.getParent(),
2560                                                StackDescription.str());
2561
2562       IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
2563                       IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2564                       ConstantInt::get(MS.IntptrTy, Size),
2565                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2566                       IRB.CreatePointerCast(&F, MS.IntptrTy));
2567     }
2568   }
2569
2570   void visitSelectInst(SelectInst& I) {
2571     IRBuilder<> IRB(&I);
2572     // a = select b, c, d
2573     Value *B = I.getCondition();
2574     Value *C = I.getTrueValue();
2575     Value *D = I.getFalseValue();
2576     Value *Sb = getShadow(B);
2577     Value *Sc = getShadow(C);
2578     Value *Sd = getShadow(D);
2579
2580     // Result shadow if condition shadow is 0.
2581     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2582     Value *Sa1;
2583     if (I.getType()->isAggregateType()) {
2584       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2585       // an extra "select". This results in much more compact IR.
2586       // Sa = select Sb, poisoned, (select b, Sc, Sd)
2587       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
2588     } else {
2589       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2590       // If Sb (condition is poisoned), look for bits in c and d that are equal
2591       // and both unpoisoned.
2592       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2593
2594       // Cast arguments to shadow-compatible type.
2595       C = CreateAppToShadowCast(IRB, C);
2596       D = CreateAppToShadowCast(IRB, D);
2597
2598       // Result shadow if condition shadow is 1.
2599       Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
2600     }
2601     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2602     setShadow(&I, Sa);
2603     if (MS.TrackOrigins) {
2604       // Origins are always i32, so any vector conditions must be flattened.
2605       // FIXME: consider tracking vector origins for app vectors?
2606       if (B->getType()->isVectorTy()) {
2607         Type *FlatTy = getShadowTyNoVec(B->getType());
2608         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
2609                                 ConstantInt::getNullValue(FlatTy));
2610         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
2611                                       ConstantInt::getNullValue(FlatTy));
2612       }
2613       // a = select b, c, d
2614       // Oa = Sb ? Ob : (b ? Oc : Od)
2615       setOrigin(
2616           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
2617                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
2618                                                 getOrigin(I.getFalseValue()))));
2619     }
2620   }
2621
2622   void visitLandingPadInst(LandingPadInst &I) {
2623     // Do nothing.
2624     // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2625     setShadow(&I, getCleanShadow(&I));
2626     setOrigin(&I, getCleanOrigin());
2627   }
2628
2629   void visitGetElementPtrInst(GetElementPtrInst &I) {
2630     handleShadowOr(I);
2631   }
2632
2633   void visitExtractValueInst(ExtractValueInst &I) {
2634     IRBuilder<> IRB(&I);
2635     Value *Agg = I.getAggregateOperand();
2636     DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
2637     Value *AggShadow = getShadow(Agg);
2638     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2639     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2640     DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
2641     setShadow(&I, ResShadow);
2642     setOriginForNaryOp(I);
2643   }
2644
2645   void visitInsertValueInst(InsertValueInst &I) {
2646     IRBuilder<> IRB(&I);
2647     DEBUG(dbgs() << "InsertValue:  " << I << "\n");
2648     Value *AggShadow = getShadow(I.getAggregateOperand());
2649     Value *InsShadow = getShadow(I.getInsertedValueOperand());
2650     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2651     DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
2652     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2653     DEBUG(dbgs() << "   Res:        " << *Res << "\n");
2654     setShadow(&I, Res);
2655     setOriginForNaryOp(I);
2656   }
2657
2658   void dumpInst(Instruction &I) {
2659     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2660       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2661     } else {
2662       errs() << "ZZZ " << I.getOpcodeName() << "\n";
2663     }
2664     errs() << "QQQ " << I << "\n";
2665   }
2666
2667   void visitResumeInst(ResumeInst &I) {
2668     DEBUG(dbgs() << "Resume: " << I << "\n");
2669     // Nothing to do here.
2670   }
2671
2672   void visitInstruction(Instruction &I) {
2673     // Everything else: stop propagating and check for poisoned shadow.
2674     if (ClDumpStrictInstructions)
2675       dumpInst(I);
2676     DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2677     for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
2678       insertShadowCheck(I.getOperand(i), &I);
2679     setShadow(&I, getCleanShadow(&I));
2680     setOrigin(&I, getCleanOrigin());
2681   }
2682 };
2683
2684 /// \brief AMD64-specific implementation of VarArgHelper.
2685 struct VarArgAMD64Helper : public VarArgHelper {
2686   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2687   // See a comment in visitCallSite for more details.
2688   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
2689   static const unsigned AMD64FpEndOffset = 176;
2690
2691   Function &F;
2692   MemorySanitizer &MS;
2693   MemorySanitizerVisitor &MSV;
2694   Value *VAArgTLSCopy;
2695   Value *VAArgOverflowSize;
2696
2697   SmallVector<CallInst*, 16> VAStartInstrumentationList;
2698
2699   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2700                     MemorySanitizerVisitor &MSV)
2701     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2702       VAArgOverflowSize(nullptr) {}
2703
2704   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2705
2706   ArgKind classifyArgument(Value* arg) {
2707     // A very rough approximation of X86_64 argument classification rules.
2708     Type *T = arg->getType();
2709     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2710       return AK_FloatingPoint;
2711     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2712       return AK_GeneralPurpose;
2713     if (T->isPointerTy())
2714       return AK_GeneralPurpose;
2715     return AK_Memory;
2716   }
2717
2718   // For VarArg functions, store the argument shadow in an ABI-specific format
2719   // that corresponds to va_list layout.
2720   // We do this because Clang lowers va_arg in the frontend, and this pass
2721   // only sees the low level code that deals with va_list internals.
2722   // A much easier alternative (provided that Clang emits va_arg instructions)
2723   // would have been to associate each live instance of va_list with a copy of
2724   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2725   // order.
2726   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
2727     unsigned GpOffset = 0;
2728     unsigned FpOffset = AMD64GpEndOffset;
2729     unsigned OverflowOffset = AMD64FpEndOffset;
2730     const DataLayout &DL = F.getParent()->getDataLayout();
2731     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2732          ArgIt != End; ++ArgIt) {
2733       Value *A = *ArgIt;
2734       unsigned ArgNo = CS.getArgumentNo(ArgIt);
2735       bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2736       if (IsByVal) {
2737         // ByVal arguments always go to the overflow area.
2738         assert(A->getType()->isPointerTy());
2739         Type *RealTy = A->getType()->getPointerElementType();
2740         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
2741         Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
2742         OverflowOffset += RoundUpToAlignment(ArgSize, 8);
2743         IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2744                          ArgSize, kShadowTLSAlignment);
2745       } else {
2746         ArgKind AK = classifyArgument(A);
2747         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2748           AK = AK_Memory;
2749         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2750           AK = AK_Memory;
2751         Value *Base;
2752         switch (AK) {
2753           case AK_GeneralPurpose:
2754             Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2755             GpOffset += 8;
2756             break;
2757           case AK_FloatingPoint:
2758             Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2759             FpOffset += 16;
2760             break;
2761           case AK_Memory:
2762             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
2763             Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2764             OverflowOffset += RoundUpToAlignment(ArgSize, 8);
2765         }
2766         IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
2767       }
2768     }
2769     Constant *OverflowSize =
2770       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2771     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2772   }
2773
2774   /// \brief Compute the shadow address for a given va_arg.
2775   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
2776                                    int ArgOffset) {
2777     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2778     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2779     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
2780                               "_msarg");
2781   }
2782
2783   void visitVAStartInst(VAStartInst &I) override {
2784     IRBuilder<> IRB(&I);
2785     VAStartInstrumentationList.push_back(&I);
2786     Value *VAListTag = I.getArgOperand(0);
2787     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2788
2789     // Unpoison the whole __va_list_tag.
2790     // FIXME: magic ABI constants.
2791     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2792                      /* size */24, /* alignment */8, false);
2793   }
2794
2795   void visitVACopyInst(VACopyInst &I) override {
2796     IRBuilder<> IRB(&I);
2797     Value *VAListTag = I.getArgOperand(0);
2798     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2799
2800     // Unpoison the whole __va_list_tag.
2801     // FIXME: magic ABI constants.
2802     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2803                      /* size */24, /* alignment */8, false);
2804   }
2805
2806   void finalizeInstrumentation() override {
2807     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2808            "finalizeInstrumentation called twice");
2809     if (!VAStartInstrumentationList.empty()) {
2810       // If there is a va_start in this function, make a backup copy of
2811       // va_arg_tls somewhere in the function entry block.
2812       IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2813       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2814       Value *CopySize =
2815         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2816                       VAArgOverflowSize);
2817       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2818       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2819     }
2820
2821     // Instrument va_start.
2822     // Copy va_list shadow from the backup copy of the TLS contents.
2823     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2824       CallInst *OrigInst = VAStartInstrumentationList[i];
2825       IRBuilder<> IRB(OrigInst->getNextNode());
2826       Value *VAListTag = OrigInst->getArgOperand(0);
2827
2828       Value *RegSaveAreaPtrPtr =
2829         IRB.CreateIntToPtr(
2830           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2831                         ConstantInt::get(MS.IntptrTy, 16)),
2832           Type::getInt64PtrTy(*MS.C));
2833       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2834       Value *RegSaveAreaShadowPtr =
2835         MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2836       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2837                        AMD64FpEndOffset, 16);
2838
2839       Value *OverflowArgAreaPtrPtr =
2840         IRB.CreateIntToPtr(
2841           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2842                         ConstantInt::get(MS.IntptrTy, 8)),
2843           Type::getInt64PtrTy(*MS.C));
2844       Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2845       Value *OverflowArgAreaShadowPtr =
2846         MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
2847       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
2848                                              AMD64FpEndOffset);
2849       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2850     }
2851   }
2852 };
2853
2854 /// \brief MIPS64-specific implementation of VarArgHelper.
2855 struct VarArgMIPS64Helper : public VarArgHelper {
2856   Function &F;
2857   MemorySanitizer &MS;
2858   MemorySanitizerVisitor &MSV;
2859   Value *VAArgTLSCopy;
2860   Value *VAArgSize;
2861
2862   SmallVector<CallInst*, 16> VAStartInstrumentationList;
2863
2864   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
2865                     MemorySanitizerVisitor &MSV)
2866     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2867       VAArgSize(nullptr) {}
2868
2869   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
2870     unsigned VAArgOffset = 0;
2871     const DataLayout &DL = F.getParent()->getDataLayout();
2872     for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
2873          ArgIt != End; ++ArgIt) {
2874       Value *A = *ArgIt;
2875       Value *Base;
2876       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
2877 #if defined(__MIPSEB__) || defined(MIPSEB)
2878       // Adjusting the shadow for argument with size < 8 to match the placement
2879       // of bits in big endian system
2880       if (ArgSize < 8)
2881         VAArgOffset += (8 - ArgSize);
2882 #endif
2883       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
2884       VAArgOffset += ArgSize;
2885       VAArgOffset = RoundUpToAlignment(VAArgOffset, 8);
2886       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
2887     }
2888
2889     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
2890     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
2891     // a new class member i.e. it is the total size of all VarArgs.
2892     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
2893   }
2894
2895   /// \brief Compute the shadow address for a given va_arg.
2896   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
2897                                    int ArgOffset) {
2898     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2899     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2900     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
2901                               "_msarg");
2902   }
2903
2904   void visitVAStartInst(VAStartInst &I) override {
2905     IRBuilder<> IRB(&I);
2906     VAStartInstrumentationList.push_back(&I);
2907     Value *VAListTag = I.getArgOperand(0);
2908     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2909     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2910                      /* size */8, /* alignment */8, false);
2911   }
2912
2913   void visitVACopyInst(VACopyInst &I) override {
2914     IRBuilder<> IRB(&I);
2915     Value *VAListTag = I.getArgOperand(0);
2916     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2917     // Unpoison the whole __va_list_tag.
2918     // FIXME: magic ABI constants.
2919     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2920                      /* size */8, /* alignment */8, false);
2921   }
2922
2923   void finalizeInstrumentation() override {
2924     assert(!VAArgSize && !VAArgTLSCopy &&
2925            "finalizeInstrumentation called twice");
2926     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2927     VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2928     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
2929                                     VAArgSize);
2930
2931     if (!VAStartInstrumentationList.empty()) {
2932       // If there is a va_start in this function, make a backup copy of
2933       // va_arg_tls somewhere in the function entry block.
2934       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2935       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2936     }
2937
2938     // Instrument va_start.
2939     // Copy va_list shadow from the backup copy of the TLS contents.
2940     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2941       CallInst *OrigInst = VAStartInstrumentationList[i];
2942       IRBuilder<> IRB(OrigInst->getNextNode());
2943       Value *VAListTag = OrigInst->getArgOperand(0);
2944       Value *RegSaveAreaPtrPtr =
2945         IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2946                         Type::getInt64PtrTy(*MS.C));
2947       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2948       Value *RegSaveAreaShadowPtr =
2949       MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2950       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
2951     }
2952   }
2953 };
2954
2955 /// \brief A no-op implementation of VarArgHelper.
2956 struct VarArgNoOpHelper : public VarArgHelper {
2957   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2958                    MemorySanitizerVisitor &MSV) {}
2959
2960   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
2961
2962   void visitVAStartInst(VAStartInst &I) override {}
2963
2964   void visitVACopyInst(VACopyInst &I) override {}
2965
2966   void finalizeInstrumentation() override {}
2967 };
2968
2969 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
2970                                  MemorySanitizerVisitor &Visitor) {
2971   // VarArg handling is only implemented on AMD64. False positives are possible
2972   // on other platforms.
2973   llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2974   if (TargetTriple.getArch() == llvm::Triple::x86_64)
2975     return new VarArgAMD64Helper(Func, Msan, Visitor);
2976   else if (TargetTriple.getArch() == llvm::Triple::mips64 ||
2977            TargetTriple.getArch() == llvm::Triple::mips64el)
2978     return new VarArgMIPS64Helper(Func, Msan, Visitor);
2979   else
2980     return new VarArgNoOpHelper(Func, Msan, Visitor);
2981 }
2982
2983 }  // namespace
2984
2985 bool MemorySanitizer::runOnFunction(Function &F) {
2986   MemorySanitizerVisitor Visitor(F, *this);
2987
2988   // Clear out readonly/readnone attributes.
2989   AttrBuilder B;
2990   B.addAttribute(Attribute::ReadOnly)
2991     .addAttribute(Attribute::ReadNone);
2992   F.removeAttributes(AttributeSet::FunctionIndex,
2993                      AttributeSet::get(F.getContext(),
2994                                        AttributeSet::FunctionIndex, B));
2995
2996   return Visitor.runOnFunction();
2997 }