Cheap, mostly strict, stable sorting.
[oota-llvm.git] / lib / Transforms / Instrumentation / MaximumSpanningTree.h
1 //===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This module privides means for calculating a maximum spanning tree for a
11 // given set of weighted edges. The type parameter T is the type of a node.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
16 #define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
17
18 #include "llvm/BasicBlock.h"
19 #include "llvm/ADT/EquivalenceClasses.h"
20 #include <vector>
21 #include <algorithm>
22
23 namespace llvm {
24
25   /// MaximumSpanningTree - A MST implementation.
26   /// The type parameter T determines the type of the nodes of the graph.
27   template <typename T>
28   class MaximumSpanningTree {
29
30     // A comparing class for comparing weighted edges.
31     template <typename CT>
32     struct EdgeWeightCompare {
33       bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X, 
34                       typename MaximumSpanningTree<CT>::EdgeWeight Y) const {
35         if (X.second > Y.second) return true;
36         if (X.second < Y.second) return false;
37         if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.first)) {
38           if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.first)) {
39             if (BBX->size() > BBY->size()) return true;
40             if (BBX->size() < BBY->size()) return false;
41           }
42         }
43         if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.second)) {
44           if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.second)) {
45             if (BBX->size() > BBY->size()) return true;
46             if (BBX->size() < BBY->size()) return false;
47           }
48         }
49         return false;
50       }
51     };
52
53   public:
54     typedef std::pair<const T*, const T*> Edge;
55     typedef std::pair<Edge, double> EdgeWeight;
56     typedef std::vector<EdgeWeight> EdgeWeights;
57   protected:
58     typedef std::vector<Edge> MaxSpanTree;
59
60     MaxSpanTree MST;
61
62   public:
63     static char ID; // Class identification, replacement for typeinfo
64
65     /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a
66     /// spanning tree.
67     MaximumSpanningTree(EdgeWeights &EdgeVector) {
68
69       std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>());
70
71       // Create spanning tree, Forest contains a special data structure
72       // that makes checking if two nodes are already in a common (sub-)tree
73       // fast and cheap.
74       EquivalenceClasses<const T*> Forest;
75       for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
76            EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
77         Edge e = (*EWi).first;
78
79         Forest.insert(e.first);
80         Forest.insert(e.second);
81       }
82
83       // Iterate over the sorted edges, biggest first.
84       for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
85            EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
86         Edge e = (*EWi).first;
87
88         if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
89           Forest.unionSets(e.first, e.second);
90           // So we know now that the edge is not already in a subtree, so we push
91           // the edge to the MST.
92           MST.push_back(e);
93         }
94       }
95     }
96
97     typename MaxSpanTree::iterator begin() {
98       return MST.begin();
99     }
100
101     typename MaxSpanTree::iterator end() {
102       return MST.end();
103     }
104   };
105
106 } // End llvm namespace
107
108 #endif